xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 929e2a61)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 
42 	unsigned int irq_reg_stride;
43 	unsigned int type_reg_stride;
44 
45 	bool clear_status:1;
46 };
47 
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 				     int irq)
51 {
52 	return &data->chip->irqs[irq];
53 }
54 
55 static void regmap_irq_lock(struct irq_data *data)
56 {
57 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58 
59 	mutex_lock(&d->lock);
60 }
61 
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 				  unsigned int reg, unsigned int mask,
64 				  unsigned int val)
65 {
66 	if (d->chip->mask_writeonly)
67 		return regmap_write_bits(d->map, reg, mask, val);
68 	else
69 		return regmap_update_bits(d->map, reg, mask, val);
70 }
71 
72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 	struct regmap *map = d->map;
76 	int i, ret;
77 	u32 reg;
78 	u32 unmask_offset;
79 	u32 val;
80 
81 	if (d->chip->runtime_pm) {
82 		ret = pm_runtime_get_sync(map->dev);
83 		if (ret < 0)
84 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 				ret);
86 	}
87 
88 	if (d->clear_status) {
89 		for (i = 0; i < d->chip->num_regs; i++) {
90 			reg = d->chip->status_base +
91 				(i * map->reg_stride * d->irq_reg_stride);
92 
93 			ret = regmap_read(map, reg, &val);
94 			if (ret)
95 				dev_err(d->map->dev,
96 					"Failed to clear the interrupt status bits\n");
97 		}
98 
99 		d->clear_status = false;
100 	}
101 
102 	/*
103 	 * If there's been a change in the mask write it back to the
104 	 * hardware.  We rely on the use of the regmap core cache to
105 	 * suppress pointless writes.
106 	 */
107 	for (i = 0; i < d->chip->num_regs; i++) {
108 		if (!d->chip->mask_base)
109 			continue;
110 
111 		reg = d->chip->mask_base +
112 			(i * map->reg_stride * d->irq_reg_stride);
113 		if (d->chip->mask_invert) {
114 			ret = regmap_irq_update_bits(d, reg,
115 					 d->mask_buf_def[i], ~d->mask_buf[i]);
116 		} else if (d->chip->unmask_base) {
117 			/* set mask with mask_base register */
118 			ret = regmap_irq_update_bits(d, reg,
119 					d->mask_buf_def[i], ~d->mask_buf[i]);
120 			if (ret < 0)
121 				dev_err(d->map->dev,
122 					"Failed to sync unmasks in %x\n",
123 					reg);
124 			unmask_offset = d->chip->unmask_base -
125 							d->chip->mask_base;
126 			/* clear mask with unmask_base register */
127 			ret = regmap_irq_update_bits(d,
128 					reg + unmask_offset,
129 					d->mask_buf_def[i],
130 					d->mask_buf[i]);
131 		} else {
132 			ret = regmap_irq_update_bits(d, reg,
133 					 d->mask_buf_def[i], d->mask_buf[i]);
134 		}
135 		if (ret != 0)
136 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 				reg);
138 
139 		reg = d->chip->wake_base +
140 			(i * map->reg_stride * d->irq_reg_stride);
141 		if (d->wake_buf) {
142 			if (d->chip->wake_invert)
143 				ret = regmap_irq_update_bits(d, reg,
144 							 d->mask_buf_def[i],
145 							 ~d->wake_buf[i]);
146 			else
147 				ret = regmap_irq_update_bits(d, reg,
148 							 d->mask_buf_def[i],
149 							 d->wake_buf[i]);
150 			if (ret != 0)
151 				dev_err(d->map->dev,
152 					"Failed to sync wakes in %x: %d\n",
153 					reg, ret);
154 		}
155 
156 		if (!d->chip->init_ack_masked)
157 			continue;
158 		/*
159 		 * Ack all the masked interrupts unconditionally,
160 		 * OR if there is masked interrupt which hasn't been Acked,
