xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision b4646da0573fae9dfa2b8f1f10936cb6eedd7230)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	unsigned int mask_base;
34 	unsigned int unmask_base;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 	unsigned int **virt_buf;
45 	unsigned int **config_buf;
46 
47 	unsigned int irq_reg_stride;
48 
49 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 				    unsigned int base, int index);
51 
52 	unsigned int clear_status:1;
53 };
54 
55 static inline const
56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 				     int irq)
58 {
59 	return &data->chip->irqs[irq];
60 }
61 
62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 	struct regmap *map = data->map;
65 
66 	/*
67 	 * While possible that a user-defined ->get_irq_reg() callback might
68 	 * be linear enough to support bulk reads, most of the time it won't.
69 	 * Therefore only allow them if the default callback is being used.
70 	 */
71 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 	       !map->use_single_read;
74 }
75 
76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 
80 	mutex_lock(&d->lock);
81 }
82 
83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 	struct regmap *map = d->map;
87 	int i, j, ret;
88 	u32 reg;
89 	u32 val;
90 
91 	if (d->chip->runtime_pm) {
92 		ret = pm_runtime_get_sync(map->dev);
93 		if (ret < 0)
94 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 				ret);
96 	}
97 
98 	if (d->clear_status) {
99 		for (i = 0; i < d->chip->num_regs; i++) {
100 			reg = d->get_irq_reg(d, d->chip->status_base, i);
101 
102 			ret = regmap_read(map, reg, &val);
103 			if (ret)
104 				dev_err(d->map->dev,
105 					"Failed to clear the interrupt status bits\n");
106 		}
107 
108 		d->clear_status = false;
109 	}
110 
111 	/*
112 	 * If there's been a change in the mask write it back to the
113 	 * hardware.  We rely on the use of the regmap core cache to
114 	 * suppress pointless writes.
115 	 */
116 	for (i = 0; i < d->chip->num_regs; i++) {
117 		if (d->mask_base) {
118 			if (d->chip->handle_mask_sync)
119 				d->chip->handle_mask_sync(d->map, i,
120 							  d->mask_buf_def[i],
121 							  d->mask_buf[i],
122 							  d->chip->irq_drv_data);
123 			else {
124 				reg = d->get_irq_reg(d, d->mask_base, i);
125 				ret = regmap_update_bits(d->map, reg,
126 						d->mask_buf_def[i],
127 						d->mask_buf[i]);
128 				if (ret)
129 					dev_err(d->map->dev, "Failed to sync masks in %x\n",
130 						reg);
131 			}
132 		}
133 
134 		if (d->unmask_base) {
135 			reg = d->get_irq_reg(d, d->unmask_base, i);
136 			ret = regmap_update_bits(d->map, reg,
137 					d->mask_buf_def[i], ~d->mask_buf[i]);
138 			if (ret)
139 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
140 					reg);
141 		}
142 
143 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
144 		if (d->wake_buf) {
145 			if (d->chip->wake_invert)
146 				ret = regmap_update_bits(d->map, reg,
147 							 d->mask_buf_def[i],
148 							 ~d->wake_buf[i]);
149 			else
150 				ret = regmap_update_bits(d->map, reg,
151 							 d->mask_buf_def[i],
152 							 d->wake_buf[i]);
153 			if (ret != 0)
154 				dev_err(d->map->dev,
155 					"Failed to sync wakes in %x: %d\n",
156 					reg, ret);
157 		}
158 
159 		if (!d->chip->init_ack_masked)
160 			continue;
161 		/*
162 		 * Ack all the masked interrupts unconditionally,
163 		 * OR if there is masked interrupt which hasn't been Acked,
164 		 * it'll be ignored in irq handler, then may introduce irq storm
165 		 */
166 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
167 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
168 
169 			/* some chips ack by write 0 */
170 			if (d->chip->ack_invert)
171 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
172 			else
173 				ret = regmap_write(map, reg, d->mask_buf[i]);
174 			if (d->chip->clear_ack) {
175 				if (d->chip->ack_invert && !ret)
176 					ret = regmap_write(map, reg, UINT_MAX);
177 				else if (!ret)
178 					ret = regmap_write(map, reg, 0);
179 			}
180 			if (ret != 0)
181 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
182 					reg, ret);
183 		}
184 	}
185 
186 	/* Don't update the type bits if we're using mask bits for irq type. */
187 	if (!d->chip->type_in_mask) {
188 		for (i = 0; i < d->chip->num_type_reg; i++) {
189 			if (!d->type_buf_def[i])
190 				continue;
191 			reg = d->get_irq_reg(d, d->chip->type_base, i);
192 			ret = regmap_update_bits(d->map, reg,
193 						 d->type_buf_def[i], d->type_buf[i]);
194 			if (ret != 0)
195 				dev_err(d->map->dev, "Failed to sync type in %x\n",
196 					reg);
197 		}
198 	}
199 
200 	if (d->chip->num_virt_regs) {
201 		for (i = 0; i < d->chip->num_virt_regs; i++) {
202 			for (j = 0; j < d->chip->num_regs; j++) {
203 				reg = d->get_irq_reg(d, d->chip->virt_reg_base[i],
204 						     j);
205 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
206 				if (ret != 0)
207 					dev_err(d->map->dev,
208 						"Failed to write virt 0x%x: %d\n",
209 						reg, ret);
210 			}
211 		}
212 	}
213 
214 	for (i = 0; i < d->chip->num_config_bases; i++) {
