xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision be709d48)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *main_status_buf;
39 	unsigned int *status_buf;
40 	unsigned int *mask_buf;
41 	unsigned int *mask_buf_def;
42 	unsigned int *wake_buf;
43 	unsigned int *type_buf;
44 	unsigned int *type_buf_def;
45 
46 	unsigned int irq_reg_stride;
47 	unsigned int type_reg_stride;
48 
49 	bool clear_status:1;
50 };
51 
52 static inline const
53 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
54 				     int irq)
55 {
56 	return &data->chip->irqs[irq];
57 }
58 
59 static void regmap_irq_lock(struct irq_data *data)
60 {
61 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
62 
63 	mutex_lock(&d->lock);
64 }
65 
66 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
67 				  unsigned int reg, unsigned int mask,
68 				  unsigned int val)
69 {
70 	if (d->chip->mask_writeonly)
71 		return regmap_write_bits(d->map, reg, mask, val);
72 	else
73 		return regmap_update_bits(d->map, reg, mask, val);
74 }
75 
76 static void regmap_irq_sync_unlock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 	struct regmap *map = d->map;
80 	int i, ret;
81 	u32 reg;
82 	u32 unmask_offset;
83 	u32 val;
84 
85 	if (d->chip->runtime_pm) {
86 		ret = pm_runtime_get_sync(map->dev);
87 		if (ret < 0)
88 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
89 				ret);
90 	}
91 
92 	if (d->clear_status) {
93 		for (i = 0; i < d->chip->num_regs; i++) {
94 			reg = d->chip->status_base +
95 				(i * map->reg_stride * d->irq_reg_stride);
96 
97 			ret = regmap_read(map, reg, &val);
98 			if (ret)
99 				dev_err(d->map->dev,
100 					"Failed to clear the interrupt status bits\n");
101 		}
102 
103 		d->clear_status = false;
104 	}
105 
106 	/*
107 	 * If there's been a change in the mask write it back to the
108 	 * hardware.  We rely on the use of the regmap core cache to
109 	 * suppress pointless writes.
110 	 */
111 	for (i = 0; i < d->chip->num_regs; i++) {
112 		if (!d->chip->mask_base)
113 			continue;
114 
115 		reg = d->chip->mask_base +
116 			(i * map->reg_stride * d->irq_reg_stride);
117 		if (d->chip->mask_invert) {
118 			ret = regmap_irq_update_bits(d, reg,
119 					 d->mask_buf_def[i], ~d->mask_buf[i]);
120 		} else if (d->chip->unmask_base) {
121 			/* set mask with mask_base register */
122 			ret = regmap_irq_update_bits(d, reg,
123 					d->mask_buf_def[i], ~d->mask_buf[i]);
124 			if (ret < 0)
125 				dev_err(d->map->dev,
126 					"Failed to sync unmasks in %x\n",
127 					reg);
128 			unmask_offset = d->chip->unmask_base -
129 							d->chip->mask_base;
130 			/* clear mask with unmask_base register */
131 			ret = regmap_irq_update_bits(d,
132 					reg + unmask_offset,
133 					d->mask_buf_def[i],
134 					d->mask_buf[i]);
135 		} else {
136 			ret = regmap_irq_update_bits(d, reg,
137 					 d->mask_buf_def[i], d->mask_buf[i]);
138 		}
139 		if (ret != 0)
140 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
141 				reg);
142 
143 		reg = d->chip->wake_base +
144 			(i * map->reg_stride * d->irq_reg_stride);
145 		if (d->wake_buf) {
146 			if (d->chip->wake_invert)
147 				ret = regmap_irq_update_bits(d, reg,
148 							 d->mask_buf_def[i],
149 							 ~d->wake_buf[i]);
150 			else
151 				ret = regmap_irq_update_bits(d, reg,
152 							 d->mask_buf_def[i],
153 							 d->wake_buf[i]);
154 			if (ret != 0)
155 				dev_err(d->map->dev,
156 					"Failed to sync wakes in %x: %d\n",
157 					reg, ret);
158 		}
159 
160 		if (!d->chip->init_ack_masked)
161 			continue;
