xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/export.h>
14 #include <linux/device.h>
15 #include <linux/regmap.h>
16 #include <linux/irq.h>
17 #include <linux/interrupt.h>
18 #include <linux/irqdomain.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 
43 	unsigned int irq_reg_stride;
44 };
45 
46 static inline const
47 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 				     int irq)
49 {
50 	return &data->chip->irqs[irq];
51 }
52 
53 static void regmap_irq_lock(struct irq_data *data)
54 {
55 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56 
57 	mutex_lock(&d->lock);
58 }
59 
60 static void regmap_irq_sync_unlock(struct irq_data *data)
61 {
62 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 	struct regmap *map = d->map;
64 	int i, ret;
65 	u32 reg;
66 
67 	if (d->chip->runtime_pm) {
68 		ret = pm_runtime_get_sync(map->dev);
69 		if (ret < 0)
70 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
71 				ret);
72 	}
73 
74 	/*
75 	 * If there's been a change in the mask write it back to the
76 	 * hardware.  We rely on the use of the regmap core cache to
77 	 * suppress pointless writes.
78 	 */
79 	for (i = 0; i < d->chip->num_regs; i++) {
80 		reg = d->chip->mask_base +
81 			(i * map->reg_stride * d->irq_reg_stride);
82 		if (d->chip->mask_invert)
83 			ret = regmap_update_bits(d->map, reg,
84 					 d->mask_buf_def[i], ~d->mask_buf[i]);
85 		else
86 			ret = regmap_update_bits(d->map, reg,
87 					 d->mask_buf_def[i], d->mask_buf[i]);
88 		if (ret != 0)
89 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
90 				reg);
91 
92 		reg = d->chip->wake_base +
93 			(i * map->reg_stride * d->irq_reg_stride);
94 		if (d->wake_buf) {
95 			if (d->chip->wake_invert)
96 				ret = regmap_update_bits(d->map, reg,
97 							 d->mask_buf_def[i],
98 							 ~d->wake_buf[i]);
99 			else
100 				ret = regmap_update_bits(d->map, reg,
101 							 d->mask_buf_def[i],
102 							 d->wake_buf[i]);
103 			if (ret != 0)
104 				dev_err(d->map->dev,
105 					"Failed to sync wakes in %x: %d\n",
106 					reg, ret);
107 		}
108 	}
109 
110 	if (d->chip->runtime_pm)
111 		pm_runtime_put(map->dev);
112 
113 	/* If we've changed our wakeup count propagate it to the parent */
114 	if (d->wake_count < 0)
115 		for (i = d->wake_count; i < 0; i++)
116 			irq_set_irq_wake(d->irq, 0);
117 	else if (d->wake_count > 0)
118 		for (i = 0; i < d->wake_count; i++)
119 			irq_set_irq_wake(d->irq, 1);
120 
121 	d->wake_count = 0;
122 
123 	mutex_unlock(&d->lock);
124 }
125 
126 static void regmap_irq_enable(struct irq_data *data)
127 {
128 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
129 	struct regmap *map = d->map;
130 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
131 
132 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
133 }
134 
135 static void regmap_irq_disable(struct irq_data *data)
136 {
137 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
138 	struct regmap *map = d->map;
139 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
140 
141 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
142 }
143 
144 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
145 {
146 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
147 	struct regmap *map = d->map;
148 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
149 
150 	if (on) {
151 		if (d->wake_buf)
152 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
153 				&= ~irq_data->mask;
154 		d->wake_count++;
155 	} else {
156 		if (d->wake_buf)
157 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
158 				|= irq_data->mask;
159 		d->wake_count--;
160 	}
161 
162 	return 0;
163 }
164 
165 static const struct irq_chip regmap_irq_chip = {
166 	.irq_bus_lock		= regmap_irq_lock,
167 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
168 	.irq_disable		= regmap_irq_disable,
169 	.irq_enable		= regmap_irq_enable,
170 	.irq_set_wake		= regmap_irq_set_wake,
171 };
172 
173 static irqreturn_t regmap_irq_thread(int irq, void *d)
174 {
175 	struct regmap_irq_chip_data *data = d;
176 	const struct regmap_irq_chip *chip = data->chip;
177 	struct regmap *map = data->map;
178 	int ret, i;
179 	bool handled = false;
180 	u32 reg;
181 
182 	if (chip->runtime_pm) {
183 		ret = pm_runtime_get_sync(map->dev);
184 		if (ret < 0) {
185 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
186 				ret);
187 			return IRQ_NONE;
188 		}
189 	}
190 
191 	/*
192 	 * Read in the statuses, using a single bulk read if possible
193 	 * in order to reduce the I/O overheads.
