xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 8fdff1dc)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/device.h>
15 #include <linux/regmap.h>
16 #include <linux/irq.h>
17 #include <linux/interrupt.h>
18 #include <linux/irqdomain.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	unsigned int *status_buf;
38 	unsigned int *mask_buf;
39 	unsigned int *mask_buf_def;
40 	unsigned int *wake_buf;
41 
42 	unsigned int irq_reg_stride;
43 };
44 
45 static inline const
46 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
47 				     int irq)
48 {
49 	return &data->chip->irqs[irq];
50 }
51 
52 static void regmap_irq_lock(struct irq_data *data)
53 {
54 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
55 
56 	mutex_lock(&d->lock);
57 }
58 
59 static void regmap_irq_sync_unlock(struct irq_data *data)
60 {
61 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
62 	struct regmap *map = d->map;
63 	int i, ret;
64 	u32 reg;
65 
66 	if (d->chip->runtime_pm) {
67 		ret = pm_runtime_get_sync(map->dev);
68 		if (ret < 0)
69 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
70 				ret);
71 	}
72 
73 	/*
74 	 * If there's been a change in the mask write it back to the
75 	 * hardware.  We rely on the use of the regmap core cache to
76 	 * suppress pointless writes.
77 	 */
78 	for (i = 0; i < d->chip->num_regs; i++) {
79 		reg = d->chip->mask_base +
80 			(i * map->reg_stride * d->irq_reg_stride);
81 		if (d->chip->mask_invert)
82 			ret = regmap_update_bits(d->map, reg,
83 					 d->mask_buf_def[i], ~d->mask_buf[i]);
84 		else
85 			ret = regmap_update_bits(d->map, reg,
86 					 d->mask_buf_def[i], d->mask_buf[i]);
87 		if (ret != 0)
88 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
89 				reg);
90 	}
91 
92 	if (d->chip->runtime_pm)
93 		pm_runtime_put(map->dev);
94 
95 	/* If we've changed our wakeup count propagate it to the parent */
96 	if (d->wake_count < 0)
97 		for (i = d->wake_count; i < 0; i++)
98 			irq_set_irq_wake(d->irq, 0);
99 	else if (d->wake_count > 0)
100 		for (i = 0; i < d->wake_count; i++)
101 			irq_set_irq_wake(d->irq, 1);
102 
103 	d->wake_count = 0;
104 
105 	mutex_unlock(&d->lock);
106 }
107 
108 static void regmap_irq_enable(struct irq_data *data)
109 {
110 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
111 	struct regmap *map = d->map;
112 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
113 
114 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
115 }
116 
117 static void regmap_irq_disable(struct irq_data *data)
118 {
119 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
120 	struct regmap *map = d->map;
121 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
122 
123 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
124 }
125 
126 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
127 {
128 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
129 	struct regmap *map = d->map;
130 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
131 
132 	if (!d->chip->wake_base)
133 		return -EINVAL;
134 
135 	if (on) {
136 		d->wake_buf[irq_data->reg_offset / map->reg_stride]
137 			&= ~irq_data->mask;
138 		d->wake_count++;
139 	} else {
140 		d->wake_buf[irq_data->reg_offset / map->reg_stride]
141 			|= irq_data->mask;
142 		d->wake_count--;
143 	}
144 
145 	return 0;
146 }
147 
148 static const struct irq_chip regmap_irq_chip = {
149 	.irq_bus_lock		= regmap_irq_lock,
150 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
151 	.irq_disable		= regmap_irq_disable,
152 	.irq_enable		= regmap_irq_enable,
153 	.irq_set_wake		= regmap_irq_set_wake,
154 };
155 
156 static irqreturn_t regmap_irq_thread(int irq, void *d)
157 {
158 	struct regmap_irq_chip_data *data = d;
159 	const struct regmap_irq_chip *chip = data->chip;
160 	struct regmap *map = data->map;
161 	int ret, i;
162 	bool handled = false;
163 	u32 reg;
164 
165 	if (chip->runtime_pm) {
166 		ret = pm_runtime_get_sync(map->dev);
167 		if (ret < 0) {
168 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
169 				ret);
170 			return IRQ_NONE;
171 		}
172 	}
173 
174 	/*
175 	 * Ignore masked IRQs and ack if we need to; we ack early so
176 	 * there is no race between handling and acknowleding the
177 	 * interrupt.  We assume that typically few of the interrupts
178 	 * will fire simultaneously so don't worry about overhead from
179 	 * doing a write per register.