162 		/*
163 		 * Ack all the masked interrupts unconditionally,
164 		 * OR if there is masked interrupt which hasn't been Acked,
165 		 * it'll be ignored in irq handler, then may introduce irq storm
166 		 */
167 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
168 			reg = d->chip->ack_base +
169 				(i * map->reg_stride * d->irq_reg_stride);
170 			/* some chips ack by write 0 */
171 			if (d->chip->ack_invert)
172 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
173 			else
174 				ret = regmap_write(map, reg, d->mask_buf[i]);
175 			if (ret != 0)
176 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
177 					reg, ret);
178 		}
179 	}
180 
181 	/* Don't update the type bits if we're using mask bits for irq type. */
182 	if (!d->chip->type_in_mask) {
183 		for (i = 0; i < d->chip->num_type_reg; i++) {
184 			if (!d->type_buf_def[i])
185 				continue;
186 			reg = d->chip->type_base +
187 				(i * map->reg_stride * d->type_reg_stride);
188 			if (d->chip->type_invert)
189 				ret = regmap_irq_update_bits(d, reg,
190 					d->type_buf_def[i], ~d->type_buf[i]);
191 			else
192 				ret = regmap_irq_update_bits(d, reg,
193 					d->type_buf_def[i], d->type_buf[i]);
194 			if (ret != 0)
195 				dev_err(d->map->dev, "Failed to sync type in %x\n",
196 					reg);
197 		}
198 	}
199 
200 	if (d->chip->runtime_pm)
201 		pm_runtime_put(map->dev);
202 
203 	/* If we've changed our wakeup count propagate it to the parent */
204 	if (d->wake_count < 0)
205 		for (i = d->wake_count; i < 0; i++)
206 			irq_set_irq_wake(d->irq, 0);
207 	else if (d->wake_count > 0)
208 		for (i = 0; i < d->wake_count; i++)
209 			irq_set_irq_wake(d->irq, 1);
210 
211 	d->wake_count = 0;
212 
213 	mutex_unlock(&d->lock);
214 }
215 
216 static void regmap_irq_enable(struct irq_data *data)
217 {
218 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
219 	struct regmap *map = d->map;
220 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
221 	unsigned int mask, type;
222 
223 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
224 
225 	/*
226 	 * The type_in_mask flag means that the underlying hardware uses
227 	 * separate mask bits for rising and falling edge interrupts, but
228 	 * we want to make them into a single virtual interrupt with
229 	 * configurable edge.
230 	 *
231 	 * If the interrupt we're enabling defines the falling or rising
232 	 * masks then instead of using the regular mask bits for this
233 	 * interrupt, use the value previously written to the type buffer
234 	 * at the corresponding offset in regmap_irq_set_type().
235 	 */
236 	if (d->chip->type_in_mask && type)
237 		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
238 	else
239 		mask = irq_data->mask;
240 
241 	if (d->chip->clear_on_unmask)
242 		d->clear_status = true;
243 
244 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
245 }
246 
247 static void regmap_irq_disable(struct irq_data *data)
248 {
249 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
250 	struct regmap *map = d->map;
251 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
252 
253 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
254 }
255 
256 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
257 {
258 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
259 	struct regmap *map = d->map;
260 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
261 	int reg;
262 	const struct regmap_irq_type *t = &irq_data->type;
263 
264 	if ((t->types_supported & type) != type)
265 		return 0;
266 
267 	reg = t->type_reg_offset / map->reg_stride;