194 	 */
195 	if (!map->use_single_rw && map->reg_stride == 1 &&
196 	    data->irq_reg_stride == 1) {
197 		u8 *buf8 = data->status_reg_buf;
198 		u16 *buf16 = data->status_reg_buf;
199 		u32 *buf32 = data->status_reg_buf;
200 
201 		BUG_ON(!data->status_reg_buf);
202 
203 		ret = regmap_bulk_read(map, chip->status_base,
204 				       data->status_reg_buf,
205 				       chip->num_regs);
206 		if (ret != 0) {
207 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
208 				ret);
209 			return IRQ_NONE;
210 		}
211 
212 		for (i = 0; i < data->chip->num_regs; i++) {
213 			switch (map->format.val_bytes) {
214 			case 1:
215 				data->status_buf[i] = buf8[i];
216 				break;
217 			case 2:
218 				data->status_buf[i] = buf16[i];
219 				break;
220 			case 4:
221 				data->status_buf[i] = buf32[i];
222 				break;
223 			default:
224 				BUG();
225 				return IRQ_NONE;
226 			}
227 		}
228 
229 	} else {
230 		for (i = 0; i < data->chip->num_regs; i++) {
231 			ret = regmap_read(map, chip->status_base +
232 					  (i * map->reg_stride
233 					   * data->irq_reg_stride),
234 					  &data->status_buf[i]);
235 
236 			if (ret != 0) {
237 				dev_err(map->dev,
238 					"Failed to read IRQ status: %d\n",
239 					ret);
240 				if (chip->runtime_pm)
241 					pm_runtime_put(map->dev);
242 				return IRQ_NONE;
243 			}
244 		}
245 	}
246 
247 	/*
248 	 * Ignore masked IRQs and ack if we need to; we ack early so
249 	 * there is no race between handling and acknowleding the
250 	 * interrupt.  We assume that typically few of the interrupts
251 	 * will fire simultaneously so don't worry about overhead from
252 	 * doing a write per register.
253 	 */
254 	for (i = 0; i < data->chip->num_regs; i++) {
255 		data->status_buf[i] &= ~data->mask_buf[i];
256 
257 		if (data->status_buf[i] && chip->ack_base) {
258 			reg = chip->ack_base +
259 				(i * map->reg_stride * data->irq_reg_stride);
260 			ret = regmap_write(map, reg, data->status_buf[i]);
261 			if (ret != 0)
262 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
263 					reg, ret);
264 		}
265 	}
266 
267 	for (i = 0; i < chip->num_irqs; i++) {
268 		if (data->status_buf[chip->irqs[i].reg_offset /
269 				     map->reg_stride] & chip->irqs[i].mask) {
270 			handle_nested_irq(irq_find_mapping(data->domain, i));
271 			handled = true;
272 		}
273 	}
274 
275 	if (chip->runtime_pm)
276 		pm_runtime_put(map->dev);
277 
278 	if (handled)
279 		return IRQ_HANDLED;
280 	else
281 		return IRQ_NONE;
282 }
283 
284 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
285 			  irq_hw_number_t hw)
286 {
287 	struct regmap_irq_chip_data *data = h->host_data;
288 
289 	irq_set_chip_data(virq, data);
290 	irq_set_chip(virq, &data->irq_chip);
291 	irq_set_nested_thread(virq, 1);
292 
293 	/* ARM needs us to explicitly flag the IRQ as valid
294 	 * and will set them noprobe when we do so. */
295 #ifdef CONFIG_ARM
296 	set_irq_flags(virq, IRQF_VALID);
297 #else
298 	irq_set_noprobe(virq);
299 #endif
300 
301 	return 0;
302 }
303 
304 static struct irq_domain_ops regmap_domain_ops = {
305 	.map	= regmap_irq_map,
306 	.xlate	= irq_domain_xlate_twocell,
307 };
308 
309 /**
310  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
311  *
312  * map:       The regmap for the device.
313  * irq:       The IRQ the device uses to signal interrupts
314  * irq_flags: The IRQF_ flags to use for the primary interrupt.
315  * chip:      Configuration for the interrupt controller.
316  * data:      Runtime data structure for the controller, allocated on success
317  *
318  * Returns 0 on success or an errno on failure.
319  *
320  * In order for this to be efficient the chip really should use a
321  * register cache.  The chip driver is responsible for restoring the
322  * register values used by the IRQ controller over suspend and resume.