180 	 */
181 	for (i = 0; i < data->chip->num_regs; i++) {
182 		ret = regmap_read(map, chip->status_base + (i * map->reg_stride
183 				   * data->irq_reg_stride),
184 				   &data->status_buf[i]);
185 
186 		if (ret != 0) {
187 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
188 					ret);
189 			if (chip->runtime_pm)
190 				pm_runtime_put(map->dev);
191 			return IRQ_NONE;
192 		}
193 
194 		data->status_buf[i] &= ~data->mask_buf[i];
195 
196 		if (data->status_buf[i] && chip->ack_base) {
197 			reg = chip->ack_base +
198 				(i * map->reg_stride * data->irq_reg_stride);
199 			ret = regmap_write(map, reg, data->status_buf[i]);
200 			if (ret != 0)
201 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
202 					reg, ret);
203 		}
204 	}
205 
206 	for (i = 0; i < chip->num_irqs; i++) {
207 		if (data->status_buf[chip->irqs[i].reg_offset /
208 				     map->reg_stride] & chip->irqs[i].mask) {
209 			handle_nested_irq(irq_find_mapping(data->domain, i));
210 			handled = true;
211 		}
212 	}
213 
214 	if (chip->runtime_pm)
215 		pm_runtime_put(map->dev);
216 
217 	if (handled)
218 		return IRQ_HANDLED;
219 	else
220 		return IRQ_NONE;
221 }
222 
223 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
224 			  irq_hw_number_t hw)
225 {
226 	struct regmap_irq_chip_data *data = h->host_data;
227 
228 	irq_set_chip_data(virq, data);
229 	irq_set_chip(virq, &data->irq_chip);
230 	irq_set_nested_thread(virq, 1);
231 
232 	/* ARM needs us to explicitly flag the IRQ as valid
233 	 * and will set them noprobe when we do so. */
234 #ifdef CONFIG_ARM
235 	set_irq_flags(virq, IRQF_VALID);
236 #else
237 	irq_set_noprobe(virq);
238 #endif
239 
240 	return 0;
241 }
242 
243 static struct irq_domain_ops regmap_domain_ops = {
244 	.map	= regmap_irq_map,
245 	.xlate	= irq_domain_xlate_twocell,
246 };
247 
248 /**
249  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
250  *
251  * map:       The regmap for the device.
252  * irq:       The IRQ the device uses to signal interrupts
253  * irq_flags: The IRQF_ flags to use for the primary interrupt.
254  * chip:      Configuration for the interrupt controller.
255  * data:      Runtime data structure for the controller, allocated on success
256  *
257  * Returns 0 on success or an errno on failure.
258  *
259  * In order for this to be efficient the chip really should use a
260  * register cache.  The chip driver is responsible for restoring the
261  * register values used by the IRQ controller over suspend and resume.
262  */
263 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
264 			int irq_base, const struct regmap_irq_chip *chip,
265 			struct regmap_irq_chip_data **data)
266 {
267 	struct regmap_irq_chip_data *d;
268 	int i;
269 	int ret = -ENOMEM;
270 	u32 reg;
271 
272 	for (i = 0; i < chip->num_irqs; i++) {
273 		if (chip->irqs[i].reg_offset % map->reg_stride)
274 			return -EINVAL;
275 		if (chip->irqs[i].reg_offset / map->reg_stride >=
276 		    chip->num_regs)
277 			return -EINVAL;
278 	}
279 
280 	if (irq_base) {
281 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
282 		if (irq_base < 0) {
283 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
284 				 irq_base);
285 			return irq_base;
286 		}
287 	}
288 
289 	d = kzalloc(sizeof(*d), GFP_KERNEL);
290 	if (!d)
291 		return -ENOMEM;
292 
293 	*data = d;
294 
295 	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
296 				GFP_KERNEL);
297 	if (!d->status_buf)
298 		goto err_alloc;
299 
300 	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
301 			      GFP_KERNEL);
302 	if (!d->mask_buf)
303 		goto err_alloc;
304 
305 	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
306 				  GFP_KERNEL);
307 	if (!d->mask_buf_def)
308 		goto err_alloc;
309 
310 	if (chip->wake_base) {
311 		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
312 				      GFP_KERNEL);
313 		if (!d->wake_buf)
314 			goto err_alloc;
315 	}
316 
317 	d->irq_chip = regmap_irq_chip;
318 	d->irq_chip.name = chip->name;
319 	if (!chip->wake_base) {
320 		d->irq_chip.irq_set_wake = NULL;
321 		d->irq_chip.flags |= IRQCHIP_MASK_ON_SUSPEND |
322 				     IRQCHIP_SKIP_SET_WAKE;
323 	}
324 	d->irq = irq;
325 	d->map = map;
326 	d->chip = chip;
327 	d->irq_base = irq_base;
328 
329 	if (chip->irq_reg_stride)