215 		for (j = 0; j < d->chip->num_config_regs; j++) {
216 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
217 			ret = regmap_write(map, reg, d->config_buf[i][j]);
218 			if (ret)
219 				dev_err(d->map->dev,
220 					"Failed to write config %x: %d\n",
221 					reg, ret);
222 		}
223 	}
224 
225 	if (d->chip->runtime_pm)
226 		pm_runtime_put(map->dev);
227 
228 	/* If we've changed our wakeup count propagate it to the parent */
229 	if (d->wake_count < 0)
230 		for (i = d->wake_count; i < 0; i++)
231 			irq_set_irq_wake(d->irq, 0);
232 	else if (d->wake_count > 0)
233 		for (i = 0; i < d->wake_count; i++)
234 			irq_set_irq_wake(d->irq, 1);
235 
236 	d->wake_count = 0;
237 
238 	mutex_unlock(&d->lock);
239 }
240 
241 static void regmap_irq_enable(struct irq_data *data)
242 {
243 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
244 	struct regmap *map = d->map;
245 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
246 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
247 	unsigned int mask;
248 
249 	/*
250 	 * The type_in_mask flag means that the underlying hardware uses
251 	 * separate mask bits for each interrupt trigger type, but we want
252 	 * to have a single logical interrupt with a configurable type.
253 	 *
254 	 * If the interrupt we're enabling defines any supported types
255 	 * then instead of using the regular mask bits for this interrupt,
256 	 * use the value previously written to the type buffer at the
257 	 * corresponding offset in regmap_irq_set_type().
258 	 */
259 	if (d->chip->type_in_mask && irq_data->type.types_supported)
260 		mask = d->type_buf[reg] & irq_data->mask;
261 	else
262 		mask = irq_data->mask;
263 
264 	if (d->chip->clear_on_unmask)
265 		d->clear_status = true;
266 
267 	d->mask_buf[reg] &= ~mask;
268 }
269 
270 static void regmap_irq_disable(struct irq_data *data)
271 {
272 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
273 	struct regmap *map = d->map;
274 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
275 
276 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
277 }
278 
279 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
280 {
281 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
282 	struct regmap *map = d->map;
283 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
284 	int reg, ret;
285 	const struct regmap_irq_type *t = &irq_data->type;
286 
287 	if ((t->types_supported & type) != type)
288 		return 0;
289 
290 	reg = t->type_reg_offset / map->reg_stride;
291 
292 	if (t->type_reg_mask)
293 		d->type_buf[reg] &= ~t->type_reg_mask;
294 	else
295 		d->type_buf[reg] &= ~(t->type_falling_val |
296 				      t->type_rising_val |
297 				      t->type_level_low_val |
298 				      t->type_level_high_val);
299 	switch (type) {
300 	case IRQ_TYPE_EDGE_FALLING:
301 		d->type_buf[reg] |= t->type_falling_val;
302 		break;
303 
304 	case IRQ_TYPE_EDGE_RISING:
305 		d->type_buf[reg] |= t->type_rising_val;
306 		break;
307 
308 	case IRQ_TYPE_EDGE_BOTH:
309 		d->type_buf[reg] |= (t->type_falling_val |
310 					t->type_rising_val);
311 		break;
312 
313 	case IRQ_TYPE_LEVEL_HIGH:
314 		d->type_buf[reg] |= t->type_level_high_val;
315 		break;
316 
317 	case IRQ_TYPE_LEVEL_LOW:
318 		d->type_buf[reg] |= t->type_level_low_val;
319 		break;
320 	default:
321 		return -EINVAL;
322 	}
323 
324 	if (d->chip->set_type_virt) {
325 		ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
326 					     reg);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	if (d->chip->set_type_config) {
332 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
333 					       reg, d->chip->irq_drv_data);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	return 0;
339 }
340 
341 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
342 {
343 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
344 	struct regmap *map = d->map;
345 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
346 
347 	if (on) {
348 		if (d->wake_buf)
349 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
350 				&= ~irq_data->mask;
351 		d->wake_count++;
352 	} else {
353 		if (d->wake_buf)
354 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
355 				|= irq_data->mask;
356 		d->wake_count--;
357 	}
358 
359 	return 0;
360 }
361 
362 static const struct irq_chip regmap_irq_chip = {
363 	.irq_bus_lock		= regmap_irq_lock,
364 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
365 	.irq_disable		= regmap_irq_disable,
366 	.irq_enable		= regmap_irq_enable,
367 	.irq_set_type		= regmap_irq_set_type,
368 	.irq_set_wake		= regmap_irq_set_wake,
369 };
370 
371 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
372 					   unsigned int b)
373 {
374 	const struct regmap_irq_chip *chip = data->chip;
375 	struct regmap *map = data->map;
376 	struct regmap_irq_sub_irq_map *subreg;
377 	unsigned int reg;
378 	int i, ret = 0;
379 
380 	if (!chip->sub_reg_offsets) {
381 		reg = data->get_irq_reg(data, chip->status_base, b);
382 		ret = regmap_read(map, reg, &data->status_buf[b]);
383 	} else {
384 		/*
385 		 * Note we can't use ->get_irq_reg() here because the offsets
386 		 * in 'subreg' are *not* interchangeable with indices.
