1 /* 2 * regmap based irq_chip 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/export.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/irqdomain.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/regmap.h> 20 #include <linux/slab.h> 21 22 #include "internal.h" 23 24 struct regmap_irq_chip_data { 25 struct mutex lock; 26 struct irq_chip irq_chip; 27 28 struct regmap *map; 29 const struct regmap_irq_chip *chip; 30 31 int irq_base; 32 struct irq_domain *domain; 33 34 int irq; 35 int wake_count; 36 37 void *status_reg_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 45 unsigned int irq_reg_stride; 46 unsigned int type_reg_stride; 47 48 bool clear_status:1; 49 }; 50 51 static inline const 52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 53 int irq) 54 { 55 return &data->chip->irqs[irq]; 56 } 57 58 static void regmap_irq_lock(struct irq_data *data) 59 { 60 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 61 62 mutex_lock(&d->lock); 63 } 64 65 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d, 66 unsigned int reg, unsigned int mask, 67 unsigned int val) 68 { 69 if (d->chip->mask_writeonly) 70 return regmap_write_bits(d->map, reg, mask, val); 71 else 72 return regmap_update_bits(d->map, reg, mask, val); 73 } 74 75 static void regmap_irq_sync_unlock(struct irq_data *data) 76 { 77 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 78 struct regmap *map = d->map; 79 int i, ret; 80 u32 reg; 81 u32 unmask_offset; 82 u32 val; 83 84 if (d->chip->runtime_pm) { 85 ret = pm_runtime_get_sync(map->dev); 86 if (ret < 0) 87 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 88 ret); 89 } 90 91 if (d->clear_status) { 92 for (i = 0; i < d->chip->num_regs; i++) { 93 reg = d->chip->status_base + 94 (i * map->reg_stride * d->irq_reg_stride); 95 96 ret = regmap_read(map, reg, &val); 97 if (ret) 98 dev_err(d->map->dev, 99 "Failed to clear the interrupt status bits\n"); 100 } 101 102 d->clear_status = false; 103 } 104 105 /* 106 * If there's been a change in the mask write it back to the 107 * hardware. We rely on the use of the regmap core cache to 108 * suppress pointless writes. 109 */ 110 for (i = 0; i < d->chip->num_regs; i++) { 111 reg = d->chip->mask_base + 112 (i * map->reg_stride * d->irq_reg_stride); 113 if (d->chip->mask_invert) { 114 ret = regmap_irq_update_bits(d, reg, 115 d->mask_buf_def[i], ~d->mask_buf[i]); 116 } else if (d->chip->unmask_base) { 117 /* set mask with mask_base register */ 118 ret = regmap_irq_update_bits(d, reg, 119 d->mask_buf_def[i], ~d->mask_buf[i]); 120 if (ret < 0) 121 dev_err(d->map->dev, 122 "Failed to sync unmasks in %x\n", 123 reg); 124 unmask_offset = d->chip->unmask_base - 125 d->chip->mask_base; 126 /* clear mask with unmask_base register */ 127 ret = regmap_irq_update_bits(d, 128 reg + unmask_offset, 129 d->mask_buf_def[i], 130 d->mask_buf[i]); 131 } else { 132 ret = regmap_irq_update_bits(d, reg, 133 d->mask_buf_def[i], d->mask_buf[i]); 134 } 135 if (ret != 0) 136 dev_err(d->map->dev, "Failed to sync masks in %x\n", 137 reg); 138 139 reg = d->chip->wake_base + 140 (i * map->reg_stride * d->irq_reg_stride); 141 if (d->wake_buf) { 142 if (d->chip->wake_invert) 143 ret = regmap_irq_update_bits(d, reg, 144 d->mask_buf_def[i], 145 ~d->wake_buf[i]); 146 else 147 ret = regmap_irq_update_bits(d, reg, 148 d->mask_buf_def[i], 149 d->wake_buf[i]); 150 if (ret != 0) 151 dev_err(d->map->dev, 152 "Failed to sync wakes in %x: %d\n", 153 reg, ret); 154 } 155 156 if (!d->chip->init_ack_masked) 157 continue; 158 /* 159 * Ack all the masked interrupts unconditionally, 160 * OR if there is masked interrupt which hasn't been Acked, 161 * it'll be ignored in irq handler, then may introduce irq storm 162 */ 163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 164 reg = d->chip->ack_base + 165 (i * map->reg_stride * d->irq_reg_stride); 166 /* some chips ack by write 0 */ 167 if (d->chip->ack_invert) 168 ret = regmap_write(map, reg, ~d->mask_buf[i]); 169 else 