1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // regmap based irq_chip 4 // 5 // Copyright 2011 Wolfson Microelectronics plc 6 // 7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 8 9 #include <linux/device.h> 10 #include <linux/export.h> 11 #include <linux/interrupt.h> 12 #include <linux/irq.h> 13 #include <linux/irqdomain.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/regmap.h> 16 #include <linux/slab.h> 17 18 #include "internal.h" 19 20 struct regmap_irq_chip_data { 21 struct mutex lock; 22 struct irq_chip irq_chip; 23 24 struct regmap *map; 25 const struct regmap_irq_chip *chip; 26 27 int irq_base; 28 struct irq_domain *domain; 29 30 int irq; 31 int wake_count; 32 33 unsigned int mask_base; 34 unsigned int unmask_base; 35 36 void *status_reg_buf; 37 unsigned int *main_status_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 unsigned int **virt_buf; 45 unsigned int **config_buf; 46 47 unsigned int irq_reg_stride; 48 49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data, 50 unsigned int base, int index); 51 52 unsigned int clear_status:1; 53 }; 54 55 static inline const 56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 57 int irq) 58 { 59 return &data->chip->irqs[irq]; 60 } 61 62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data) 63 { 64 struct regmap *map = data->map; 65 66 /* 67 * While possible that a user-defined ->get_irq_reg() callback might 68 * be linear enough to support bulk reads, most of the time it won't. 69 * Therefore only allow them if the default callback is being used. 70 */ 71 return data->irq_reg_stride == 1 && map->reg_stride == 1 && 72 data->get_irq_reg == regmap_irq_get_irq_reg_linear && 73 !map->use_single_read; 74 } 75 76 static void regmap_irq_lock(struct irq_data *data) 77 { 78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 79 80 mutex_lock(&d->lock); 81 } 82 83 static void regmap_irq_sync_unlock(struct irq_data *data) 84 { 85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 86 struct regmap *map = d->map; 87 int i, j, ret; 88 u32 reg; 89 u32 val; 90 91 if (d->chip->runtime_pm) { 92 ret = pm_runtime_get_sync(map->dev); 93 if (ret < 0) 94 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 95 ret); 96 } 97 98 if (d->clear_status) { 99 for (i = 0; i < d->chip->num_regs; i++) { 100 reg = d->get_irq_reg(d, d->chip->status_base, i); 101 102 ret = regmap_read(map, reg, &val); 103 if (ret) 104 dev_err(d->map->dev, 105 "Failed to clear the interrupt status bits\n"); 106 } 107 108 d->clear_status = false; 109 } 110 111 /* 112 * If there's been a change in the mask write it back to the 113 * hardware. We rely on the use of the regmap core cache to 114 * suppress pointless writes. 115 */ 116 for (i = 0; i < d->chip->num_regs; i++) { 117 if (d->mask_base) { 118 reg = d->get_irq_reg(d, d->mask_base, i); 119 ret = regmap_update_bits(d->map, reg, 120 d->mask_buf_def[i], d->mask_buf[i]); 121 if (ret) 122 dev_err(d->map->dev, "Failed to sync masks in %x\n", 123 reg); 124 } 125 126 if (d->unmask_base) { 127 reg = d->get_irq_reg(d, d->unmask_base, i); 128 ret = regmap_update_bits(d->map, reg, 129 d->mask_buf_def[i], ~d->mask_buf[i]); 130 if (ret) 131 dev_err(d->map->dev, "Failed to sync masks in %x\n", 132 reg); 133 } 134 135 reg = d->get_irq_reg(d, d->chip->wake_base, i); 136 if (d->wake_buf) { 137 if (d->chip->wake_invert) 138 ret = regmap_update_bits(d->map, reg, 139 d->mask_buf_def[i], 140 ~d->wake_buf[i]); 141 else 142 ret = regmap_update_bits(d->map, reg, 143 d->mask_buf_def[i], 144 d->wake_buf[i]); 145 if (ret != 0) 146 dev_err(d->map->dev, 147 "Failed to sync wakes in %x: %d\n", 148 reg, ret); 149 } 150 151 if (!d->chip->init_ack_masked) 152 continue; 153 /* 154 * Ack all the masked interrupts unconditionally, 155 * OR if there is masked interrupt which hasn't been Acked, 156 * it'll be ignored in irq handler, then may introduce irq storm 157 */ 158 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 159 reg = d->get_irq_reg(d, d->chip->ack_base, i); 160 161 /* some chips ack by write 0 */ 162 if (d->chip->ack_invert) 163 ret = regmap_write(map, reg, ~d->mask_buf[i]); 164 else 165 ret = regmap_write(map, reg, d->mask_buf[i]); 166 if (d->chip->clear_ack) { 167 if (d->chip->ack_invert && !ret) 168 ret = regmap_write(map, reg, UINT_MAX); 169 else if (!ret) 170 ret = regmap_write(map, reg, 0); 171 } 172 if (ret != 0) 173 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 174 reg, ret); 175 } 176 } 177 178 /* Don't update the type bits if we're using mask bits for irq type. */ 179 if (!d->chip->type_in_mask) { 180 