387 		 */
388 		subreg = &chip->sub_reg_offsets[b];
389 		for (i = 0; i < subreg->num_regs; i++) {
390 			unsigned int offset = subreg->offset[i];
391 			unsigned int index = offset / map->reg_stride;
392 
393 			if (chip->not_fixed_stride)
394 				ret = regmap_read(map,
395 						chip->status_base + offset,
396 						&data->status_buf[b]);
397 			else
398 				ret = regmap_read(map,
399 						chip->status_base + offset,
400 						&data->status_buf[index]);
401 
402 			if (ret)
403 				break;
404 		}
405 	}
406 	return ret;
407 }
408 
409 static irqreturn_t regmap_irq_thread(int irq, void *d)
410 {
411 	struct regmap_irq_chip_data *data = d;
412 	const struct regmap_irq_chip *chip = data->chip;
413 	struct regmap *map = data->map;
414 	int ret, i;
415 	bool handled = false;
416 	u32 reg;
417 
418 	if (chip->handle_pre_irq)
419 		chip->handle_pre_irq(chip->irq_drv_data);
420 
421 	if (chip->runtime_pm) {
422 		ret = pm_runtime_get_sync(map->dev);
423 		if (ret < 0) {
424 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
425 				ret);
426 			goto exit;
427 		}
428 	}
429 
430 	/*
431 	 * Read only registers with active IRQs if the chip has 'main status
432 	 * register'. Else read in the statuses, using a single bulk read if
433 	 * possible in order to reduce the I/O overheads.
434 	 */
435 
436 	if (chip->no_status) {
437 		/* no status register so default to all active */
438 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
439 	} else if (chip->num_main_regs) {
440 		unsigned int max_main_bits;
441 		unsigned long size;
442 
443 		size = chip->num_regs * sizeof(unsigned int);
444 
445 		max_main_bits = (chip->num_main_status_bits) ?
446 				 chip->num_main_status_bits : chip->num_regs;
447 		/* Clear the status buf as we don't read all status regs */
448 		memset(data->status_buf, 0, size);
449 
450 		/* We could support bulk read for main status registers
451 		 * but I don't expect to see devices with really many main
452 		 * status registers so let's only support single reads for the
453 		 * sake of simplicity. and add bulk reads only if needed
454 		 */
455 		for (i = 0; i < chip->num_main_regs; i++) {
456 			/*
457 			 * For not_fixed_stride, don't use ->get_irq_reg().
458 			 * It would produce an incorrect result.
459 			 */
460 			if (data->chip->not_fixed_stride)
461 				reg = chip->main_status +
462 					i * map->reg_stride * data->irq_reg_stride;
463 			else
464 				reg = data->get_irq_reg(data,
465 							chip->main_status, i);
466 
467 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
468 			if (ret) {
469 				dev_err(map->dev,
470 					"Failed to read IRQ status %d\n",
471 					ret);
472 				goto exit;
473 			}
474 		}
475 
476 		/* Read sub registers with active IRQs */
477 		for (i = 0; i < chip->num_main_regs; i++) {
478 			unsigned int b;
479 			const unsigned long mreg = data->main_status_buf[i];
480 
481 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
482 				if (i * map->format.val_bytes * 8 + b >
483 				    max_main_bits)
484 					break;
485 				ret = read_sub_irq_data(data, b);
486 
487 				if (ret != 0) {
488 					dev_err(map->dev,
489 						"Failed to read IRQ status %d\n",
490 						ret);
491 					goto exit;
492 				}
493 			}
494 
495 		}
496 	} else if (regmap_irq_can_bulk_read_status(data)) {
497 
498 		u8 *buf8 = data->status_reg_buf;
499 		u16 *buf16 = data->status_reg_buf;
500 		u32 *buf32 = data->status_reg_buf;
501 
502 		BUG_ON(!data->status_reg_buf);
503 
504 		ret = regmap_bulk_read(map, chip->status_base,
505 				       data->status_reg_buf,
506 				       chip->num_regs);
507 		if (ret != 0) {
508 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
509 				ret);
510 			goto exit;
511 		}
512 
513 		for (i = 0; i < data->chip->num_regs; i++) {
514 			switch (map->format.val_bytes) {
515 			case 1:
516 				data->status_buf[i] = buf8[i];
517 				break;
518 			case 2:
519 				data->status_buf[i] = buf16[i];
520 				break;
521 			case 4:
522 				data->status_buf[i] = buf32[i];
523 				break;
524 			default:
525 				BUG();
526 				goto exit;
527 			}
528 		}
529 
530 	} else {
531 		for (i = 0; i < data->chip->num_regs; i++) {
532 			unsigned int reg = data->get_irq_reg(data,
533 					data->chip->status_base, i);
534 			ret = regmap_read(map, reg, &data->status_buf[i]);
535 
536 			if (ret != 0) {
537 				dev_err(map->dev,
538 					"Failed to read IRQ status: %d\n",
539 					ret);
540 				goto exit;
541 			}
542 		}
543 	}
544 
545 	if (chip->status_invert)
546 		for (i = 0; i < data->chip->num_regs; i++)
547 			data->status_buf[i] = ~data->status_buf[i];
548 
549 	/*
550 	 * Ignore masked IRQs and ack if we need to; we ack early so
551 	 * there is no race between handling and acknowledging the
552 	 * interrupt.  We assume that typically few of the interrupts
553 	 * will fire simultaneously so don't worry about overhead from
554 	 * doing a write per register.