161 		 * it'll be ignored in irq handler, then may introduce irq storm
162 		 */
163 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 			reg = d->chip->ack_base +
165 				(i * map->reg_stride * d->irq_reg_stride);
166 			/* some chips ack by write 0 */
167 			if (d->chip->ack_invert)
168 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 			else
170 				ret = regmap_write(map, reg, d->mask_buf[i]);
171 			if (ret != 0)
172 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 					reg, ret);
174 		}
175 	}
176 
177 	/* Don't update the type bits if we're using mask bits for irq type. */
178 	if (!d->chip->type_in_mask) {
179 		for (i = 0; i < d->chip->num_type_reg; i++) {
180 			if (!d->type_buf_def[i])
181 				continue;
182 			reg = d->chip->type_base +
183 				(i * map->reg_stride * d->type_reg_stride);
184 			if (d->chip->type_invert)
185 				ret = regmap_irq_update_bits(d, reg,
186 					d->type_buf_def[i], ~d->type_buf[i]);
187 			else
188 				ret = regmap_irq_update_bits(d, reg,
189 					d->type_buf_def[i], d->type_buf[i]);
190 			if (ret != 0)
191 				dev_err(d->map->dev, "Failed to sync type in %x\n",
192 					reg);
193 		}
194 	}
195 
196 	if (d->chip->runtime_pm)
197 		pm_runtime_put(map->dev);
198 
199 	/* If we've changed our wakeup count propagate it to the parent */
200 	if (d->wake_count < 0)
201 		for (i = d->wake_count; i < 0; i++)
202 			irq_set_irq_wake(d->irq, 0);
203 	else if (d->wake_count > 0)
204 		for (i = 0; i < d->wake_count; i++)
205 			irq_set_irq_wake(d->irq, 1);
206 
207 	d->wake_count = 0;
208 
209 	mutex_unlock(&d->lock);
210 }
211 
212 static void regmap_irq_enable(struct irq_data *data)
213 {
214 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 	struct regmap *map = d->map;
216 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 	unsigned int mask, type;
218 
219 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220 
221 	/*
222 	 * The type_in_mask flag means that the underlying hardware uses
223 	 * separate mask bits for rising and falling edge interrupts, but
224 	 * we want to make them into a single virtual interrupt with
225 	 * configurable edge.
226 	 *
227 	 * If the interrupt we're enabling defines the falling or rising
228 	 * masks then instead of using the regular mask bits for this
229 	 * interrupt, use the value previously written to the type buffer
230 	 * at the corresponding offset in regmap_irq_set_type().
231 	 */
232 	if (d->chip->type_in_mask && type)
233 		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 	else
235 		mask = irq_data->mask;
236 
237 	if (d->chip->clear_on_unmask)
238 		d->clear_status = true;
239 
240 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 }
242 
243 static void regmap_irq_disable(struct irq_data *data)
244 {
245 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 	struct regmap *map = d->map;
247 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248 
249 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 }
251 
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253 {
254 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 	struct regmap *map = d->map;
256 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 	int reg;
258 	const struct regmap_irq_type *t = &irq_data->type;
259 
260 	if ((t->types_supported & type) != type)
261 		return 0;
262 
263 	reg = t->type_reg_offset / map->reg_stride;
264 
265 	if (t->type_reg_mask)
266 		d->type_buf[reg] &= ~t->type_reg_mask;