for (i = 0; i < d->chip->num_type_reg; i++) { 181 if (!d->type_buf_def[i]) 182 continue; 183 reg = d->get_irq_reg(d, d->chip->type_base, i); 184 if (d->chip->type_invert) 185 ret = regmap_update_bits(d->map, reg, 186 d->type_buf_def[i], ~d->type_buf[i]); 187 else 188 ret = regmap_update_bits(d->map, reg, 189 d->type_buf_def[i], d->type_buf[i]); 190 if (ret != 0) 191 dev_err(d->map->dev, "Failed to sync type in %x\n", 192 reg); 193 } 194 } 195 196 if (d->chip->num_virt_regs) { 197 for (i = 0; i < d->chip->num_virt_regs; i++) { 198 for (j = 0; j < d->chip->num_regs; j++) { 199 reg = d->get_irq_reg(d, d->chip->virt_reg_base[i], 200 j); 201 ret = regmap_write(map, reg, d->virt_buf[i][j]); 202 if (ret != 0) 203 dev_err(d->map->dev, 204 "Failed to write virt 0x%x: %d\n", 205 reg, ret); 206 } 207 } 208 } 209 210 for (i = 0; i < d->chip->num_config_bases; i++) { 211 for (j = 0; j < d->chip->num_config_regs; j++) { 212 reg = d->get_irq_reg(d, d->chip->config_base[i], j); 213 ret = regmap_write(map, reg, d->config_buf[i][j]); 214 if (ret) 215 dev_err(d->map->dev, 216 "Failed to write config %x: %d\n", 217 reg, ret); 218 } 219 } 220 221 if (d->chip->runtime_pm) 222 pm_runtime_put(map->dev); 223 224 /* If we've changed our wakeup count propagate it to the parent */ 225 if (d->wake_count < 0) 226 for (i = d->wake_count; i < 0; i++) 227 irq_set_irq_wake(d->irq, 0); 228 else if (d->wake_count > 0) 229 for (i = 0; i < d->wake_count; i++) 230 irq_set_irq_wake(d->irq, 1); 231 232 d->wake_count = 0; 233 234 mutex_unlock(&d->lock); 235 } 236 237 static void regmap_irq_enable(struct irq_data *data) 238 { 239 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 240 struct regmap *map = d->map; 241 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 242 unsigned int reg = irq_data->reg_offset / map->reg_stride; 243 unsigned int mask; 244 245 /* 246 * The type_in_mask flag means that the underlying hardware uses 247 * separate mask bits for each interrupt trigger type, but we want 248 * to have a single logical interrupt with a configurable type. 249 * 250 * If the interrupt we're enabling defines any supported types 251 * then instead of using the regular mask bits for this interrupt, 252 * use the value previously written to the type buffer at the 253 * corresponding offset in regmap_irq_set_type(). 254 */ 255 if (d->chip->type_in_mask && irq_data->type.types_supported) 256 mask = d->type_buf[reg] & irq_data->mask; 257 else 258 mask = irq_data->mask; 259 260 if (d->chip->clear_on_unmask) 261 d->clear_status = true; 262 263 d->mask_buf[reg] &= ~mask; 264 } 265 266 static void regmap_irq_disable(struct irq_data *data) 267 { 268 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 269 struct regmap *map = d->map; 270 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 271 272 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 273 } 274 275 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 276 { 277 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 278 struct regmap *map = d->map; 279 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 280 int reg, ret; 281 const struct regmap_irq_type *t = &irq_data->type; 282 283 if ((t->types_supported & type) != type) 284 return 0; 285 286 reg = t->type_reg_offset / map->reg_stride; 287 288 if (t->type_reg_mask) 289 d->type_buf[reg] &= ~t->type_reg_mask; 290 else 291 d->type_buf[reg] &= ~(t->type_falling_val | 292 t->type_rising_val | 293 t->type_level_low_val | 294 t->type_level_high_val); 295 switch (type) { 296 case IRQ_TYPE_EDGE_FALLING: 297 d->type_buf[reg] |= t->type_falling_val; 298 break; 299 300 case IRQ_TYPE_EDGE_RISING: 301 d->type_buf[reg] |= t->type_rising_val; 302 break; 303 304 case IRQ_TYPE_EDGE_BOTH: 305 d->type_buf[reg] |= (t->type_falling_val | 306 t->type_rising_val); 307 break; 308 309 case IRQ_TYPE_LEVEL_HIGH: 310 d->type_buf[reg] |= t->type_level_high_val; 311 break; 312 313 case IRQ_TYPE_LEVEL_LOW: 314 d->type_buf[reg] |= t->type_level_low_val; 315 break; 316 default: 317 return -EINVAL; 318 } 319 320 if (d->chip->set_type_virt) { 321 ret = d->chip->set_type_virt(d->virt_buf, type, data->hwirq, 322 reg); 323 if (ret) 324 return ret; 325 } 326 327 if (d->chip->set_type_config) { 328 ret = d->chip->set_type_config(d->config_buf, type, 329 irq_data, reg); 330 if (ret) 331 return ret; 332 } 333 334 return 0; 335 } 336 337 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 338 { 339 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 340 struct regmap *map = d->map; 341 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 342 343 if (on) { 344 if (d->wake_buf) 345 d->wake_buf[irq_data->reg_offset / map->reg_stride] 346 &= ~irq_data->mask; 347 d->wake_count++; 348 } else { 349 if (d->wake_buf) 350 d->wake_buf[irq_data->reg_offset / map->reg_stride] 351 |= irq_data->mask; 352 d->wake_count--; 353 } 354 355 return 0; 356 } 357 358 static const struct irq_chip regmap_irq_chip = { 359 .irq_bus_lock = regmap_irq_lock, 360 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 361 .irq_disable = regmap_irq_disable, 362 .irq_enable = regmap_irq_enable, 363 .irq_set_type = regmap_irq_set_type, 364 .irq_set_wake = regmap_irq_set_wake, 365 }; 366 367 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, 368 unsigned int b) 369 { 370 const struct regmap_irq_chip *chip = data->chip; 371 struct regmap *map = data->map; 372 struct regmap_irq_sub_irq_map *subreg; 373 unsigned int reg; 374 int i, ret = 0; 375 376 if (!chip->sub_reg_offsets) { 377 reg = data->get_irq_reg(data, chip->status_base, b); 378 ret = regmap_read(map, reg, &data->status_buf[b]); 379 } else { 380 /* 381 * Note we can't use ->get_irq_reg() here because the offsets 382 * in 'subreg' are *not* interchangeable with indices. 383 */ 384 subreg = &chip->sub_reg_offsets[b]; 385 for (i = 0; i < subreg->num_regs; i++) { 386 unsigned int offset = subreg->offset[i]; 387 unsigned int index = offset / map->reg_stride; 388 389 if (chip->not_fixed_stride) 390 ret = regmap_read(map, 391 chip->status_base + offset, 392 &data->status_buf[b]); 393 else 394 ret = regmap_read(map, 395 chip->status_base + offset, 396 &data->status_buf[index]); 397 398 if (ret) 399 break; 400 } 401 } 402 return ret; 403 } 404 405 static irqreturn_t regmap_irq_thread(int irq, void *d) 406 { 407 struct regmap_irq_chip_data *data = d; 408 const struct regmap_irq_chip *chip = data->chip; 409 struct regmap *map = data->map; 410 int ret, i; 411 bool handled = false; 412 u32 reg; 413 414 if (chip->handle_pre_irq) 415 chip->handle_pre_irq(chip->irq_drv_data); 416 417 if (chip->runtime_pm) { 418 ret = pm_runtime_get_sync(map->dev); 419 if (ret < 0) { 420 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 421 ret); 422 goto exit; 423 } 424 } 425 426 /* 427 * Read only registers with active IRQs if the chip has 'main status 428 * register'. Else read in the statuses, using a single bulk read if 429 * possible in order to reduce the I/O overheads. 430 */ 431 432 if (chip->num_main_regs) { 433 unsigned int max_main_bits; 434 unsigned long size; 435 436 size = chip->num_regs * sizeof(unsigned int); 437 438 max_main_bits = (chip->num_main_status_bits) ? 439 chip->num_main_status_bits : chip->num_regs; 440 /* Clear the status buf as we don't read all status regs */ 441 memset(data->status_buf, 0, size); 442 443 /* We could support bulk read for main status registers 444 * but I don't expect to see devices with really many main 445 * status registers so let's only support single reads for the 446 * sake of simplicity. and add bulk reads only if needed 447 */ 448 for (i = 0; i < chip->num_main_regs; i++) { 449 /* 450 * For not_fixed_stride, don't use ->get_irq_reg(). 451 * It would produce an incorrect result. 452 */ 453 if (data->chip->not_fixed_stride) 454 reg = chip->main_status + 455 i * map->reg_stride * data->irq_reg_stride; 456 else 457 reg = data->get_irq_reg(data, 458 chip->main_status, i); 459 460 ret = regmap_read(map, reg, &data->main_status_buf[i]); 461 if (ret) { 462 dev_err(map->dev, 463 "Failed to read IRQ status %d\n", 464 ret); 465 goto exit; 466 } 467 } 468 469 /* Read sub registers with active IRQs */ 470 for (i = 0; i < chip->num_main_regs; i++) { 471 unsigned int b; 472 const unsigned long mreg = data->main_status_buf[i]; 473 474 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { 475 if (i * map->format.val_bytes * 8 + b > 476 max_main_bits) 477 break; 478 ret = read_sub_irq_data(data, b); 479 480 if (ret != 0) { 481 dev_err(map->dev, 482 "Failed to read IRQ status %d\n", 483 ret); 484 goto exit; 485 } 486 } 487 488 } 489 } else if (regmap_irq_can_bulk_read_status(data)) { 490 491 u8 *buf8 = data->status_reg_buf; 492 u16 *buf16 = data->status_reg_buf; 493 u32 *buf32 = data->status_reg_buf; 494 495 BUG_ON(!data->status_reg_buf); 496 497 ret = regmap_bulk_read(map, chip->status_base, 498 data->status_reg_buf, 499 chip->num_regs); 500 if (ret != 0) { 501 dev_err(map->dev, "Failed to read IRQ status: %d\n", 502 ret); 503 goto exit; 504 } 505 506 for (i = 0; i < data->chip->num_regs; i++) { 507 switch (map->format.val_bytes) { 508 case 1: 509 data->status_buf[i] = buf8[i]; 510 break; 511 case 