555 	 */
556 	for (i = 0; i < data->chip->num_regs; i++) {
557 		data->status_buf[i] &= ~data->mask_buf[i];
558 
559 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
560 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
561 
562 			if (chip->ack_invert)
563 				ret = regmap_write(map, reg,
564 						~data->status_buf[i]);
565 			else
566 				ret = regmap_write(map, reg,
567 						data->status_buf[i]);
568 			if (chip->clear_ack) {
569 				if (chip->ack_invert && !ret)
570 					ret = regmap_write(map, reg, UINT_MAX);
571 				else if (!ret)
572 					ret = regmap_write(map, reg, 0);
573 			}
574 			if (ret != 0)
575 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
576 					reg, ret);
577 		}
578 	}
579 
580 	for (i = 0; i < chip->num_irqs; i++) {
581 		if (data->status_buf[chip->irqs[i].reg_offset /
582 				     map->reg_stride] & chip->irqs[i].mask) {
583 			handle_nested_irq(irq_find_mapping(data->domain, i));
584 			handled = true;
585 		}
586 	}
587 
588 exit:
589 	if (chip->runtime_pm)
590 		pm_runtime_put(map->dev);
591 
592 	if (chip->handle_post_irq)
593 		chip->handle_post_irq(chip->irq_drv_data);
594 
595 	if (handled)
596 		return IRQ_HANDLED;
597 	else
598 		return IRQ_NONE;
599 }
600 
601 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
602 			  irq_hw_number_t hw)
603 {
604 	struct regmap_irq_chip_data *data = h->host_data;
605 
606 	irq_set_chip_data(virq, data);
607 	irq_set_chip(virq, &data->irq_chip);
608 	irq_set_nested_thread(virq, 1);
609 	irq_set_parent(virq, data->irq);
610 	irq_set_noprobe(virq);
611 
612 	return 0;
613 }
614 
615 static const struct irq_domain_ops regmap_domain_ops = {
616 	.map	= regmap_irq_map,
617 	.xlate	= irq_domain_xlate_onetwocell,
618 };
619 
620 /**
621  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
622  * @data: Data for the &struct regmap_irq_chip
623  * @base: Base register
624  * @index: Register index
625  *
626  * Returns the register address corresponding to the given @base and @index
627  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
628  */
629 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
630 					   unsigned int base, int index)
631 {
632 	const struct regmap_irq_chip *chip = data->chip;
633 	struct regmap *map = data->map;
634 
635 	/*
636 	 * FIXME: This is for backward compatibility and should be removed
637 	 * when not_fixed_stride is dropped (it's only used by qcom-pm8008).
638 	 */
639 	if (chip->not_fixed_stride && chip->sub_reg_offsets) {
640 		struct regmap_irq_sub_irq_map *subreg;
641 
642 		subreg = &chip->sub_reg_offsets[0];
643 		return base + subreg->offset[0];
644 	}
645 
646 	return base + index * map->reg_stride * data->irq_reg_stride;
647 }
648 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
649 
650 /**
651  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
652  * @buf: Buffer containing configuration register values, this is a 2D array of
653  *       `num_config_bases` rows, each of `num_config_regs` elements.
654  * @type: The requested IRQ type.
655  * @irq_data: The IRQ being configured.
656  * @idx: Index of the irq's config registers within each array `buf[i]`
657  * @irq_drv_data: Driver specific IRQ data
658  *
659  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
660  * chips with one config register. Register values are updated according to
661  * the &struct regmap_irq_type data associated with an IRQ.