267 	else
268 		d->type_buf[reg] &= ~(t->type_falling_val |
269 				      t->type_rising_val |
270 				      t->type_level_low_val |
271 				      t->type_level_high_val);
272 	switch (type) {
273 	case IRQ_TYPE_EDGE_FALLING:
274 		d->type_buf[reg] |= t->type_falling_val;
275 		break;
276 
277 	case IRQ_TYPE_EDGE_RISING:
278 		d->type_buf[reg] |= t->type_rising_val;
279 		break;
280 
281 	case IRQ_TYPE_EDGE_BOTH:
282 		d->type_buf[reg] |= (t->type_falling_val |
283 					t->type_rising_val);
284 		break;
285 
286 	case IRQ_TYPE_LEVEL_HIGH:
287 		d->type_buf[reg] |= t->type_level_high_val;
288 		break;
289 
290 	case IRQ_TYPE_LEVEL_LOW:
291 		d->type_buf[reg] |= t->type_level_low_val;
292 		break;
293 	default:
294 		return -EINVAL;
295 	}
296 	return 0;
297 }
298 
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300 {
301 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 	struct regmap *map = d->map;
303 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304 
305 	if (on) {
306 		if (d->wake_buf)
307 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 				&= ~irq_data->mask;
309 		d->wake_count++;
310 	} else {
311 		if (d->wake_buf)
312 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 				|= irq_data->mask;
314 		d->wake_count--;
315 	}
316 
317 	return 0;
318 }
319 
320 static const struct irq_chip regmap_irq_chip = {
321 	.irq_bus_lock		= regmap_irq_lock,
322 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
323 	.irq_disable		= regmap_irq_disable,
324 	.irq_enable		= regmap_irq_enable,
325 	.irq_set_type		= regmap_irq_set_type,
326 	.irq_set_wake		= regmap_irq_set_wake,
327 };
328 
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 					   unsigned int b)
331 {
332 	const struct regmap_irq_chip *chip = data->chip;
333 	struct regmap *map = data->map;
334 	struct regmap_irq_sub_irq_map *subreg;
335 	int i, ret = 0;
336 
337 	if (!chip->sub_reg_offsets) {
338 		/* Assume linear mapping */
339 		ret = regmap_read(map, chip->status_base +
340 				  (b * map->reg_stride * data->irq_reg_stride),
341 				   &data->status_buf[b]);
342 	} else {
343 		subreg = &chip->sub_reg_offsets[b];
344 		for (i = 0; i < subreg->num_regs; i++) {
345 			unsigned int offset = subreg->offset[i];
346 
347 			ret = regmap_read(map, chip->status_base + offset,
348 					  &data->status_buf[offset]);
349 			if (ret)
350 				break;
351 		}
352 	}
353 	return ret;
354 }
355 
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
357 {
358 	struct regmap_irq_chip_data *data = d;
359 	const struct regmap_irq_chip *chip = data->chip;
360 	struct regmap *map = data->map;
361 	int ret, i;
362 	bool handled = false;
363 	u32 reg;
364 
365 	if (chip->handle_pre_irq)
366 		chip->handle_pre_irq(chip->irq_drv_data);
367 
368 	if (chip->runtime_pm) {
369 		ret = pm_runtime_get_sync(map->dev);
370 		if (ret < 0) {
371 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 				ret);
373 			goto exit;
374 		}
375 	}
376 
377 	/*
378 	 * Read only registers with active IRQs if the chip has 'main status
379 	 * register'. Else read in the statuses, using a single bulk read if
380 	 * possible in order to reduce the I/O overheads.
381 	 */
382 
383 	if (chip->num_main_regs) {
384 		unsigned int max_main_bits;
385 		unsigned long size;
386 
387 		size = chip->num_regs * sizeof(unsigned int);
388 
389 		max_main_bits = (chip->num_main_status_bits) ?