268 
269 	if (t->type_reg_mask)
270 		d->type_buf[reg] &= ~t->type_reg_mask;
271 	else
272 		d->type_buf[reg] &= ~(t->type_falling_val |
273 				      t->type_rising_val |
274 				      t->type_level_low_val |
275 				      t->type_level_high_val);
276 	switch (type) {
277 	case IRQ_TYPE_EDGE_FALLING:
278 		d->type_buf[reg] |= t->type_falling_val;
279 		break;
280 
281 	case IRQ_TYPE_EDGE_RISING:
282 		d->type_buf[reg] |= t->type_rising_val;
283 		break;
284 
285 	case IRQ_TYPE_EDGE_BOTH:
286 		d->type_buf[reg] |= (t->type_falling_val |
287 					t->type_rising_val);
288 		break;
289 
290 	case IRQ_TYPE_LEVEL_HIGH:
291 		d->type_buf[reg] |= t->type_level_high_val;
292 		break;
293 
294 	case IRQ_TYPE_LEVEL_LOW:
295 		d->type_buf[reg] |= t->type_level_low_val;
296 		break;
297 	default:
298 		return -EINVAL;
299 	}
300 	return 0;
301 }
302 
303 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
304 {
305 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
306 	struct regmap *map = d->map;
307 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
308 
309 	if (on) {
310 		if (d->wake_buf)
311 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
312 				&= ~irq_data->mask;
313 		d->wake_count++;
314 	} else {
315 		if (d->wake_buf)
316 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
317 				|= irq_data->mask;
318 		d->wake_count--;
319 	}
320 
321 	return 0;
322 }
323 
324 static const struct irq_chip regmap_irq_chip = {
325 	.irq_bus_lock		= regmap_irq_lock,
326 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
327 	.irq_disable		= regmap_irq_disable,
328 	.irq_enable		= regmap_irq_enable,
329 	.irq_set_type		= regmap_irq_set_type,
330 	.irq_set_wake		= regmap_irq_set_wake,
331 };
332 
333 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
334 					   unsigned int b)
335 {
336 	const struct regmap_irq_chip *chip = data->chip;
337 	struct regmap *map = data->map;
338 	struct regmap_irq_sub_irq_map *subreg;
339 	int i, ret = 0;
340 
341 	if (!chip->sub_reg_offsets) {
342 		/* Assume linear mapping */
343 		ret = regmap_read(map, chip->status_base +
344 				  (b * map->reg_stride * data->irq_reg_stride),
345 				   &data->status_buf[b]);
346 	} else {
347 		subreg = &chip->sub_reg_offsets[b];
348 		for (i = 0; i < subreg->num_regs; i++) {
349 			unsigned int offset = subreg->offset[i];
350 
351 			ret = regmap_read(map, chip->status_base + offset,
352 					  &data->status_buf[offset]);
353 			if (ret)
354 				break;
355 		}
356 	}
357 	return ret;
358 }
359 
360 static irqreturn_t regmap_irq_thread(int irq, void *d)
361 {
362 	struct regmap_irq_chip_data *data = d;
363 	const struct regmap_irq_chip *chip = data->chip;
364 	struct regmap *map = data->map;
365 	int ret, i;
366 	bool handled = false;
367 	u32 reg;
368 
369 	if (chip->handle_pre_irq)
370 		chip->handle_pre_irq(chip->irq_drv_data);
371 
372 	if (chip->runtime_pm) {
373 		ret = pm_runtime_get_sync(map->dev);
374 		if (ret < 0) {
375 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
376 				ret);
377 			pm_runtime_put(map->dev);
378 			goto exit;
379 		}
380 	}
381 
382 	/*
383 	 * Read only registers with active IRQs if the chip has 'main status
384 	 * register'. Else read in the statuses, using a single bulk read if
385 	 * possible in order to reduce the I/O overheads.
386 	 */
387 
388 	if (chip->num_main_regs) {
389 		unsigned int max_main_bits;
390 		unsigned long size;
391 
392 		size = chip->num_regs * sizeof(unsigned int);
393 
394 		max_main_bits = (chip->num_main_status_bits) ?