662  */
663 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
664 				      const struct regmap_irq *irq_data,
665 				      int idx, void *irq_drv_data)
666 {
667 	const struct regmap_irq_type *t = &irq_data->type;
668 
669 	if (t->type_reg_mask)
670 		buf[0][idx] &= ~t->type_reg_mask;
671 	else
672 		buf[0][idx] &= ~(t->type_falling_val |
673 				 t->type_rising_val |
674 				 t->type_level_low_val |
675 				 t->type_level_high_val);
676 
677 	switch (type) {
678 	case IRQ_TYPE_EDGE_FALLING:
679 		buf[0][idx] |= t->type_falling_val;
680 		break;
681 
682 	case IRQ_TYPE_EDGE_RISING:
683 		buf[0][idx] |= t->type_rising_val;
684 		break;
685 
686 	case IRQ_TYPE_EDGE_BOTH:
687 		buf[0][idx] |= (t->type_falling_val |
688 				t->type_rising_val);
689 		break;
690 
691 	case IRQ_TYPE_LEVEL_HIGH:
692 		buf[0][idx] |= t->type_level_high_val;
693 		break;
694 
695 	case IRQ_TYPE_LEVEL_LOW:
696 		buf[0][idx] |= t->type_level_low_val;
697 		break;
698 
699 	default:
700 		return -EINVAL;
701 	}
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
706 
707 /**
708  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
709  *
710  * @fwnode: The firmware node where the IRQ domain should be added to.
711  * @map: The regmap for the device.
712  * @irq: The IRQ the device uses to signal interrupts.
713  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
714  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
715  * @chip: Configuration for the interrupt controller.
716  * @data: Runtime data structure for the controller, allocated on success.
717  *
718  * Returns 0 on success or an errno on failure.
719  *
720  * In order for this to be efficient the chip really should use a
721  * register cache.  The chip driver is responsible for restoring the
722  * register values used by the IRQ controller over suspend and resume.
723  */
724 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
725 			       struct regmap *map, int irq,
726 			       int irq_flags, int irq_base,
727 			       const struct regmap_irq_chip *chip,
728 			       struct regmap_irq_chip_data **data)
729 {
730 	struct regmap_irq_chip_data *d;
731 	int i;
732 	int ret = -ENOMEM;
733 	int num_type_reg;
734 	int num_regs;
735 	u32 reg;
736 
737 	if (chip->num_regs <= 0)
738 		return -EINVAL;
739 
740 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
741 		return -EINVAL;
742 
743 	for (i = 0; i < chip->num_irqs; i++) {
744 		if (chip->irqs[i].reg_offset % map->reg_stride)
745 			return -EINVAL;
746 		if (chip->irqs[i].reg_offset / map->reg_stride >=
747 		    chip->num_regs)
748 			return -EINVAL;
749 	}
750 
751 	if (chip->not_fixed_stride) {
752 		dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead");
753 
754 		for (i = 0; i < chip->num_regs; i++)
755 			if (chip->sub_reg_offsets[i].num_regs != 1)
756 				return -EINVAL;
757 	}
758 
759 	if (chip->num_type_reg)
760 		dev_warn(map->dev, "type registers are deprecated; use config registers instead");
761 
762 	if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt)
763 		dev_warn(map->dev, "virtual registers are deprecated; use config registers instead");
764 
765 	if (irq_base) {
766 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
767 		if (irq_base < 0) {
768 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
769 				 irq_base);
770 			return irq_base;
771 		}
772 	}
773 
774 	d = kzalloc(sizeof(*d), GFP_KERNEL);
775 	if (!d)
776 		return -ENOMEM;
777 
778 	if (chip->num_main_regs) {
779 		d->main_status_buf = kcalloc(chip->num_main_regs,
780 					     sizeof(*d->main_status_buf),
781 					     GFP_KERNEL);
782 
783 		if (!d->main_status_buf)
784 			goto err_alloc;
785 	}
786 
787 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
788 				GFP_KERNEL);
789 	if (!d->status_buf)
790 		goto err_alloc;
791 
792 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
793 			      GFP_KERNEL);
794 	if (!d->mask_buf)
795 		goto err_alloc;
796 
797 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
798 				  GFP_KERNEL);
799 	if (!d->mask_buf_def)
800 		goto err_alloc;
801 
802 	if (chip->wake_base) {
803 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
804 				      GFP_KERNEL);
805 		if (!d->wake_buf)
806 			goto err_alloc;
807 	}
808 
809 	/*
810 	 * Use num_config_regs if defined, otherwise fall back to num_type_reg
811 	 * to maintain backward compatibility.