390 				 chip->num_main_status_bits : chip->num_regs;
391 		/* Clear the status buf as we don't read all status regs */
392 		memset(data->status_buf, 0, size);
393 
394 		/* We could support bulk read for main status registers
395 		 * but I don't expect to see devices with really many main
396 		 * status registers so let's only support single reads for the
397 		 * sake of simplicity. and add bulk reads only if needed
398 		 */
399 		for (i = 0; i < chip->num_main_regs; i++) {
400 			ret = regmap_read(map, chip->main_status +
401 				  (i * map->reg_stride
402 				   * data->irq_reg_stride),
403 				  &data->main_status_buf[i]);
404 			if (ret) {
405 				dev_err(map->dev,
406 					"Failed to read IRQ status %d\n",
407 					ret);
408 				goto exit;
409 			}
410 		}
411 
412 		/* Read sub registers with active IRQs */
413 		for (i = 0; i < chip->num_main_regs; i++) {
414 			unsigned int b;
415 			const unsigned long mreg = data->main_status_buf[i];
416 
417 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418 				if (i * map->format.val_bytes * 8 + b >
419 				    max_main_bits)
420 					break;
421 				ret = read_sub_irq_data(data, b);
422 
423 				if (ret != 0) {
424 					dev_err(map->dev,
425 						"Failed to read IRQ status %d\n",
426 						ret);
427 					goto exit;
428 				}
429 			}
430 
431 		}
432 	} else if (!map->use_single_read && map->reg_stride == 1 &&
433 		   data->irq_reg_stride == 1) {
434 
435 		u8 *buf8 = data->status_reg_buf;
436 		u16 *buf16 = data->status_reg_buf;
437 		u32 *buf32 = data->status_reg_buf;
438 
439 		BUG_ON(!data->status_reg_buf);
440 
441 		ret = regmap_bulk_read(map, chip->status_base,
442 				       data->status_reg_buf,
443 				       chip->num_regs);
444 		if (ret != 0) {
445 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
446 				ret);
447 			goto exit;
448 		}
449 
450 		for (i = 0; i < data->chip->num_regs; i++) {
451 			switch (map->format.val_bytes) {
452 			case 1:
453 				data->status_buf[i] = buf8[i];
454 				break;
455 			case 2:
456 				data->status_buf[i] = buf16[i];
457 				break;
458 			case 4:
459 				data->status_buf[i] = buf32[i];
460 				break;
461 			default:
462 				BUG();
463 				goto exit;
464 			}
465 		}
466 
467 	} else {
468 		for (i = 0; i < data->chip->num_regs; i++) {
469 			ret = regmap_read(map, chip->status_base +
470 					  (i * map->reg_stride
471 					   * data->irq_reg_stride),
472 					  &data->status_buf[i]);
473 
474 			if (ret != 0) {
475 				dev_err(map->dev,
476 					"Failed to read IRQ status: %d\n",
477 					ret);
478 				goto exit;
479 			}
480 		}
481 	}
482 
483 	/*
484 	 * Ignore masked IRQs and ack if we need to; we ack early so
485 	 * there is no race between handling and acknowleding the
486 	 * interrupt.  We assume that typically few of the interrupts
487 	 * will fire simultaneously so don't worry about overhead from
488 	 * doing a write per register.
489 	 */
490 	for (i = 0; i < data->chip->num_regs; i++) {
491 		data->status_buf[i] &= ~data->mask_buf[i];
492 
493 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 			reg = chip->ack_base +
495 				(i * map->reg_stride * data->irq_reg_stride);
496 			ret = regmap_write(map, reg, data->status_buf[i]);
497 			if (ret != 0)
498 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499 					reg, ret);
500 		}
501 	}
502 
503 	for (i = 0; i < chip->num_irqs; i++) {
504 		if (data->status_buf[chip->irqs[i].reg_offset /
505 				     map->reg_stride] & chip->irqs[i].mask) {
506 			handle_nested_irq(irq_find_mapping(data->domain, i));
507 			handled = true;
508 		}
509 	}
510 
511 exit:
512 	if (chip->runtime_pm)
513 		pm_runtime_put(map->dev);
514 
515 	if (chip->handle_post_irq)
516 		chip->handle_post_irq(chip->irq_drv_data);
517 
518 	if (handled)
519 		return IRQ_HANDLED;
520 	else
521 		return IRQ_NONE;
522 }
523 
524 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525 			  irq_hw_number_t hw)
526 {
527 	struct regmap_irq_chip_data *data = h->host_data;
528 
529 	irq_set_chip_data(virq, data);
530 	irq_set_chip(virq, &data->irq_chip);
531 	irq_set_nested_thread(virq, 1);
532 	irq_set_parent(virq, data->irq);
533 	irq_set_noprobe(virq);
534 
535 	return 0;
536 }
537 
538 static const struct irq_domain_ops regmap_domain_ops = {
539 	.map	= regmap_irq_map,
540 	.xlate	= irq_domain_xlate_onetwocell,
541 };
542 
543 /**
544  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
545  *
546  * @fwnode: The firmware node where the IRQ domain should be added to.