2: 512 data->status_buf[i] = buf16[i]; 513 break; 514 case 4: 515 data->status_buf[i] = buf32[i]; 516 break; 517 default: 518 BUG(); 519 goto exit; 520 } 521 } 522 523 } else { 524 for (i = 0; i < data->chip->num_regs; i++) { 525 unsigned int reg = data->get_irq_reg(data, 526 data->chip->status_base, i); 527 ret = regmap_read(map, reg, &data->status_buf[i]); 528 529 if (ret != 0) { 530 dev_err(map->dev, 531 "Failed to read IRQ status: %d\n", 532 ret); 533 goto exit; 534 } 535 } 536 } 537 538 if (chip->status_invert) 539 for (i = 0; i < data->chip->num_regs; i++) 540 data->status_buf[i] = ~data->status_buf[i]; 541 542 /* 543 * Ignore masked IRQs and ack if we need to; we ack early so 544 * there is no race between handling and acknowledging the 545 * interrupt. We assume that typically few of the interrupts 546 * will fire simultaneously so don't worry about overhead from 547 * doing a write per register. 548 */ 549 for (i = 0; i < data->chip->num_regs; i++) { 550 data->status_buf[i] &= ~data->mask_buf[i]; 551 552 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 553 reg = data->get_irq_reg(data, data->chip->ack_base, i); 554 555 if (chip->ack_invert) 556 ret = regmap_write(map, reg, 557 ~data->status_buf[i]); 558 else 559 ret = regmap_write(map, reg, 560 data->status_buf[i]); 561 if (chip->clear_ack) { 562 if (chip->ack_invert && !ret) 563 ret = regmap_write(map, reg, UINT_MAX); 564 else if (!ret) 565 ret = regmap_write(map, reg, 0); 566 } 567 if (ret != 0) 568 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 569 reg, ret); 570 } 571 } 572 573 for (i = 0; i < chip->num_irqs; i++) { 574 if (data->status_buf[chip->irqs[i].reg_offset / 575 map->reg_stride] & chip->irqs[i].mask) { 576 handle_nested_irq(irq_find_mapping(data->domain, i)); 577 handled = true; 578 } 579 } 580 581 exit: 582 if (chip->runtime_pm) 583 pm_runtime_put(map->dev); 584 585 if (chip->handle_post_irq) 586 chip->handle_post_irq(chip->irq_drv_data); 587 588 if (handled) 589 return IRQ_HANDLED; 590 else 591 return IRQ_NONE; 592 } 593 594 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 595 irq_hw_number_t hw) 596 { 597 struct regmap_irq_chip_data *data = h->host_data; 598 599 irq_set_chip_data(virq, data); 600 irq_set_chip(virq, &data->irq_chip); 601 irq_set_nested_thread(virq, 1); 602 irq_set_parent(virq, data->irq); 603 irq_set_noprobe(virq); 604 605 return 0; 606 } 607 608 static const struct irq_domain_ops regmap_domain_ops = { 609 .map = regmap_irq_map, 610 .xlate = irq_domain_xlate_onetwocell, 611 }; 612 613 /** 614 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback. 615 * @data: Data for the &struct regmap_irq_chip 616 * @base: Base register 617 * @index: Register index 618 * 619 * Returns the register address corresponding to the given @base and @index 620 * by the formula ``base + index * regmap_stride * irq_reg_stride``. 621 */ 622 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data, 623 unsigned int base, int index) 624 { 625 const struct regmap_irq_chip *chip = data->chip; 626 struct regmap *map = data->map; 627 628 /* 629 * FIXME: This is for backward compatibility and should be removed 630 * when not_fixed_stride is dropped (it's only used by qcom-pm8008). 631 */ 632 if (chip->not_fixed_stride && chip->sub_reg_offsets) { 633 struct regmap_irq_sub_irq_map *subreg; 634 635 subreg = &chip->sub_reg_offsets[0]; 636 return base + subreg->offset[0]; 637 } 638 639 return base + index * map->reg_stride * data->irq_reg_stride; 640 } 641 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear); 642 643 /** 644 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback. 645 * @buf: Buffer containing configuration register values, this is a 2D array of 646 * `num_config_bases` rows, each of `num_config_regs` elements. 647 * @type: The requested IRQ type. 648 * @irq_data: The IRQ being configured. 649 * @idx: Index of the irq's config registers within each array `buf[i]` 650 * 651 * This is a &struct regmap_irq_chip->set_type_config callback suitable for 652 * chips with one config register. Register values are updated according to 653 * the &struct regmap_irq_type data associated with an IRQ. 654 */ 655 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type, 656 const struct regmap_irq *irq_data, int idx) 657 { 658 const struct regmap_irq_type *t = &irq_data->type; 659 660 if (t->type_reg_mask) 661 buf[0][idx] &= ~t->type_reg_mask; 662 else 663 buf[0][idx] &= ~(t->type_falling_val | 664 t->type_rising_val | 665 t->type_level_low_val | 666 t->type_level_high_val); 667 668 switch (type) { 669 