812 	 */
813 	num_type_reg = chip->num_config_regs ? chip->num_config_regs
814 			: chip->num_type_reg;
815 	num_regs = chip->type_in_mask ? chip->num_regs : num_type_reg;
816 	if (num_regs) {
817 		d->type_buf_def = kcalloc(num_regs,
818 					  sizeof(*d->type_buf_def), GFP_KERNEL);
819 		if (!d->type_buf_def)
820 			goto err_alloc;
821 
822 		d->type_buf = kcalloc(num_regs, sizeof(*d->type_buf),
823 				      GFP_KERNEL);
824 		if (!d->type_buf)
825 			goto err_alloc;
826 	}
827 
828 	if (chip->num_virt_regs) {
829 		/*
830 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
831 		 */
832 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
833 				      GFP_KERNEL);
834 		if (!d->virt_buf)
835 			goto err_alloc;
836 
837 		for (i = 0; i < chip->num_virt_regs; i++) {
838 			d->virt_buf[i] = kcalloc(chip->num_regs,
839 						 sizeof(**d->virt_buf),
840 						 GFP_KERNEL);
841 			if (!d->virt_buf[i])
842 				goto err_alloc;
843 		}
844 	}
845 
846 	if (chip->num_config_bases && chip->num_config_regs) {
847 		/*
848 		 * Create config_buf[num_config_bases][num_config_regs]
849 		 */
850 		d->config_buf = kcalloc(chip->num_config_bases,
851 					sizeof(*d->config_buf), GFP_KERNEL);
852 		if (!d->config_buf)
853 			goto err_alloc;
854 
855 		for (i = 0; i < chip->num_config_regs; i++) {
856 			d->config_buf[i] = kcalloc(chip->num_config_regs,
857 						   sizeof(**d->config_buf),
858 						   GFP_KERNEL);
859 			if (!d->config_buf[i])
860 				goto err_alloc;
861 		}
862 	}
863 
864 	d->irq_chip = regmap_irq_chip;
865 	d->irq_chip.name = chip->name;
866 	d->irq = irq;
867 	d->map = map;
868 	d->chip = chip;
869 	d->irq_base = irq_base;
870 
871 	if (chip->mask_base && chip->unmask_base &&
872 	    !chip->mask_unmask_non_inverted) {
873 		/*
874 		 * Chips that specify both mask_base and unmask_base used to
875 		 * get inverted mask behavior by default, with no way to ask
876 		 * for the normal, non-inverted behavior. This "inverted by
877 		 * default" behavior is deprecated, but we have to support it
878 		 * until existing drivers have been fixed.
879 		 *
880 		 * Existing drivers should be updated by swapping mask_base
881 		 * and unmask_base and setting mask_unmask_non_inverted=true.
882 		 * New drivers should always set the flag.
883 		 */
884 		dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it");
885 
886 		d->mask_base = chip->unmask_base;
887 		d->unmask_base = chip->mask_base;
888 	} else {
889 		d->mask_base = chip->mask_base;
890 		d->unmask_base = chip->unmask_base;
891 	}
892 
893 	if (chip->irq_reg_stride)
894 		d->irq_reg_stride = chip->irq_reg_stride;
895 	else
896 		d->irq_reg_stride = 1;
897 
898 	if (chip->get_irq_reg)
899 		d->get_irq_reg = chip->get_irq_reg;
900 	else
901 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
902 
903 	if (regmap_irq_can_bulk_read_status(d)) {
904 		d->status_reg_buf = kmalloc_array(chip->num_regs,
905 						  map->format.val_bytes,
906 						  GFP_KERNEL);
907 		if (!d->status_reg_buf)
908 			goto err_alloc;
909 	}
910 
911 	mutex_init(&d->lock);
912 
913 	for (i = 0; i < chip->num_irqs; i++)
914 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
915 			|= chip->irqs[i].mask;
916 
917 	/* Mask all the interrupts by default */
918 	for (i = 0; i < chip->num_regs; i++) {
919 		d->mask_buf[i] = d->mask_buf_def[i];
920 
921 		if (d->mask_base) {
922 			if (chip->handle_mask_sync) {
923 				ret = chip->handle_mask_sync(d->map, i,
924 							     d->mask_buf_def[i],
925 							     d->mask_buf[i],
926 							     chip->irq_drv_data);
927 				if (ret)
928 					goto err_alloc;
929 			} else {
930 				reg = d->get_irq_reg(d, d->mask_base, i);
931 				ret = regmap_update_bits(d->map, reg,
932 						d->mask_buf_def[i],
933 						d->mask_buf[i]);
934 				if (ret) {
935 					dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
936 						reg, ret);
937 					goto err_alloc;
938 				}
939 			}
940 		}
941 
942 		if (d->unmask_base) {
943 			reg = d->get_irq_reg(d, d->unmask_base, i);
944 			ret = regmap_update_bits(d->map, reg,
945 					d->mask_buf_def[i], ~d->mask_buf[i]);
946 			if (ret) {
947 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
948 					reg, ret);
949 				goto err_alloc;
950 			}
951 		}
952 
953 		if (!chip->init_ack_masked)
954 			continue;
955 
956 		/* Ack masked but set interrupts */
957 		if (d->chip->no_status) {
958 			/* no status register so default to all active */
959 			d->status_buf[i] = GENMASK(31, 0);
960 		} else {
961 			reg = d->get_irq_reg(d, d->chip->status_base, i);