547  * @map: The regmap for the device.
548  * @irq: The IRQ the device uses to signal interrupts.
549  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551  * @chip: Configuration for the interrupt controller.
552  * @data: Runtime data structure for the controller, allocated on success.
553  *
554  * Returns 0 on success or an errno on failure.
555  *
556  * In order for this to be efficient the chip really should use a
557  * register cache.  The chip driver is responsible for restoring the
558  * register values used by the IRQ controller over suspend and resume.
559  */
560 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
561 			       struct regmap *map, int irq,
562 			       int irq_flags, int irq_base,
563 			       const struct regmap_irq_chip *chip,
564 			       struct regmap_irq_chip_data **data)
565 {
566 	struct regmap_irq_chip_data *d;
567 	int i;
568 	int ret = -ENOMEM;
569 	int num_type_reg;
570 	u32 reg;
571 	u32 unmask_offset;
572 
573 	if (chip->num_regs <= 0)
574 		return -EINVAL;
575 
576 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
577 		return -EINVAL;
578 
579 	for (i = 0; i < chip->num_irqs; i++) {
580 		if (chip->irqs[i].reg_offset % map->reg_stride)
581 			return -EINVAL;
582 		if (chip->irqs[i].reg_offset / map->reg_stride >=
583 		    chip->num_regs)
584 			return -EINVAL;
585 	}
586 
587 	if (irq_base) {
588 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
589 		if (irq_base < 0) {
590 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
591 				 irq_base);
592 			return irq_base;
593 		}
594 	}
595 
596 	d = kzalloc(sizeof(*d), GFP_KERNEL);
597 	if (!d)
598 		return -ENOMEM;
599 
600 	if (chip->num_main_regs) {
601 		d->main_status_buf = kcalloc(chip->num_main_regs,
602 					     sizeof(unsigned int),
603 					     GFP_KERNEL);
604 
605 		if (!d->main_status_buf)
606 			goto err_alloc;
607 	}
608 
609 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
610 				GFP_KERNEL);
611 	if (!d->status_buf)
612 		goto err_alloc;
613 
614 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
615 			      GFP_KERNEL);
616 	if (!d->mask_buf)
617 		goto err_alloc;
618 
619 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
620 				  GFP_KERNEL);
621 	if (!d->mask_buf_def)
622 		goto err_alloc;
623 
624 	if (chip->wake_base) {
625 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
626 				      GFP_KERNEL);
627 		if (!d->wake_buf)
628 			goto err_alloc;
629 	}
630 
631 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
632 	if (num_type_reg) {
633 		d->type_buf_def = kcalloc(num_type_reg,
634 					  sizeof(unsigned int), GFP_KERNEL);
635 		if (!d->type_buf_def)
636 			goto err_alloc;
637 
638 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
639 				      GFP_KERNEL);
640 		if (!d->type_buf)
641 			goto err_alloc;
642 	}
643 
644 	d->irq_chip = regmap_irq_chip;
645 	d->irq_chip.name = chip->name;
646 	d->irq = irq;
647 	d->map = map;
648 	d->chip = chip;
649 	d->irq_base = irq_base;
650 
651 	if (chip->irq_reg_stride)
652 		d->irq_reg_stride = chip->irq_reg_stride;
653 	else
654 		d->irq_reg_stride = 1;
655 
656 	if (chip->type_reg_stride)
657 		d->type_reg_stride = chip->type_reg_stride;
658 	else
659 		d->type_reg_stride = 1;
660 
661 	if (!map->use_single_read && map->reg_stride == 1 &&
662 	    d->irq_reg_stride == 1) {
663 		d->status_reg_buf = kmalloc_array(chip->num_regs,
664 						  map->format.val_bytes,