395 				 chip->num_main_status_bits : chip->num_regs;
396 		/* Clear the status buf as we don't read all status regs */
397 		memset(data->status_buf, 0, size);
398 
399 		/* We could support bulk read for main status registers
400 		 * but I don't expect to see devices with really many main
401 		 * status registers so let's only support single reads for the
402 		 * sake of simplicity. and add bulk reads only if needed
403 		 */
404 		for (i = 0; i < chip->num_main_regs; i++) {
405 			ret = regmap_read(map, chip->main_status +
406 				  (i * map->reg_stride
407 				   * data->irq_reg_stride),
408 				  &data->main_status_buf[i]);
409 			if (ret) {
410 				dev_err(map->dev,
411 					"Failed to read IRQ status %d\n",
412 					ret);
413 				goto exit;
414 			}
415 		}
416 
417 		/* Read sub registers with active IRQs */
418 		for (i = 0; i < chip->num_main_regs; i++) {
419 			unsigned int b;
420 			const unsigned long mreg = data->main_status_buf[i];
421 
422 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
423 				if (i * map->format.val_bytes * 8 + b >
424 				    max_main_bits)
425 					break;
426 				ret = read_sub_irq_data(data, b);
427 
428 				if (ret != 0) {
429 					dev_err(map->dev,
430 						"Failed to read IRQ status %d\n",
431 						ret);
432 					if (chip->runtime_pm)
433 						pm_runtime_put(map->dev);
434 					goto exit;
435 				}
436 			}
437 
438 		}
439 	} else if (!map->use_single_read && map->reg_stride == 1 &&
440 		   data->irq_reg_stride == 1) {
441 
442 		u8 *buf8 = data->status_reg_buf;
443 		u16 *buf16 = data->status_reg_buf;
444 		u32 *buf32 = data->status_reg_buf;
445 
446 		BUG_ON(!data->status_reg_buf);
447 
448 		ret = regmap_bulk_read(map, chip->status_base,
449 				       data->status_reg_buf,
450 				       chip->num_regs);
451 		if (ret != 0) {
452 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
453 				ret);
454 			goto exit;
455 		}
456 
457 		for (i = 0; i < data->chip->num_regs; i++) {
458 			switch (map->format.val_bytes) {
459 			case 1:
460 				data->status_buf[i] = buf8[i];
461 				break;
462 			case 2:
463 				data->status_buf[i] = buf16[i];
464 				break;
465 			case 4:
466 				data->status_buf[i] = buf32[i];
467 				break;
468 			default:
469 				BUG();
470 				goto exit;
471 			}
472 		}
473 
474 	} else {
475 		for (i = 0; i < data->chip->num_regs; i++) {
476 			ret = regmap_read(map, chip->status_base +
477 					  (i * map->reg_stride
478 					   * data->irq_reg_stride),
479 					  &data->status_buf[i]);
480 
481 			if (ret != 0) {
482 				dev_err(map->dev,
483 					"Failed to read IRQ status: %d\n",
484 					ret);
485 				if (chip->runtime_pm)
486 					pm_runtime_put(map->dev);
487 				goto exit;
488 			}
489 		}
490 	}
491 
492 	/*
493 	 * Ignore masked IRQs and ack if we need to; we ack early so
494 	 * there is no race between handling and acknowleding the
495 	 * interrupt.  We assume that typically few of the interrupts
496 	 * will fire simultaneously so don't worry about overhead from
497 	 * doing a write per register.
498 	 */
499 	for (i = 0; i < data->chip->num_regs; i++) {
500 		data->status_buf[i] &= ~data->mask_buf[i];
501 
502 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
503 			reg = chip->ack_base +
504 				(i * map->reg_stride * data->irq_reg_stride);
505 			ret = regmap_write(map, reg, data->status_buf[i]);
506 			if (ret != 0)
507 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
508 					reg, ret);
509 		}
510 	}
511 
512 	for (i = 0; i < chip->num_irqs; i++) {
513 		if (data->status_buf[chip->irqs[i].reg_offset /
514 				     map->reg_stride] & chip->irqs[i].mask) {
515 			handle_nested_irq(irq_find_mapping(data->domain, i));
516 			handled = true;
517 		}
518 	}
519 
520 	if (chip->runtime_pm)
521 		pm_runtime_put(map->dev);
522 
523 exit:
524 	if (chip->handle_post_irq)
525 		chip->handle_post_irq(chip->irq_drv_data);
526 
527 	if (handled)
528 		return IRQ_HANDLED;
529 	else
530 		return IRQ_NONE;
531 }
532 
533 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
534 			  irq_hw_number_t hw)
535 {
536 	struct regmap_irq_chip_data *data = h->host_data;
537 
538 	irq_set_chip_data(virq, data);
539 	irq_set_chip(virq, &data->irq_chip);
540 	irq_set_nested_thread(virq, 1);
541 	irq_set_parent(virq, data->irq);
542 	irq_set_noprobe(virq);
543 
544 	return 0;
545 }
546 
547 static const struct irq_domain_ops regmap_domain_ops = {
548 	.map	= regmap_irq_map,
549 	.xlate	= irq_domain_xlate_onetwocell,
550 };
551 
552 /**
553  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
554  *
555  * @map: The regmap for the device.
556  * @irq: The IRQ the device uses to signal interrupts.
557  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
558  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
559  * @chip: Configuration for the interrupt controller.
560  * @data: Runtime data structure for the controller, allocated on success.
561  *
562  * Returns 0 on success or an errno on failure.