170 ret = regmap_write(map, reg, d->mask_buf[i]); 171 if (ret != 0) 172 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 173 reg, ret); 174 } 175 } 176 177 /* Don't update the type bits if we're using mask bits for irq type. */ 178 if (!d->chip->type_in_mask) { 179 for (i = 0; i < d->chip->num_type_reg; i++) { 180 if (!d->type_buf_def[i]) 181 continue; 182 reg = d->chip->type_base + 183 (i * map->reg_stride * d->type_reg_stride); 184 if (d->chip->type_invert) 185 ret = regmap_irq_update_bits(d, reg, 186 d->type_buf_def[i], ~d->type_buf[i]); 187 else 188 ret = regmap_irq_update_bits(d, reg, 189 d->type_buf_def[i], d->type_buf[i]); 190 if (ret != 0) 191 dev_err(d->map->dev, "Failed to sync type in %x\n", 192 reg); 193 } 194 } 195 196 if (d->chip->runtime_pm) 197 pm_runtime_put(map->dev); 198 199 /* If we've changed our wakeup count propagate it to the parent */ 200 if (d->wake_count < 0) 201 for (i = d->wake_count; i < 0; i++) 202 irq_set_irq_wake(d->irq, 0); 203 else if (d->wake_count > 0) 204 for (i = 0; i < d->wake_count; i++) 205 irq_set_irq_wake(d->irq, 1); 206 207 d->wake_count = 0; 208 209 mutex_unlock(&d->lock); 210 } 211 212 static void regmap_irq_enable(struct irq_data *data) 213 { 214 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 215 struct regmap *map = d->map; 216 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 217 unsigned int mask, type; 218 219 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val; 220 221 /* 222 * The type_in_mask flag means that the underlying hardware uses 223 * separate mask bits for rising and falling edge interrupts, but 224 * we want to make them into a single virtual interrupt with 225 * configurable edge. 226 * 227 * If the interrupt we're enabling defines the falling or rising 228 * masks then instead of using the regular mask bits for this 229 * interrupt, use the value previously written to the type buffer 230 * at the corresponding offset in regmap_irq_set_type(). 231 */ 232 if (d->chip->type_in_mask && type) 233 mask = d->type_buf[irq_data->reg_offset / map->reg_stride]; 234 else 235 mask = irq_data->mask; 236 237 if (d->chip->clear_on_unmask) 238 d->clear_status = true; 239 240 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask; 241 } 242 243 static void regmap_irq_disable(struct irq_data *data) 244 { 245 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 246 struct regmap *map = d->map; 247 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 248 249 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 250 } 251 252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 253 { 254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 255 struct regmap *map = d->map; 256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 257 int reg; 258 const struct regmap_irq_type *t = &irq_data->type; 259 260 if ((t->types_supported & type) != type) 261 return -ENOTSUPP; 262 263 reg = t->type_reg_offset / map->reg_stride; 264 265 if (t->type_reg_mask) 266 d->type_buf[reg] &= ~t->type_reg_mask; 267 else 268 d->type_buf[reg] &= ~(t->type_falling_val | 269 t->type_rising_val | 270 t->type_level_low_val | 271 t->type_level_high_val); 272 switch (type) { 273 case IRQ_TYPE_EDGE_FALLING: 274 d->type_buf[reg] |= t->type_falling_val; 275 break; 276 277 case IRQ_TYPE_EDGE_RISING: 278 d->type_buf[reg] |= t->type_rising_val; 279 break; 280 281 case IRQ_TYPE_EDGE_BOTH: 282 d->type_buf[reg] |= (t->type_falling_val | 283 t->type_rising_val); 284 break; 285 286 case IRQ_TYPE_LEVEL_HIGH: 287 d->type_buf[reg] |= t->type_level_high_val; 288 break; 289 290 case IRQ_TYPE_LEVEL_LOW: 291 d->type_buf[reg] |= t->type_level_low_val; 292 break; 293 default: 294 return -EINVAL; 295 } 296 return 0; 297 } 298 299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 300 { 301 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 302 struct regmap *map = d->map; 303 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 304 305 if (on) { 306 if (d->wake_buf) 307 