665 						  GFP_KERNEL);
666 		if (!d->status_reg_buf)
667 			goto err_alloc;
668 	}
669 
670 	mutex_init(&d->lock);
671 
672 	for (i = 0; i < chip->num_irqs; i++)
673 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
674 			|= chip->irqs[i].mask;
675 
676 	/* Mask all the interrupts by default */
677 	for (i = 0; i < chip->num_regs; i++) {
678 		d->mask_buf[i] = d->mask_buf_def[i];
679 		if (!chip->mask_base)
680 			continue;
681 
682 		reg = chip->mask_base +
683 			(i * map->reg_stride * d->irq_reg_stride);
684 		if (chip->mask_invert)
685 			ret = regmap_irq_update_bits(d, reg,
686 					 d->mask_buf[i], ~d->mask_buf[i]);
687 		else if (d->chip->unmask_base) {
688 			unmask_offset = d->chip->unmask_base -
689 					d->chip->mask_base;
690 			ret = regmap_irq_update_bits(d,
691 					reg + unmask_offset,
692 					d->mask_buf[i],
693 					d->mask_buf[i]);
694 		} else
695 			ret = regmap_irq_update_bits(d, reg,
696 					 d->mask_buf[i], d->mask_buf[i]);
697 		if (ret != 0) {
698 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
699 				reg, ret);
700 			goto err_alloc;
701 		}
702 
703 		if (!chip->init_ack_masked)
704 			continue;
705 
706 		/* Ack masked but set interrupts */
707 		reg = chip->status_base +
708 			(i * map->reg_stride * d->irq_reg_stride);
709 		ret = regmap_read(map, reg, &d->status_buf[i]);
710 		if (ret != 0) {
711 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
712 				ret);
713 			goto err_alloc;
714 		}
715 
716 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
717 			reg = chip->ack_base +
718 				(i * map->reg_stride * d->irq_reg_stride);
719 			if (chip->ack_invert)
720 				ret = regmap_write(map, reg,
721 					~(d->status_buf[i] & d->mask_buf[i]));
722 			else
723 				ret = regmap_write(map, reg,
724 					d->status_buf[i] & d->mask_buf[i]);
725 			if (ret != 0) {
726 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
727 					reg, ret);
728 				goto err_alloc;
729 			}
730 		}
731 	}
732 
733 	/* Wake is disabled by default */
734 	if (d->wake_buf) {
735 		for (i = 0; i < chip->num_regs; i++) {
736 			d->wake_buf[i] = d->mask_buf_def[i];
737 			reg = chip->wake_base +
738 				(i * map->reg_stride * d->irq_reg_stride);
739 
740 			if (chip->wake_invert)
741 				ret = regmap_irq_update_bits(d, reg,
742 							 d->mask_buf_def[i],
743 							 0);
744 			else
745 				ret = regmap_irq_update_bits(d, reg,
746 							 d->mask_buf_def[i],
747 							 d->wake_buf[i]);
748 			if (ret != 0) {
749 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
750 					reg, ret);
751 				goto err_alloc;
752 			}
753 		}
754 	}
755 
756 	if (chip->num_type_reg && !chip->type_in_mask) {
757 		for (i = 0; i < chip->num_type_reg; ++i) {
758 			reg = chip->type_base +
759 				(i * map->reg_stride * d->type_reg_stride);
760 
761 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
762 
763 			if (d->chip->type_invert)
764 				d->type_buf_def[i] = ~d->type_buf_def[i];
765 
766 			if (ret) {
767 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
768 					reg, ret);
769 				goto err_alloc;
770 			}
771 		}
772 	}
773 
774 	if (irq_base)
775 		d->domain = irq_domain_add_legacy(to_of_node(fwnode),
776 						  chip->num_irqs, irq_base,
777 						  0, &regmap_domain_ops, d);
778 	else
779 		d->domain = irq_domain_add_linear(to_of_node(fwnode),
780 						  chip->num_irqs,
781 						  &regmap_domain_ops, d);
782 	if (!d->domain) {