563  *
564  * In order for this to be efficient the chip really should use a
565  * register cache.  The chip driver is responsible for restoring the
566  * register values used by the IRQ controller over suspend and resume.
567  */
568 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
569 			int irq_base, const struct regmap_irq_chip *chip,
570 			struct regmap_irq_chip_data **data)
571 {
572 	struct regmap_irq_chip_data *d;
573 	int i;
574 	int ret = -ENOMEM;
575 	int num_type_reg;
576 	u32 reg;
577 	u32 unmask_offset;
578 
579 	if (chip->num_regs <= 0)
580 		return -EINVAL;
581 
582 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
583 		return -EINVAL;
584 
585 	for (i = 0; i < chip->num_irqs; i++) {
586 		if (chip->irqs[i].reg_offset % map->reg_stride)
587 			return -EINVAL;
588 		if (chip->irqs[i].reg_offset / map->reg_stride >=
589 		    chip->num_regs)
590 			return -EINVAL;
591 	}
592 
593 	if (irq_base) {
594 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
595 		if (irq_base < 0) {
596 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
597 				 irq_base);
598 			return irq_base;
599 		}
600 	}
601 
602 	d = kzalloc(sizeof(*d), GFP_KERNEL);
603 	if (!d)
604 		return -ENOMEM;
605 
606 	if (chip->num_main_regs) {
607 		d->main_status_buf = kcalloc(chip->num_main_regs,
608 					     sizeof(unsigned int),
609 					     GFP_KERNEL);
610 
611 		if (!d->main_status_buf)
612 			goto err_alloc;
613 	}
614 
615 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
616 				GFP_KERNEL);
617 	if (!d->status_buf)
618 		goto err_alloc;
619 
620 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
621 			      GFP_KERNEL);
622 	if (!d->mask_buf)
623 		goto err_alloc;
624 
625 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
626 				  GFP_KERNEL);
627 	if (!d->mask_buf_def)
628 		goto err_alloc;
629 
630 	if (chip->wake_base) {
631 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
632 				      GFP_KERNEL);
633 		if (!d->wake_buf)
634 			goto err_alloc;
635 	}
636 
637 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
638 	if (num_type_reg) {
639 		d->type_buf_def = kcalloc(num_type_reg,
640 					  sizeof(unsigned int), GFP_KERNEL);
641 		if (!d->type_buf_def)
642 			goto err_alloc;
643 
644 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
645 				      GFP_KERNEL);
646 		if (!d->type_buf)
647 			goto err_alloc;
648 	}
649 
650 	d->irq_chip = regmap_irq_chip;
651 	d->irq_chip.name = chip->name;
652 	d->irq = irq;
653 	d->map = map;
654 	d->chip = chip;
655 	d->irq_base = irq_base;
656 
657 	if (chip->irq_reg_stride)
658 		d->irq_reg_stride = chip->irq_reg_stride;
659 	else
660 		d->irq_reg_stride = 1;
661 
662 	if (chip->type_reg_stride)
663 		d->type_reg_stride = chip->type_reg_stride;
664 	else
665 		d->type_reg_stride = 1;
666 
667 	if (!map->use_single_read && map->reg_stride == 1 &&
668 	    d->irq_reg_stride == 1) {
669 		d->status_reg_buf = kmalloc_array(chip->num_regs,
670 						  map->format.val_bytes,
671 						  GFP_KERNEL);
672 		if (!d->status_reg_buf)
673 			goto err_alloc;
674 	}
675 
676 	mutex_init(&d->lock);
677 
678 	for (i = 0; i < chip->num_irqs; i++)
679 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
680 			|= chip->irqs[i].mask;
681 
682 	/* Mask all the interrupts by default */
683 	for (i = 0; i < chip->num_regs; i++) {
684 		d->mask_buf[i] = d->mask_buf_def[i];
685 		if (!chip->mask_base)
686 			continue;
687 
688 		reg = chip->mask_base +
689 			(i * map->reg_stride * d->irq_reg_stride);
690 		if (chip->mask_invert)
691 			ret = regmap_irq_update_bits(d, reg,
692 					 d->mask_buf[i], ~d->mask_buf[i]);
693 		else if (d->chip->unmask_base) {
694 			unmask_offset = d->chip->unmask_base -
695 					d->chip->mask_base;