d->wake_buf[irq_data->reg_offset / map->reg_stride] 308 &= ~irq_data->mask; 309 d->wake_count++; 310 } else { 311 if (d->wake_buf) 312 d->wake_buf[irq_data->reg_offset / map->reg_stride] 313 |= irq_data->mask; 314 d->wake_count--; 315 } 316 317 return 0; 318 } 319 320 static const struct irq_chip regmap_irq_chip = { 321 .irq_bus_lock = regmap_irq_lock, 322 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 323 .irq_disable = regmap_irq_disable, 324 .irq_enable = regmap_irq_enable, 325 .irq_set_type = regmap_irq_set_type, 326 .irq_set_wake = regmap_irq_set_wake, 327 }; 328 329 static irqreturn_t regmap_irq_thread(int irq, void *d) 330 { 331 struct regmap_irq_chip_data *data = d; 332 const struct regmap_irq_chip *chip = data->chip; 333 struct regmap *map = data->map; 334 int ret, i; 335 bool handled = false; 336 u32 reg; 337 338 if (chip->handle_pre_irq) 339 chip->handle_pre_irq(chip->irq_drv_data); 340 341 if (chip->runtime_pm) { 342 ret = pm_runtime_get_sync(map->dev); 343 if (ret < 0) { 344 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 345 ret); 346 pm_runtime_put(map->dev); 347 goto exit; 348 } 349 } 350 351 /* 352 * Read in the statuses, using a single bulk read if possible 353 * in order to reduce the I/O overheads. 354 */ 355 if (!map->use_single_read && map->reg_stride == 1 && 356 data->irq_reg_stride == 1) { 357 u8 *buf8 = data->status_reg_buf; 358 u16 *buf16 = data->status_reg_buf; 359 u32 *buf32 = data->status_reg_buf; 360 361 BUG_ON(!data->status_reg_buf); 362 363 ret = regmap_bulk_read(map, chip->status_base, 364 data->status_reg_buf, 365 chip->num_regs); 366 if (ret != 0) { 367 dev_err(map->dev, "Failed to read IRQ status: %d\n", 368 ret); 369 goto exit; 370 } 371 372 for (i = 0; i < data->chip->num_regs; i++) { 373 switch (map->format.val_bytes) { 374 case 1: 375 data->status_buf[i] = buf8[i]; 376 break; 377 case 2: 378 data->status_buf[i] = buf16[i]; 379 break; 380 case 4: 381 data->status_buf[i] = buf32[i]; 382 break; 383 default: 384 BUG(); 385 goto exit; 386 } 387 } 388 389 } else { 390 for (i = 0; i < data->chip->num_regs; i++) { 391 ret = regmap_read(map, chip->status_base + 392 (i * map->reg_stride 393 * data->irq_reg_stride), 394 &data->status_buf[i]); 395 396 if (ret != 0) { 397 dev_err(map->dev, 398 "Failed to read IRQ status: %d\n", 399 ret); 400 if (chip->runtime_pm) 401 pm_runtime_put(map->dev); 402 goto exit; 403 } 404 } 405 } 406 407 /* 408 * Ignore masked IRQs and ack if we need to; we ack early so 409 * there is no race between handling and acknowleding the 410 * interrupt. We assume that typically few of the interrupts 411 * will fire simultaneously so don't worry about overhead from 412 * doing a write per register. 413 */ 414 for (i = 0; i < data->chip->num_regs; i++) { 415 data->status_buf[i] &= ~data->mask_buf[i]; 416 417 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 418 reg = chip->ack_base + 419 (i * map->reg_stride * data->irq_reg_stride); 420 ret = regmap_write(map, reg, data->status_buf[i]); 421 if (ret != 0) 422 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 423 reg, ret); 424 } 425 } 426 427 for (i = 0; i < chip->num_irqs; i++) { 428 if (data->status_buf[chip->irqs[i].reg_offset / 429 map->reg_stride] & chip->irqs[i].mask) { 430 handle_nested_irq(irq_find_mapping(data->domain, i)); 431 handled = true; 432 } 433 } 434 435 if (chip->runtime_pm) 436 pm_runtime_put(map->dev); 437 438 exit: 439 if (chip->handle_post_irq) 440 chip->handle_post_irq(chip->irq_drv_data); 441 442 if (handled) 443 return IRQ_HANDLED; 444 else 445 return IRQ_NONE; 446 } 447 448 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 449 irq_hw_number_t hw) 450 { 451 struct regmap_irq_chip_data *data = h->host_data; 452 453 irq_set_chip_data(virq, data); 454 irq_set_chip(virq, &data->irq_chip); 455 irq_set_nested_thread(virq, 1); 456 irq_set_parent(virq, data->irq); 457 irq_set_noprobe(virq); 458 459 return 0; 460 } 461 462 static const struct irq_domain_ops regmap_domain_ops = { 463 .map = regmap_irq_map, 464 .xlate = irq_domain_xlate_onetwocell, 465 }; 466 467 /** 468 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 469 * 470 * @map: The regmap for the device. 