case IRQ_TYPE_EDGE_FALLING: 670 buf[0][idx] |= t->type_falling_val; 671 break; 672 673 case IRQ_TYPE_EDGE_RISING: 674 buf[0][idx] |= t->type_rising_val; 675 break; 676 677 case IRQ_TYPE_EDGE_BOTH: 678 buf[0][idx] |= (t->type_falling_val | 679 t->type_rising_val); 680 break; 681 682 case IRQ_TYPE_LEVEL_HIGH: 683 buf[0][idx] |= t->type_level_high_val; 684 break; 685 686 case IRQ_TYPE_LEVEL_LOW: 687 buf[0][idx] |= t->type_level_low_val; 688 break; 689 690 default: 691 return -EINVAL; 692 } 693 694 return 0; 695 } 696 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple); 697 698 /** 699 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling 700 * 701 * @fwnode: The firmware node where the IRQ domain should be added to. 702 * @map: The regmap for the device. 703 * @irq: The IRQ the device uses to signal interrupts. 704 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 705 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 706 * @chip: Configuration for the interrupt controller. 707 * @data: Runtime data structure for the controller, allocated on success. 708 * 709 * Returns 0 on success or an errno on failure. 710 * 711 * In order for this to be efficient the chip really should use a 712 * register cache. The chip driver is responsible for restoring the 713 * register values used by the IRQ controller over suspend and resume. 714 */ 715 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, 716 struct regmap *map, int irq, 717 int irq_flags, int irq_base, 718 const struct regmap_irq_chip *chip, 719 struct regmap_irq_chip_data **data) 720 { 721 struct regmap_irq_chip_data *d; 722 int i; 723 int ret = -ENOMEM; 724 int num_type_reg; 725 u32 reg; 726 727 if (chip->num_regs <= 0) 728 return -EINVAL; 729 730 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 731 return -EINVAL; 732 733 for (i = 0; i < chip->num_irqs; i++) { 734 if (chip->irqs[i].reg_offset % map->reg_stride) 735 return -EINVAL; 736 if (chip->irqs[i].reg_offset / map->reg_stride >= 737 chip->num_regs) 738 return -EINVAL; 739 } 740 741 if (chip->not_fixed_stride) { 742 dev_warn(map->dev, "not_fixed_stride is deprecated; use ->get_irq_reg() instead"); 743 744 for (i = 0; i < chip->num_regs; i++) 745 if (chip->sub_reg_offsets[i].num_regs != 1) 746 return -EINVAL; 747 } 748 749 if (chip->num_type_reg) 750 dev_warn(map->dev, "type registers are deprecated; use config registers instead"); 751 752 if (chip->num_virt_regs || chip->virt_reg_base || chip->set_type_virt) 753 dev_warn(map->dev, "virtual registers are deprecated; use config registers instead"); 754 755 if (irq_base) { 756 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 757 if (irq_base < 0) { 758 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 759 irq_base); 760 return irq_base; 761 } 762 } 763 764 d = kzalloc(sizeof(*d), GFP_KERNEL); 765 if (!d) 766 return -ENOMEM; 767 768 if (chip->num_main_regs) { 769 d->main_status_buf = kcalloc(chip->num_main_regs, 770 sizeof(*d->main_status_buf), 771 GFP_KERNEL); 772 773 if (!d->main_status_buf) 774 goto err_alloc; 775 } 776 777 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf), 778 GFP_KERNEL); 779 if (!d->status_buf) 780 goto err_alloc; 781 782 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf), 783 GFP_KERNEL); 784 if (!d->mask_buf) 785 goto err_alloc; 786 787 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def), 788 GFP_KERNEL); 789 if (!d->mask_buf_def) 790 goto err_alloc; 791 792 if (chip->wake_base) { 793 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf), 794 GFP_KERNEL); 795 if (!d->wake_buf) 796 goto err_alloc; 797 } 798 799 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg; 800 if (num_type_reg) { 801 d->type_buf_def = kcalloc(num_type_reg, 802 sizeof(*d->type_buf_def), GFP_KERNEL); 803 if (!d->type_buf_def) 804 goto err_alloc; 805 806 d->type_buf = kcalloc(num_type_reg, sizeof(*d->type_buf), 807 GFP_KERNEL); 808 if (!d->type_buf) 809 goto err_alloc; 810 } 811 812 if (chip->num_virt_regs) { 813 /* 814 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs] 815 */ 816 d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf), 817 GFP_KERNEL); 818 if (!d->virt_buf) 819 goto err_alloc; 820 821 for (i = 0; i < chip->num_virt_regs; i++) { 822 d->virt_buf[i] = kcalloc(chip->num_regs, 823 sizeof(**d->virt_buf), 824 GFP_KERNEL); 825 if (!d->virt_buf[i]) 826 goto err_alloc; 827 } 828 } 829 830 if (chip->num_config_bases && chip->num_config_regs) { 831 /* 832 * Create config_buf[num_config_bases][num_config_regs] 833 */ 834 d->config_buf = kcalloc(chip->num_config_bases, 835 