962 			ret = regmap_read(map, reg, &d->status_buf[i]);
963 			if (ret != 0) {
964 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
965 					ret);
966 				goto err_alloc;
967 			}
968 		}
969 
970 		if (chip->status_invert)
971 			d->status_buf[i] = ~d->status_buf[i];
972 
973 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
974 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
975 			if (chip->ack_invert)
976 				ret = regmap_write(map, reg,
977 					~(d->status_buf[i] & d->mask_buf[i]));
978 			else
979 				ret = regmap_write(map, reg,
980 					d->status_buf[i] & d->mask_buf[i]);
981 			if (chip->clear_ack) {
982 				if (chip->ack_invert && !ret)
983 					ret = regmap_write(map, reg, UINT_MAX);
984 				else if (!ret)
985 					ret = regmap_write(map, reg, 0);
986 			}
987 			if (ret != 0) {
988 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
989 					reg, ret);
990 				goto err_alloc;
991 			}
992 		}
993 	}
994 
995 	/* Wake is disabled by default */
996 	if (d->wake_buf) {
997 		for (i = 0; i < chip->num_regs; i++) {
998 			d->wake_buf[i] = d->mask_buf_def[i];
999 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
1000 
1001 			if (chip->wake_invert)
1002 				ret = regmap_update_bits(d->map, reg,
1003 							 d->mask_buf_def[i],
1004 							 0);
1005 			else
1006 				ret = regmap_update_bits(d->map, reg,
1007 							 d->mask_buf_def[i],
1008 							 d->wake_buf[i]);
1009 			if (ret != 0) {
1010 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
1011 					reg, ret);
1012 				goto err_alloc;
1013 			}
1014 		}
1015 	}
1016 
1017 	if (chip->num_type_reg && !chip->type_in_mask) {
1018 		for (i = 0; i < chip->num_type_reg; ++i) {
1019 			reg = d->get_irq_reg(d, d->chip->type_base, i);
1020 
1021 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
1022 
1023 			if (ret) {
1024 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
1025 					reg, ret);
1026 				goto err_alloc;
1027 			}
1028 		}
1029 	}
1030 
1031 	if (irq_base)
1032 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
1033 						     irq_base, 0,
1034 						     &regmap_domain_ops, d);
1035 	else
1036 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
1037 						     &regmap_domain_ops, d);
1038 	if (!d->domain) {
1039 		dev_err(map->dev, "Failed to create IRQ domain\n");
1040 		ret = -ENOMEM;
1041 		goto err_alloc;
1042 	}
1043 
1044 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
1045 				   irq_flags | IRQF_ONESHOT,
1046 				   chip->name, d);
1047 	if (ret != 0) {
1048 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
1049 			irq, chip->name, ret);
1050 		goto err_domain;
1051 	}
1052 
1053 	*data = d;
1054 
1055 	return 0;
1056 
1057 err_domain:
1058 	/* Should really dispose of the domain but... */
1059 err_alloc:
1060 	kfree(d->type_buf);
1061 	kfree(d->type_buf_def);
1062 	kfree(d->wake_buf);
1063 	kfree(d->mask_buf_def);
1064 	kfree(d->mask_buf);
1065 	kfree(d->status_buf);
1066 	kfree(d->status_reg_buf);
1067 	if (d->virt_buf) {
1068 		for (i = 0; i < chip->num_virt_regs; i++)
1069 			kfree(d->virt_buf[i]);
1070 		kfree(d->virt_buf);
1071 	}
1072 	if (d->config_buf) {
1073 		for (i = 0; i < chip->num_config_bases; i++)
1074 			kfree(d->config_buf[i]);
1075 		kfree(d->config_buf);
1076 	}
1077 	kfree(d);
1078 	return ret;
1079 }
1080 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
1081 
1082 /**
1083  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
1084  *
1085  * @map: The regmap for the device.
1086  * @irq: The IRQ the device uses to signal interrupts.
1087  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1088  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1089  * @chip: Configuration for the interrupt controller.
1090  * @data: Runtime data structure for the controller, allocated on success.
1091  *
1092  * Returns 0 on success or an errno on failure.
1093  *
1094  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
1095  * node of the regmap is used.
1096  */
1097 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
1098 			int irq_base, const struct regmap_irq_chip *chip,
1099 			struct regmap_irq_chip_data **data)
1100 {
1101 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
1102 					  irq_flags, irq_base, chip, data);
1103 }
1104 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
1105 
1106 /**
1107  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
1108  *
1109  * @irq: Primary IRQ for the device
1110  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
1111  *
1112  * This function also disposes of all mapped IRQs on the chip.