471 * @irq: The IRQ the device uses to signal interrupts. 472 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 473 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 474 * @chip: Configuration for the interrupt controller. 475 * @data: Runtime data structure for the controller, allocated on success. 476 * 477 * Returns 0 on success or an errno on failure. 478 * 479 * In order for this to be efficient the chip really should use a 480 * register cache. The chip driver is responsible for restoring the 481 * register values used by the IRQ controller over suspend and resume. 482 */ 483 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 484 int irq_base, const struct regmap_irq_chip *chip, 485 struct regmap_irq_chip_data **data) 486 { 487 struct regmap_irq_chip_data *d; 488 int i; 489 int ret = -ENOMEM; 490 int num_type_reg; 491 u32 reg; 492 u32 unmask_offset; 493 494 if (chip->num_regs <= 0) 495 return -EINVAL; 496 497 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 498 return -EINVAL; 499 500 for (i = 0; i < chip->num_irqs; i++) { 501 if (chip->irqs[i].reg_offset % map->reg_stride) 502 return -EINVAL; 503 if (chip->irqs[i].reg_offset / map->reg_stride >= 504 chip->num_regs) 505 return -EINVAL; 506 } 507 508 if (irq_base) { 509 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 510 if (irq_base < 0) { 511 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 512 irq_base); 513 return irq_base; 514 } 515 } 516 517 d = kzalloc(sizeof(*d), GFP_KERNEL); 518 if (!d) 519 return -ENOMEM; 520 521 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 522 GFP_KERNEL); 523 if (!d->status_buf) 524 goto err_alloc; 525 526 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 527 GFP_KERNEL); 528 if (!d->mask_buf) 529 goto err_alloc; 530 531 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), 532 GFP_KERNEL); 533 if (!d->mask_buf_def) 534 goto err_alloc; 535 536 if (chip->wake_base) { 537 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 538 GFP_KERNEL); 539 if (!d->wake_buf) 540 goto err_alloc; 541 } 542 543 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg; 544 if (num_type_reg) { 545 d->type_buf_def = kcalloc(num_type_reg, 546 sizeof(unsigned int), GFP_KERNEL); 547 if (!d->type_buf_def) 548 goto err_alloc; 549 550 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int), 551 GFP_KERNEL); 552 if (!d->type_buf) 553 goto err_alloc; 554 } 555 556 d->irq_chip = regmap_irq_chip; 557 d->irq_chip.name = chip->name; 558 d->irq = irq; 559 d->map = map; 560 d->chip = chip; 561 d->irq_base = irq_base; 562 563 if (chip->irq_reg_stride) 564 d->irq_reg_stride = chip->irq_reg_stride; 565 else 566 d->irq_reg_stride = 1; 567 568 if (chip->type_reg_stride) 569 d->type_reg_stride = chip->type_reg_stride; 570 else 571 d->type_reg_stride = 1; 572 573 if (!map->use_single_read && map->reg_stride == 1 && 574 d->irq_reg_stride == 1) { 575 d->status_reg_buf = kmalloc_array(chip->num_regs, 576 map->format.val_bytes, 577 GFP_KERNEL); 578 if (!d->status_reg_buf) 579 goto err_alloc; 580 } 581 582 mutex_init(&d->lock); 583 584 for (i = 0; i < chip->num_irqs; i++) 585 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 586 |= chip->irqs[i].mask; 587 588 /* Mask all the interrupts by default */ 589 for (i = 0; i < chip->num_regs; i++) { 590 d->mask_buf[i] = d->mask_buf_def[i]; 591 reg = chip->mask_base + 592 (i * map->reg_stride * d->irq_reg_stride); 593 if (chip->mask_invert) 594 ret = regmap_irq_update_bits(d, reg, 595 d->mask_buf[i], ~d->mask_buf[i]); 596 else if (d->chip->unmask_base) { 597 unmask_offset = d->chip->unmask_base - 598 d->chip->mask_base; 599 ret = regmap_irq_update_bits(d, 600 reg + unmask_offset, 601 d->mask_buf[i], 602 d->mask_buf[i]); 603 } else 604 ret = regmap_irq_update_bits(d, reg, 