sizeof(*d->config_buf), GFP_KERNEL); 836 if (!d->config_buf) 837 goto err_alloc; 838 839 for (i = 0; i < chip->num_config_regs; i++) { 840 d->config_buf[i] = kcalloc(chip->num_config_regs, 841 sizeof(**d->config_buf), 842 GFP_KERNEL); 843 if (!d->config_buf[i]) 844 goto err_alloc; 845 } 846 } 847 848 d->irq_chip = regmap_irq_chip; 849 d->irq_chip.name = chip->name; 850 d->irq = irq; 851 d->map = map; 852 d->chip = chip; 853 d->irq_base = irq_base; 854 855 if (chip->mask_base && chip->unmask_base && 856 !chip->mask_unmask_non_inverted) { 857 /* 858 * Chips that specify both mask_base and unmask_base used to 859 * get inverted mask behavior by default, with no way to ask 860 * for the normal, non-inverted behavior. This "inverted by 861 * default" behavior is deprecated, but we have to support it 862 * until existing drivers have been fixed. 863 * 864 * Existing drivers should be updated by swapping mask_base 865 * and unmask_base and setting mask_unmask_non_inverted=true. 866 * New drivers should always set the flag. 867 */ 868 dev_warn(map->dev, "mask_base and unmask_base are inverted, please fix it"); 869 870 /* Might as well warn about mask_invert while we're at it... */ 871 if (chip->mask_invert) 872 dev_warn(map->dev, "mask_invert=true ignored"); 873 874 d->mask_base = chip->unmask_base; 875 d->unmask_base = chip->mask_base; 876 } else if (chip->mask_invert) { 877 /* 878 * Swap the roles of mask_base and unmask_base if the bits are 879 * inverted. This is deprecated, drivers should use unmask_base 880 * directly. 881 */ 882 dev_warn(map->dev, "mask_invert=true is deprecated; please switch to unmask_base"); 883 884 d->mask_base = chip->unmask_base; 885 d->unmask_base = chip->mask_base; 886 } else { 887 d->mask_base = chip->mask_base; 888 d->unmask_base = chip->unmask_base; 889 } 890 891 if (chip->irq_reg_stride) 892 d->irq_reg_stride = chip->irq_reg_stride; 893 else 894 d->irq_reg_stride = 1; 895 896 if (chip->get_irq_reg) 897 d->get_irq_reg = chip->get_irq_reg; 898 else 899 d->get_irq_reg = regmap_irq_get_irq_reg_linear; 900 901 if (regmap_irq_can_bulk_read_status(d)) { 902 d->status_reg_buf = kmalloc_array(chip->num_regs, 903 map->format.val_bytes, 904 GFP_KERNEL); 905 if (!d->status_reg_buf) 906 goto err_alloc; 907 } 908 909 mutex_init(&d->lock); 910 911 for (i = 0; i < chip->num_irqs; i++) 912 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 913 |= chip->irqs[i].mask; 914 915 /* Mask all the interrupts by default */ 916 for (i = 0; i < chip->num_regs; i++) { 917 d->mask_buf[i] = d->mask_buf_def[i]; 918 919 if (d->mask_base) { 920 reg = d->get_irq_reg(d, d->mask_base, i); 921 ret = regmap_update_bits(d->map, reg, 922 d->mask_buf_def[i], d->mask_buf[i]); 923 if (ret) { 924 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 925 reg, ret); 926 goto err_alloc; 927 } 928 } 929 930 if (d->unmask_base) { 931 reg = d->get_irq_reg(d, d->unmask_base, i); 932 ret = regmap_update_bits(d->map, reg, 933 d->mask_buf_def[i], ~d->mask_buf[i]); 934 if (ret) { 935 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 936 reg, ret); 937 goto err_alloc; 938 } 939 } 940 941 if (!chip->init_ack_masked) 942 continue; 943 944 /* Ack masked but set interrupts */ 945 reg = d->get_irq_reg(d, d->chip->status_base, i); 946 ret = regmap_read(map, reg, &d->status_buf[i]); 947 if (ret != 0) { 948 dev_err(map->dev, "Failed to read IRQ status: %d\n", 949 ret); 950 goto err_alloc; 951 } 952 953 if (chip->status_invert) 954 d->status_buf[i] = ~d->status_buf[i]; 955 956 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 957 reg = d->get_irq_reg(d, d->chip->ack_base, i); 958 if (chip->ack_invert) 959 ret = regmap_write(map, reg, 960 ~(d->status_buf[i] & d->mask_buf[i])); 961 else 962 ret = regmap_write(map, reg, 963 d->status_buf[i] & d->mask_buf[i]); 964 if (chip->clear_ack) { 965 if (chip->ack_invert && !ret) 966 ret = regmap_write(map, reg, UINT_MAX); 967 else if (!ret) 968 ret = regmap_write(map, reg, 0); 969 } 970 if (ret != 0) { 971 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 972 reg, ret); 973 goto err_alloc; 974 } 975 } 976 } 977 978 /* Wake is disabled by default */ 979 if (d->wake_buf) { 980 for (i = 0; i < chip->num_regs; i++) { 981 d->wake_buf[i] = d->mask_buf_def[i]; 982 reg = d->get_irq_reg(d, d->chip->wake_base, i); 983 984 if (chip->wake_invert) 985 ret = regmap_update_bits(d->map, reg, 986 d->mask_buf_def[i], 987 0); 988 else 989 ret = regmap_update_bits(d->map, reg, 990 d->mask_buf_def[i], 991 d->wake_buf[i]); 992 if (ret != 0) { 993 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 994 