783 		dev_err(map->dev, "Failed to create IRQ domain\n");
784 		ret = -ENOMEM;
785 		goto err_alloc;
786 	}
787 
788 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
789 				   irq_flags | IRQF_ONESHOT,
790 				   chip->name, d);
791 	if (ret != 0) {
792 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
793 			irq, chip->name, ret);
794 		goto err_domain;
795 	}
796 
797 	*data = d;
798 
799 	return 0;
800 
801 err_domain:
802 	/* Should really dispose of the domain but... */
803 err_alloc:
804 	kfree(d->type_buf);
805 	kfree(d->type_buf_def);
806 	kfree(d->wake_buf);
807 	kfree(d->mask_buf_def);
808 	kfree(d->mask_buf);
809 	kfree(d->status_buf);
810 	kfree(d->status_reg_buf);
811 	kfree(d);
812 	return ret;
813 }
814 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
815 
816 /**
817  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
818  *
819  * @map: The regmap for the device.
820  * @irq: The IRQ the device uses to signal interrupts.
821  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
822  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
823  * @chip: Configuration for the interrupt controller.
824  * @data: Runtime data structure for the controller, allocated on success.
825  *
826  * Returns 0 on success or an errno on failure.
827  *
828  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
829  * node of the regmap is used.
830  */
831 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
832 			int irq_base, const struct regmap_irq_chip *chip,
833 			struct regmap_irq_chip_data **data)
834 {
835 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
836 					  irq_flags, irq_base, chip, data);
837 }
838 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
839 
840 /**
841  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
842  *
843  * @irq: Primary IRQ for the device
844  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
845  *
846  * This function also disposes of all mapped IRQs on the chip.
847  */
848 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
849 {
850 	unsigned int virq;
851 	int hwirq;
852 
853 	if (!d)
854 		return;
855 
856 	free_irq(irq, d);
857 
858 	/* Dispose all virtual irq from irq domain before removing it */
859 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
860 		/* Ignore hwirq if holes in the IRQ list */
861 		if (!d->chip->irqs[hwirq].mask)
862 			continue;
863 
864 		/*
865 		 * Find the virtual irq of hwirq on chip and if it is
866 		 * there then dispose it
867 		 */
868 		virq = irq_find_mapping(d->domain, hwirq);
869 		if (virq)
870 			irq_dispose_mapping(virq);
871 	}
872 
873 	irq_domain_remove(d->domain);
874 	kfree(d->type_buf);
875 	kfree(d->type_buf_def);
876 	kfree(d->wake_buf);
877 	kfree(d->mask_buf_def);
878 	kfree(d->mask_buf);
879 	kfree(d->status_reg_buf);
880 	kfree(d->status_buf);
881 	kfree(d);
882 }
883 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
884 
885 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
886 {
887 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
888 
889 	regmap_del_irq_chip(d->irq, d);
890 }
891 
892 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
893 
894 {
895 	struct regmap_irq_chip_data **r = res;
896 
897 	if (!r || !*r) {
898 		WARN_ON(!r || !*r);
899 		return 0;
900 	}
901 	return *r == data;
902 }
903 
904 /**
905  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
906  *
907  * @dev: The device pointer on which irq_chip belongs to.