605 d->mask_buf[i], d->mask_buf[i]); 606 if (ret != 0) { 607 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 608 reg, ret); 609 goto err_alloc; 610 } 611 612 if (!chip->init_ack_masked) 613 continue; 614 615 /* Ack masked but set interrupts */ 616 reg = chip->status_base + 617 (i * map->reg_stride * d->irq_reg_stride); 618 ret = regmap_read(map, reg, &d->status_buf[i]); 619 if (ret != 0) { 620 dev_err(map->dev, "Failed to read IRQ status: %d\n", 621 ret); 622 goto err_alloc; 623 } 624 625 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 626 reg = chip->ack_base + 627 (i * map->reg_stride * d->irq_reg_stride); 628 if (chip->ack_invert) 629 ret = regmap_write(map, reg, 630 ~(d->status_buf[i] & d->mask_buf[i])); 631 else 632 ret = regmap_write(map, reg, 633 d->status_buf[i] & d->mask_buf[i]); 634 if (ret != 0) { 635 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 636 reg, ret); 637 goto err_alloc; 638 } 639 } 640 } 641 642 /* Wake is disabled by default */ 643 if (d->wake_buf) { 644 for (i = 0; i < chip->num_regs; i++) { 645 d->wake_buf[i] = d->mask_buf_def[i]; 646 reg = chip->wake_base + 647 (i * map->reg_stride * d->irq_reg_stride); 648 649 if (chip->wake_invert) 650 ret = regmap_irq_update_bits(d, reg, 651 d->mask_buf_def[i], 652 0); 653 else 654 ret = regmap_irq_update_bits(d, reg, 655 d->mask_buf_def[i], 656 d->wake_buf[i]); 657 if (ret != 0) { 658 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 659 reg, ret); 660 goto err_alloc; 661 } 662 } 663 } 664 665 if (chip->num_type_reg && !chip->type_in_mask) { 666 for (i = 0; i < chip->num_type_reg; ++i) { 667 if (!d->type_buf_def[i]) 668 continue; 669 670 reg = chip->type_base + 671 (i * map->reg_stride * d->type_reg_stride); 672 673 ret = regmap_read(map, reg, &d->type_buf_def[i]); 674 675 if (d->chip->type_invert) 676 d->type_buf_def[i] = ~d->type_buf_def[i]; 677 678 if (ret) { 679 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 680 reg, ret); 681 goto err_alloc; 682 } 683 } 684 } 685 686 if (irq_base) 687 d->domain = irq_domain_add_legacy(map->dev->of_node, 688 chip->num_irqs, irq_base, 0, 689 ®map_domain_ops, d); 690 else 691 d->domain = irq_domain_add_linear(map->dev->of_node, 692 chip->num_irqs, 693 ®map_domain_ops, d); 694 if (!d->domain) { 695 dev_err(map->dev, "Failed to create IRQ domain\n"); 696 ret = -ENOMEM; 697 goto err_alloc; 698 } 699 700 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 701 irq_flags | IRQF_ONESHOT, 702 chip->name, d); 703 if (ret != 0) { 704 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 705 irq, chip->name, ret); 706 goto err_domain; 707 } 708 709 *data = d; 710 711 return 0; 712 713 err_domain: 714 /* Should really dispose of the domain but... */ 715 err_alloc: 716 kfree(d->type_buf); 717 kfree(d->type_buf_def); 718 kfree(d->wake_buf); 719 kfree(d->mask_buf_def); 720 kfree(d->mask_buf); 721 kfree(d->status_buf); 722 kfree(d->status_reg_buf); 723 kfree(d); 724 return ret; 725 } 726 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 727 728 /** 729 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 730 * 731 * @irq: Primary IRQ for the device 732 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 733 * 734 * This function also disposes of all mapped IRQs on the chip. 735 */ 736 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 737 { 738 unsigned int virq; 739 int hwirq; 740 741 if (!d) 742 return; 743 744 free_irq(irq, d); 745 746 /* Dispose all virtual irq from irq domain before removing it */ 747 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 748 /* Ignore hwirq if holes in the IRQ list */ 749 if (!d->chip->irqs[hwirq].mask) 750 continue; 751 752 /* 753 * Find the virtual irq of hwirq on chip and if it is 754 * there then dispose it 755 */ 756 virq = irq_find_mapping(d->domain, hwirq); 757 if (virq) 758 irq_dispose_mapping(virq); 759 } 760 761 irq_domain_remove(d->domain); 762 kfree(d->type_buf); 763 kfree(d->type_buf_def); 764 kfree(d->wake_buf); 765 kfree(d->mask_buf_def); 766 kfree(d->mask_buf); 767 kfree(d->status_reg_buf); 768 kfree(d->status_buf); 769 kfree(d); 770 } 771 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 772 773 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 774 { 775 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 776 777 regmap_del_irq_chip(d->irq, d); 778 } 779 780 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 781 782 { 783 struct regmap_irq_chip_data **r = res; 784 785 if (!r || !