reg, ret); 995 goto err_alloc; 996 } 997 } 998 } 999 1000 if (chip->num_type_reg && !chip->type_in_mask) { 1001 for (i = 0; i < chip->num_type_reg; ++i) { 1002 reg = d->get_irq_reg(d, d->chip->type_base, i); 1003 1004 ret = regmap_read(map, reg, &d->type_buf_def[i]); 1005 1006 if (d->chip->type_invert) 1007 d->type_buf_def[i] = ~d->type_buf_def[i]; 1008 1009 if (ret) { 1010 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 1011 reg, ret); 1012 goto err_alloc; 1013 } 1014 } 1015 } 1016 1017 if (irq_base) 1018 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs, 1019 irq_base, 0, 1020 ®map_domain_ops, d); 1021 else 1022 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs, 1023 ®map_domain_ops, d); 1024 if (!d->domain) { 1025 dev_err(map->dev, "Failed to create IRQ domain\n"); 1026 ret = -ENOMEM; 1027 goto err_alloc; 1028 } 1029 1030 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 1031 irq_flags | IRQF_ONESHOT, 1032 chip->name, d); 1033 if (ret != 0) { 1034 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 1035 irq, chip->name, ret); 1036 goto err_domain; 1037 } 1038 1039 *data = d; 1040 1041 return 0; 1042 1043 err_domain: 1044 /* Should really dispose of the domain but... */ 1045 err_alloc: 1046 kfree(d->type_buf); 1047 kfree(d->type_buf_def); 1048 kfree(d->wake_buf); 1049 kfree(d->mask_buf_def); 1050 kfree(d->mask_buf); 1051 kfree(d->status_buf); 1052 kfree(d->status_reg_buf); 1053 if (d->virt_buf) { 1054 for (i = 0; i < chip->num_virt_regs; i++) 1055 kfree(d->virt_buf[i]); 1056 kfree(d->virt_buf); 1057 } 1058 if (d->config_buf) { 1059 for (i = 0; i < chip->num_config_bases; i++) 1060 kfree(d->config_buf[i]); 1061 kfree(d->config_buf); 1062 } 1063 kfree(d); 1064 return ret; 1065 } 1066 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); 1067 1068 /** 1069 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 1070 * 1071 * @map: The regmap for the device. 1072 * @irq: The IRQ the device uses to signal interrupts. 1073 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1074 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1075 * @chip: Configuration for the interrupt controller. 1076 * @data: Runtime data structure for the controller, allocated on success. 1077 * 1078 * Returns 0 on success or an errno on failure. 1079 * 1080 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware 1081 * node of the regmap is used. 1082 */ 1083 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 1084 int irq_base, const struct regmap_irq_chip *chip, 1085 struct regmap_irq_chip_data **data) 1086 { 1087 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, 1088 irq_flags, irq_base, chip, data); 1089 } 1090 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 1091 1092 /** 1093 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 1094 * 1095 * @irq: Primary IRQ for the device 1096 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 1097 * 1098 * This function also disposes of all mapped IRQs on the chip. 1099 */ 1100 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 1101 { 1102 unsigned int virq; 1103 int i, hwirq; 1104 1105 if (!d) 1106 return; 1107 1108 free_irq(irq, d); 1109 1110 /* Dispose all virtual irq from irq domain before removing it */ 1111 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 1112 /* Ignore hwirq if holes in the IRQ list */ 1113 if (!d->chip->irqs[hwirq].mask) 1114 continue; 1115 1116 /* 1117 * Find the virtual irq of hwirq on chip and if it is 1118 * there then dispose it 1119 */ 1120 virq = irq_find_mapping(d->domain, hwirq); 1121 if (virq) 1122 irq_dispose_mapping(virq); 1123 } 1124 1125 irq_domain_remove(d->domain); 1126 kfree(d->type_buf); 1127 kfree(d->type_buf_def); 1128 kfree(d->wake_buf); 1129 kfree(d->mask_buf_def); 1130 kfree(d->mask_buf); 1131 kfree(d->status_reg_buf); 1132 kfree(d->status_buf); 1133 if (d->config_buf) { 1134 for (i = 0; i < d->chip->num_config_bases; i++) 1135 kfree(d->config_buf[i]); 1136 kfree(d->config_buf); 1137 } 1138 kfree(d); 1139 } 1140 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 1141 1142 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 1143 { 1144 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 1145 1146 regmap_del_irq_chip(d->irq, d); 1147 } 1148 1149 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 1150 1151 { 1152 struct regmap_irq_chip_data **r = res; 1153 1154 if (!r || !*r) { 1155 WARN_ON(!r || !*r); 1156 return 0; 1157 } 1158 return *r == data; 1159 } 1160 1161 /** 1162 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() 1163 * 1164 * @dev: The device pointer on which irq_chip belongs to. 1165 * @fwnode: The firmware node where the IRQ domain should be added to. 1166 * @map: The regmap for the device. 