696 			ret = regmap_irq_update_bits(d,
697 					reg + unmask_offset,
698 					d->mask_buf[i],
699 					d->mask_buf[i]);
700 		} else
701 			ret = regmap_irq_update_bits(d, reg,
702 					 d->mask_buf[i], d->mask_buf[i]);
703 		if (ret != 0) {
704 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
705 				reg, ret);
706 			goto err_alloc;
707 		}
708 
709 		if (!chip->init_ack_masked)
710 			continue;
711 
712 		/* Ack masked but set interrupts */
713 		reg = chip->status_base +
714 			(i * map->reg_stride * d->irq_reg_stride);
715 		ret = regmap_read(map, reg, &d->status_buf[i]);
716 		if (ret != 0) {
717 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
718 				ret);
719 			goto err_alloc;
720 		}
721 
722 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
723 			reg = chip->ack_base +
724 				(i * map->reg_stride * d->irq_reg_stride);
725 			if (chip->ack_invert)
726 				ret = regmap_write(map, reg,
727 					~(d->status_buf[i] & d->mask_buf[i]));
728 			else
729 				ret = regmap_write(map, reg,
730 					d->status_buf[i] & d->mask_buf[i]);
731 			if (ret != 0) {
732 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
733 					reg, ret);
734 				goto err_alloc;
735 			}
736 		}
737 	}
738 
739 	/* Wake is disabled by default */
740 	if (d->wake_buf) {
741 		for (i = 0; i < chip->num_regs; i++) {
742 			d->wake_buf[i] = d->mask_buf_def[i];
743 			reg = chip->wake_base +
744 				(i * map->reg_stride * d->irq_reg_stride);
745 
746 			if (chip->wake_invert)
747 				ret = regmap_irq_update_bits(d, reg,
748 							 d->mask_buf_def[i],
749 							 0);
750 			else
751 				ret = regmap_irq_update_bits(d, reg,
752 							 d->mask_buf_def[i],
753 							 d->wake_buf[i]);
754 			if (ret != 0) {
755 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
756 					reg, ret);
757 				goto err_alloc;
758 			}
759 		}
760 	}
761 
762 	if (chip->num_type_reg && !chip->type_in_mask) {
763 		for (i = 0; i < chip->num_type_reg; ++i) {
764 			if (!d->type_buf_def[i])
765 				continue;
766 
767 			reg = chip->type_base +
768 				(i * map->reg_stride * d->type_reg_stride);
769 
770 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
771 
772 			if (d->chip->type_invert)
773 				d->type_buf_def[i] = ~d->type_buf_def[i];
774 
775 			if (ret) {
776 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
777 					reg, ret);
778 				goto err_alloc;
779 			}
780 		}
781 	}
782 
783 	if (irq_base)
784 		d->domain = irq_domain_add_legacy(map->dev->of_node,
785 						  chip->num_irqs, irq_base, 0,
786 						  &regmap_domain_ops, d);
787 	else
788 		d->domain = irq_domain_add_linear(map->dev->of_node,
789 						  chip->num_irqs,
790 						  &regmap_domain_ops, d);
791 	if (!d->domain) {
792 		dev_err(map->dev, "Failed to create IRQ domain\n");
793 		ret = -ENOMEM;
794 		goto err_alloc;
795 	}
796 
797 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
798 				   irq_flags | IRQF_ONESHOT,
799 				   chip->name, d);
800 	if (ret != 0) {
801 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
802 			irq, chip->name, ret);
803 		goto err_domain;
804 	}
805 
806 	*data = d;
807 
808 	return 0;
809 
810 err_domain:
811 	/* Should really dispose of the domain but... */
812 err_alloc:
813 	kfree(d->type_buf);
814 	kfree(d->type_buf_def);
815 	kfree(d->wake_buf);
816 	kfree(d->mask_buf_def);
817 	kfree(d->mask_buf);
818 	kfree(d->status_buf);
819 	kfree(d->status_reg_buf);
820 	kfree(d);
821 	return ret;
822 }
823 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
824 
825 /**
826  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
827  *
828  * @irq: Primary IRQ for the device
829  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
830  *
831  * This function also disposes of all mapped IRQs on the chip.