1113  */
1114 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1115 {
1116 	unsigned int virq;
1117 	int i, hwirq;
1118 
1119 	if (!d)
1120 		return;
1121 
1122 	free_irq(irq, d);
1123 
1124 	/* Dispose all virtual irq from irq domain before removing it */
1125 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1126 		/* Ignore hwirq if holes in the IRQ list */
1127 		if (!d->chip->irqs[hwirq].mask)
1128 			continue;
1129 
1130 		/*
1131 		 * Find the virtual irq of hwirq on chip and if it is
1132 		 * there then dispose it
1133 		 */
1134 		virq = irq_find_mapping(d->domain, hwirq);
1135 		if (virq)
1136 			irq_dispose_mapping(virq);
1137 	}
1138 
1139 	irq_domain_remove(d->domain);
1140 	kfree(d->type_buf);
1141 	kfree(d->type_buf_def);
1142 	kfree(d->wake_buf);
1143 	kfree(d->mask_buf_def);
1144 	kfree(d->mask_buf);
1145 	kfree(d->status_reg_buf);
1146 	kfree(d->status_buf);
1147 	if (d->config_buf) {
1148 		for (i = 0; i < d->chip->num_config_bases; i++)
1149 			kfree(d->config_buf[i]);
1150 		kfree(d->config_buf);
1151 	}
1152 	kfree(d);
1153 }
1154 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1155 
1156 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1157 {
1158 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1159 
1160 	regmap_del_irq_chip(d->irq, d);
1161 }
1162 
1163 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1164 
1165 {
1166 	struct regmap_irq_chip_data **r = res;
1167 
1168 	if (!r || !*r) {
1169 		WARN_ON(!r || !*r);
1170 		return 0;
1171 	}
1172 	return *r == data;
1173 }
1174 
1175 /**
1176  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1177  *
1178  * @dev: The device pointer on which irq_chip belongs to.
1179  * @fwnode: The firmware node where the IRQ domain should be added to.
1180  * @map: The regmap for the device.
1181  * @irq: The IRQ the device uses to signal interrupts
1182  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1183  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1184  * @chip: Configuration for the interrupt controller.
1185  * @data: Runtime data structure for the controller, allocated on success
1186  *
1187  * Returns 0 on success or an errno on failure.
1188  *
1189  * The &regmap_irq_chip_data will be automatically released when the device is
1190  * unbound.
1191  */
1192 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1193 				    struct fwnode_handle *fwnode,
1194 				    struct regmap *map, int irq,
1195 				    int irq_flags, int irq_base,
1196 				    const struct regmap_irq_chip *chip,
1197 				    struct regmap_irq_chip_data **data)
1198 {
1199 	struct regmap_irq_chip_data **ptr, *d;
1200 	int ret;
1201 
1202 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1203 			   GFP_KERNEL);
1204 	if (!ptr)
1205 		return -ENOMEM;
1206 
1207 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1208 					 chip, &d);
1209 	if (ret < 0) {
1210 		devres_free(ptr);
1211 		return ret;
1212 	}
1213 
1214 	*ptr = d;
1215 	devres_add(dev, ptr);
1216 	*data = d;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1220 
1221 /**
1222  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1223  *
1224  * @dev: The device pointer on which irq_chip belongs to.
1225  * @map: The regmap for the device.
1226  * @irq: The IRQ the device uses to signal interrupts
1227  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1228  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1229  * @chip: Configuration for the interrupt controller.
1230  * @data: Runtime data structure for the controller, allocated on success
1231  *
1232  * Returns 0 on success or an errno on failure.
1233  *
1234  * The &regmap_irq_chip_data will be automatically released when the device is
1235  * unbound.
1236  */
1237 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1238 			     int irq_flags, int irq_base,
1239 			     const struct regmap_irq_chip *chip,
1240 			     struct regmap_irq_chip_data **data)
1241 {
1242 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1243 					       irq, irq_flags, irq_base, chip,
1244 					       data);
1245 }
1246 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1247 
1248 /**
1249  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1250  *
1251  * @dev: Device for which the resource was allocated.
1252  * @irq: Primary IRQ for the device.
1253  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1254  *
1255  * A resource managed version of regmap_del_irq_chip().
1256  */
1257 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1258 			      struct regmap_irq_chip_data *data)
1259 {
1260 	int rc;
1261 
1262 	WARN_ON(irq != data->irq);
1263 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1264 			    devm_regmap_irq_chip_match, data);
1265 
1266 	if (rc != 0)
1267 		WARN_ON(rc);
1268 }
1269 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1270 
1271 /**
1272  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1273  *
1274  * @data: regmap irq controller to operate on.
1275  *
1276  * Useful for drivers to request their own IRQs.
1277  */
1278 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1279 {
1280 	WARN_ON(!data->irq_base);
1281 	return data->irq_base;
1282 }
1283 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1284 
1285 /**
1286  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1287  *
1288  * @data: regmap irq controller to operate on.
1289  * @irq: index of the interrupt requested in the chip IRQs.
1290  *
1291  * Useful for drivers to request their own IRQs.
1292  */
1293 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1294 {
1295 	/* Handle holes in the IRQ list */
1296 	if (!data->chip->irqs[irq].mask)
1297 		return -EINVAL;
1298 
1299 	return irq_create_mapping(data->domain, irq);
1300 }
1301 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1302 
1303 /**
1304  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1305  *
1306  * @data: regmap_irq controller to operate on.
1307  *
1308  * Useful for drivers to request their own IRQs and for integration
1309  * with subsystems.  For ease of integration NULL is accepted as a
1310  * domain, allowing devices to just call this even if no domain is
1311  * allocated.
1312  */
1313 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1314 {
1315 	if (data)
1316 		return data->domain;
1317 	else
1318 		return NULL;
1319 }
1320 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1321