1167 * @irq: The IRQ the device uses to signal interrupts 1168 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1169 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1170 * @chip: Configuration for the interrupt controller. 1171 * @data: Runtime data structure for the controller, allocated on success 1172 * 1173 * Returns 0 on success or an errno on failure. 1174 * 1175 * The ®map_irq_chip_data will be automatically released when the device is 1176 * unbound. 1177 */ 1178 int devm_regmap_add_irq_chip_fwnode(struct device *dev, 1179 struct fwnode_handle *fwnode, 1180 struct regmap *map, int irq, 1181 int irq_flags, int irq_base, 1182 const struct regmap_irq_chip *chip, 1183 struct regmap_irq_chip_data **data) 1184 { 1185 struct regmap_irq_chip_data **ptr, *d; 1186 int ret; 1187 1188 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 1189 GFP_KERNEL); 1190 if (!ptr) 1191 return -ENOMEM; 1192 1193 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, 1194 chip, &d); 1195 if (ret < 0) { 1196 devres_free(ptr); 1197 return ret; 1198 } 1199 1200 *ptr = d; 1201 devres_add(dev, ptr); 1202 *data = d; 1203 return 0; 1204 } 1205 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); 1206 1207 /** 1208 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip() 1209 * 1210 * @dev: The device pointer on which irq_chip belongs to. 1211 * @map: The regmap for the device. 1212 * @irq: The IRQ the device uses to signal interrupts 1213 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 1214 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 1215 * @chip: Configuration for the interrupt controller. 1216 * @data: Runtime data structure for the controller, allocated on success 1217 * 1218 * Returns 0 on success or an errno on failure. 1219 * 1220 * The ®map_irq_chip_data will be automatically released when the device is 1221 * unbound. 1222 */ 1223 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 1224 int irq_flags, int irq_base, 1225 const struct regmap_irq_chip *chip, 1226 struct regmap_irq_chip_data **data) 1227 { 1228 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, 1229 irq, irq_flags, irq_base, chip, 1230 data); 1231 } 1232 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 1233 1234 /** 1235 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 1236 * 1237 * @dev: Device for which the resource was allocated. 1238 * @irq: Primary IRQ for the device. 1239 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 1240 * 1241 * A resource managed version of regmap_del_irq_chip(). 1242 */ 1243 void devm_regmap_del_irq_chip(struct device *dev, int irq, 1244 struct regmap_irq_chip_data *data) 1245 { 1246 int rc; 1247 1248 WARN_ON(irq != data->irq); 1249 rc = devres_release(dev, devm_regmap_irq_chip_release, 1250 devm_regmap_irq_chip_match, data); 1251 1252 if (rc != 0) 1253 WARN_ON(rc); 1254 } 1255 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 1256 1257 /** 1258 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 1259 * 1260 * @data: regmap irq controller to operate on. 1261 * 1262 * Useful for drivers to request their own IRQs. 1263 */ 1264 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 1265 { 1266 WARN_ON(!data->irq_base); 1267 return data->irq_base; 1268 } 1269 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 1270 1271 /** 1272 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 1273 * 1274 * @data: regmap irq controller to operate on. 1275 * @irq: index of the interrupt requested in the chip IRQs. 1276 * 1277 * Useful for drivers to request their own IRQs. 1278 */ 1279 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 1280 { 1281 /* Handle holes in the IRQ list */ 1282 if (!data->chip->irqs[irq].mask) 1283 return -EINVAL; 1284 1285 return irq_create_mapping(data->domain, irq); 1286 } 1287 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 1288 1289 /** 1290 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 1291 * 1292 * @data: regmap_irq controller to operate on. 1293 * 1294 * Useful for drivers to request their own IRQs and for integration 1295 * with subsystems. For ease of integration NULL is accepted as a 1296 * domain, allowing devices to just call this even if no domain is 1297 * allocated. 1298 */ 1299 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 1300 { 1301 if (data) 1302 return data->domain; 1303 else 1304 return NULL; 1305 } 1306 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 1307