832  */
833 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
834 {
835 	unsigned int virq;
836 	int hwirq;
837 
838 	if (!d)
839 		return;
840 
841 	free_irq(irq, d);
842 
843 	/* Dispose all virtual irq from irq domain before removing it */
844 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
845 		/* Ignore hwirq if holes in the IRQ list */
846 		if (!d->chip->irqs[hwirq].mask)
847 			continue;
848 
849 		/*
850 		 * Find the virtual irq of hwirq on chip and if it is
851 		 * there then dispose it
852 		 */
853 		virq = irq_find_mapping(d->domain, hwirq);
854 		if (virq)
855 			irq_dispose_mapping(virq);
856 	}
857 
858 	irq_domain_remove(d->domain);
859 	kfree(d->type_buf);
860 	kfree(d->type_buf_def);
861 	kfree(d->wake_buf);
862 	kfree(d->mask_buf_def);
863 	kfree(d->mask_buf);
864 	kfree(d->status_reg_buf);
865 	kfree(d->status_buf);
866 	kfree(d);
867 }
868 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
869 
870 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
871 {
872 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
873 
874 	regmap_del_irq_chip(d->irq, d);
875 }
876 
877 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
878 
879 {
880 	struct regmap_irq_chip_data **r = res;
881 
882 	if (!r || !*r) {
883 		WARN_ON(!r || !*r);
884 		return 0;
885 	}
886 	return *r == data;
887 }
888 
889 /**
890  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
891  *
892  * @dev: The device pointer on which irq_chip belongs to.
893  * @map: The regmap for the device.
894  * @irq: The IRQ the device uses to signal interrupts
895  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
896  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
897  * @chip: Configuration for the interrupt controller.
898  * @data: Runtime data structure for the controller, allocated on success
899  *
900  * Returns 0 on success or an errno on failure.
901  *
902  * The &regmap_irq_chip_data will be automatically released when the device is
903  * unbound.
904  */
905 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
906 			     int irq_flags, int irq_base,
907 			     const struct regmap_irq_chip *chip,
908 			     struct regmap_irq_chip_data **data)
909 {
910 	struct regmap_irq_chip_data **ptr, *d;
911 	int ret;
912 
913 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
914 			   GFP_KERNEL);
915 	if (!ptr)
916 		return -ENOMEM;
917 
918 	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
919 				  chip, &d);
920 	if (ret < 0) {
921 		devres_free(ptr);
922 		return ret;
923 	}
924 
925 	*ptr = d;
926 	devres_add(dev, ptr);
927 	*data = d;
928 	return 0;
929 }
930 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
931 
932 /**
933  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
934  *
935  * @dev: Device for which which resource was allocated.
936  * @irq: Primary IRQ for the device.
937  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
938  *
939  * A resource managed version of regmap_del_irq_chip().
940  */
941 void devm_regmap_del_irq_chip(struct device *dev, int irq,
942 			      struct regmap_irq_chip_data *data)
943 {
944 	int rc;
945 
946 	WARN_ON(irq != data->irq);
947 	rc = devres_release(dev, devm_regmap_irq_chip_release,
948 			    devm_regmap_irq_chip_match, data);
949 
950 	if (rc != 0)
951 		WARN_ON(rc);
952 }
953 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
954 
955 /**
956  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
957  *
958  * @data: regmap irq controller to operate on.
959  *
960  * Useful for drivers to request their own IRQs.
961  */
962 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
963 {
964 	WARN_ON(!data->irq_base);
965 	return data->irq_base;
966 }
967 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
968 
969 /**
970  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
971  *
972  * @data: regmap irq controller to operate on.
973  * @irq: index of the interrupt requested in the chip IRQs.
974  *
975  * Useful for drivers to request their own IRQs.
976  */
977 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
978 {
979 	/* Handle holes in the IRQ list */
980 	if (!data->chip->irqs[irq].mask)
981 		return -EINVAL;
982 
983 	return irq_create_mapping(data->domain, irq);
984 }
985 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
986 
987 /**
988  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
989  *
990  * @data: regmap_irq controller to operate on.
991  *
992  * Useful for drivers to request their own IRQs and for integration
993  * with subsystems.  For ease of integration NULL is accepted as a
994  * domain, allowing devices to just call this even if no domain is
995  * allocated.
996  */
997 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
998 {
999 	if (data)
1000 		return data->domain;
1001 	else
1002 		return NULL;
1003 }
1004 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1005