330 		d->irq_reg_stride = chip->irq_reg_stride;
331 	else
332 		d->irq_reg_stride = 1;
333 
334 	mutex_init(&d->lock);
335 
336 	for (i = 0; i < chip->num_irqs; i++)
337 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
338 			|= chip->irqs[i].mask;
339 
340 	/* Mask all the interrupts by default */
341 	for (i = 0; i < chip->num_regs; i++) {
342 		d->mask_buf[i] = d->mask_buf_def[i];
343 		reg = chip->mask_base +
344 			(i * map->reg_stride * d->irq_reg_stride);
345 		if (chip->mask_invert)
346 			ret = regmap_update_bits(map, reg,
347 					 d->mask_buf[i], ~d->mask_buf[i]);
348 		else
349 			ret = regmap_update_bits(map, reg,
350 					 d->mask_buf[i], d->mask_buf[i]);
351 		if (ret != 0) {
352 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
353 				reg, ret);
354 			goto err_alloc;
355 		}
356 	}
357 
358 	/* Wake is disabled by default */
359 	if (d->wake_buf) {
360 		for (i = 0; i < chip->num_regs; i++) {
361 			d->wake_buf[i] = d->mask_buf_def[i];
362 			reg = chip->wake_base +
363 				(i * map->reg_stride * d->irq_reg_stride);
364 			ret = regmap_update_bits(map, reg, d->wake_buf[i],
365 						 d->wake_buf[i]);
366 			if (ret != 0) {
367 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
368 					reg, ret);
369 				goto err_alloc;
370 			}
371 		}
372 	}
373 
374 	if (irq_base)
375 		d->domain = irq_domain_add_legacy(map->dev->of_node,
376 						  chip->num_irqs, irq_base, 0,
377 						  &regmap_domain_ops, d);
378 	else
379 		d->domain = irq_domain_add_linear(map->dev->of_node,
380 						  chip->num_irqs,
381 						  &regmap_domain_ops, d);
382 	if (!d->domain) {
383 		dev_err(map->dev, "Failed to create IRQ domain\n");
384 		ret = -ENOMEM;
385 		goto err_alloc;
386 	}
387 
388 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
389 				   chip->name, d);
390 	if (ret != 0) {
391 		dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret);
392 		goto err_domain;
393 	}
394 
395 	return 0;
396 
397 err_domain:
398 	/* Should really dispose of the domain but... */
399 err_alloc:
400 	kfree(d->wake_buf);
401 	kfree(d->mask_buf_def);
402 	kfree(d->mask_buf);
403 	kfree(d->status_buf);
404 	kfree(d);
405 	return ret;
406 }
407 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
408 
409 /**
410  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
411  *
412  * @irq: Primary IRQ for the device
413  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
414  */
415 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
416 {
417 	if (!d)
418 		return;
419 
420 	free_irq(irq, d);
421 	/* We should unmap the domain but... */
422 	kfree(d->wake_buf);
423 	kfree(d->mask_buf_def);
424 	kfree(d->mask_buf);
425 	kfree(d->status_buf);
426 	kfree(d);
427 }
428 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
429 
430 /**
431  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
432  *
433  * Useful for drivers to request their own IRQs.
434  *
435  * @data: regmap_irq controller to operate on.
436  */
437 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
438 {
439 	WARN_ON(!data->irq_base);
440 	return data->irq_base;
441 }
442 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
443 
444 /**
445  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
446  *
447  * Useful for drivers to request their own IRQs.
448  *
449  * @data: regmap_irq controller to operate on.
450  * @irq: index of the interrupt requested in the chip IRQs
451  */
452 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
453 {
454 	/* Handle holes in the IRQ list */
455 	if (!data->chip->irqs[irq].mask)
456 		return -EINVAL;
457 
458 	return irq_create_mapping(data->domain, irq);
459 }
460 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
461 
462 /**
463  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
464  *
465  * Useful for drivers to request their own IRQs and for integration
466  * with subsystems.  For ease of integration NULL is accepted as a
467  * domain, allowing devices to just call this even if no domain is
468  * allocated.
469  *
470  * @data: regmap_irq controller to operate on.
471  */
472 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
473 {
474 	if (data)
475 		return data->domain;
476 	else
477 		return NULL;
478 }
479 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
480