908  * @fwnode: The firmware node where the IRQ domain should be added to.
909  * @map: The regmap for the device.
910  * @irq: The IRQ the device uses to signal interrupts
911  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
912  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
913  * @chip: Configuration for the interrupt controller.
914  * @data: Runtime data structure for the controller, allocated on success
915  *
916  * Returns 0 on success or an errno on failure.
917  *
918  * The &regmap_irq_chip_data will be automatically released when the device is
919  * unbound.
920  */
921 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
922 				    struct fwnode_handle *fwnode,
923 				    struct regmap *map, int irq,
924 				    int irq_flags, int irq_base,
925 				    const struct regmap_irq_chip *chip,
926 				    struct regmap_irq_chip_data **data)
927 {
928 	struct regmap_irq_chip_data **ptr, *d;
929 	int ret;
930 
931 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
932 			   GFP_KERNEL);
933 	if (!ptr)
934 		return -ENOMEM;
935 
936 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
937 					 chip, &d);
938 	if (ret < 0) {
939 		devres_free(ptr);
940 		return ret;
941 	}
942 
943 	*ptr = d;
944 	devres_add(dev, ptr);
945 	*data = d;
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
949 
950 /**
951  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
952  *
953  * @dev: The device pointer on which irq_chip belongs to.
954  * @map: The regmap for the device.
955  * @irq: The IRQ the device uses to signal interrupts
956  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
957  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
958  * @chip: Configuration for the interrupt controller.
959  * @data: Runtime data structure for the controller, allocated on success
960  *
961  * Returns 0 on success or an errno on failure.
962  *
963  * The &regmap_irq_chip_data will be automatically released when the device is
964  * unbound.
965  */
966 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
967 			     int irq_flags, int irq_base,
968 			     const struct regmap_irq_chip *chip,
969 			     struct regmap_irq_chip_data **data)
970 {
971 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
972 					       irq, irq_flags, irq_base, chip,
973 					       data);
974 }
975 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
976 
977 /**
978  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
979  *
980  * @dev: Device for which which resource was allocated.
981  * @irq: Primary IRQ for the device.
982  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
983  *
984  * A resource managed version of regmap_del_irq_chip().
985  */
986 void devm_regmap_del_irq_chip(struct device *dev, int irq,
987 			      struct regmap_irq_chip_data *data)
988 {
989 	int rc;
990 
991 	WARN_ON(irq != data->irq);
992 	rc = devres_release(dev, devm_regmap_irq_chip_release,
993 			    devm_regmap_irq_chip_match, data);
994 
995 	if (rc != 0)
996 		WARN_ON(rc);
997 }
998 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
999 
1000 /**
1001  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1002  *
1003  * @data: regmap irq controller to operate on.
1004  *
1005  * Useful for drivers to request their own IRQs.
1006  */
1007 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1008 {
1009 	WARN_ON(!data->irq_base);
1010 	return data->irq_base;
1011 }
1012 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1013 
1014 /**
1015  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1016  *
1017  * @data: regmap irq controller to operate on.
1018  * @irq: index of the interrupt requested in the chip IRQs.
1019  *
1020  * Useful for drivers to request their own IRQs.
1021  */
1022 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1023 {
1024 	/* Handle holes in the IRQ list */
1025 	if (!data->chip->irqs[irq].mask)
1026 		return -EINVAL;
1027 
1028 	return irq_create_mapping(data->domain, irq);
1029 }
1030 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1031 
1032 /**
1033  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1034  *
1035  * @data: regmap_irq controller to operate on.
1036  *
1037  * Useful for drivers to request their own IRQs and for integration
1038  * with subsystems.  For ease of integration NULL is accepted as a
1039  * domain, allowing devices to just call this even if no domain is
1040  * allocated.
1041  */
1042 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1043 {
1044 	if (data)
1045 		return data->domain;
1046 	else
1047 		return NULL;
1048 }
1049 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1050