*r) { 786 WARN_ON(!r || !*r); 787 return 0; 788 } 789 return *r == data; 790 } 791 792 /** 793 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip() 794 * 795 * @dev: The device pointer on which irq_chip belongs to. 796 * @map: The regmap for the device. 797 * @irq: The IRQ the device uses to signal interrupts 798 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 799 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 800 * @chip: Configuration for the interrupt controller. 801 * @data: Runtime data structure for the controller, allocated on success 802 * 803 * Returns 0 on success or an errno on failure. 804 * 805 * The ®map_irq_chip_data will be automatically released when the device is 806 * unbound. 807 */ 808 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 809 int irq_flags, int irq_base, 810 const struct regmap_irq_chip *chip, 811 struct regmap_irq_chip_data **data) 812 { 813 struct regmap_irq_chip_data **ptr, *d; 814 int ret; 815 816 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 817 GFP_KERNEL); 818 if (!ptr) 819 return -ENOMEM; 820 821 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base, 822 chip, &d); 823 if (ret < 0) { 824 devres_free(ptr); 825 return ret; 826 } 827 828 *ptr = d; 829 devres_add(dev, ptr); 830 *data = d; 831 return 0; 832 } 833 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 834 835 /** 836 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 837 * 838 * @dev: Device for which which resource was allocated. 839 * @irq: Primary IRQ for the device. 840 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 841 * 842 * A resource managed version of regmap_del_irq_chip(). 843 */ 844 void devm_regmap_del_irq_chip(struct device *dev, int irq, 845 struct regmap_irq_chip_data *data) 846 { 847 int rc; 848 849 WARN_ON(irq != data->irq); 850 rc = devres_release(dev, devm_regmap_irq_chip_release, 851 devm_regmap_irq_chip_match, data); 852 853 if (rc != 0) 854 WARN_ON(rc); 855 } 856 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 857 858 /** 859 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 860 * 861 * @data: regmap irq controller to operate on. 862 * 863 * Useful for drivers to request their own IRQs. 864 */ 865 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 866 { 867 WARN_ON(!data->irq_base); 868 return data->irq_base; 869 } 870 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 871 872 /** 873 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 874 * 875 * @data: regmap irq controller to operate on. 876 * @irq: index of the interrupt requested in the chip IRQs. 877 * 878 * Useful for drivers to request their own IRQs. 879 */ 880 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 881 { 882 /* Handle holes in the IRQ list */ 883 if (!data->chip->irqs[irq].mask) 884 return -EINVAL; 885 886 return irq_create_mapping(data->domain, irq); 887 } 888 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 889 890 /** 891 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 892 * 893 * @data: regmap_irq controller to operate on. 894 * 895 * Useful for drivers to request their own IRQs and for integration 896 * with subsystems. For ease of integration NULL is accepted as a 897 * domain, allowing devices to just call this even if no domain is 898 * allocated. 899 */ 900 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 901 { 902 if (data) 903 return data->domain; 904 else 905 return NULL; 906 } 907 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 908