323  */
324 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
325 			int irq_base, const struct regmap_irq_chip *chip,
326 			struct regmap_irq_chip_data **data)
327 {
328 	struct regmap_irq_chip_data *d;
329 	int i;
330 	int ret = -ENOMEM;
331 	u32 reg;
332 
333 	for (i = 0; i < chip->num_irqs; i++) {
334 		if (chip->irqs[i].reg_offset % map->reg_stride)
335 			return -EINVAL;
336 		if (chip->irqs[i].reg_offset / map->reg_stride >=
337 		    chip->num_regs)
338 			return -EINVAL;
339 	}
340 
341 	if (irq_base) {
342 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
343 		if (irq_base < 0) {
344 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
345 				 irq_base);
346 			return irq_base;
347 		}
348 	}
349 
350 	d = kzalloc(sizeof(*d), GFP_KERNEL);
351 	if (!d)
352 		return -ENOMEM;
353 
354 	*data = d;
355 
356 	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
357 				GFP_KERNEL);
358 	if (!d->status_buf)
359 		goto err_alloc;
360 
361 	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
362 			      GFP_KERNEL);
363 	if (!d->mask_buf)
364 		goto err_alloc;
365 
366 	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
367 				  GFP_KERNEL);
368 	if (!d->mask_buf_def)
369 		goto err_alloc;
370 
371 	if (chip->wake_base) {
372 		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
373 				      GFP_KERNEL);
374 		if (!d->wake_buf)
375 			goto err_alloc;
376 	}
377 
378 	d->irq_chip = regmap_irq_chip;
379 	d->irq_chip.name = chip->name;
380 	d->irq = irq;
381 	d->map = map;
382 	d->chip = chip;
383 	d->irq_base = irq_base;
384 
385 	if (chip->irq_reg_stride)
386 		d->irq_reg_stride = chip->irq_reg_stride;
387 	else
388 		d->irq_reg_stride = 1;
389 
390 	if (!map->use_single_rw && map->reg_stride == 1 &&
391 	    d->irq_reg_stride == 1) {
392 		d->status_reg_buf = kmalloc(map->format.val_bytes *
393 					    chip->num_regs, GFP_KERNEL);
394 		if (!d->status_reg_buf)
395 			goto err_alloc;
396 	}
397 
398 	mutex_init(&d->lock);
399 
400 	for (i = 0; i < chip->num_irqs; i++)
401 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
402 			|= chip->irqs[i].mask;
403 
404 	/* Mask all the interrupts by default */
405 	for (i = 0; i < chip->num_regs; i++) {
406 		d->mask_buf[i] = d->mask_buf_def[i];
407 		reg = chip->mask_base +
408 			(i * map->reg_stride * d->irq_reg_stride);
409 		if (chip->mask_invert)
410 			ret = regmap_update_bits(map, reg,
411 					 d->mask_buf[i], ~d->mask_buf[i]);
412 		else
413 			ret = regmap_update_bits(map, reg,
414 					 d->mask_buf[i], d->mask_buf[i]);
415 		if (ret != 0) {
416 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
417 				reg, ret);
418 			goto err_alloc;
419 		}
420 	}
421 
422 	/* Wake is disabled by default */
423 	if (d->wake_buf) {
424 		for (i = 0; i < chip->num_regs; i++) {
425 			d->wake_buf[i] = d->mask_buf_def[i];
426 			reg = chip->wake_base +
427 				(i * map->reg_stride * d->irq_reg_stride);
428 
429 			if (chip->wake_invert)
430 				ret = regmap_update_bits(map, reg,
431 							 d->mask_buf_def[i],
432 							 0);
433 			else
434 				ret = regmap_update_bits(map, reg,
435 							 d->mask_buf_def[i],
436 							 d->wake_buf[i]);
437 			if (ret != 0) {
438 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
439 					reg, ret);
440 				goto err_alloc;
441 			}
442 		}
443 	}
444 
445 	if (irq_base)
446 		d->domain = irq_domain_add_legacy(map->dev->of_node,
447 						  chip->num_irqs, irq_base, 0,
448 						  &regmap_domain_ops, d);
449 	else
450 		d->domain = irq_domain_add_linear(map->dev->of_node,
451 						  chip->num_irqs,
452 						  &regmap_domain_ops, d);
453 	if (!d->domain) {
454 		dev_err(map->dev, "Failed to create IRQ domain\n");
455 		ret = -ENOMEM;
456 		goto err_alloc;
457 	}
458 
459 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
460 				   chip->name, d);
461 	if (ret != 0) {
462 		dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret);
463 		goto err_domain;
464 	}
465 
466 	return 0;
467 
468 err_domain:
469 	/* Should really dispose of the domain but... */
470 err_alloc:
471 	kfree(d->wake_buf);
472 	kfree(d->mask_buf_def);
473 	kfree(d->mask_buf);
474 	kfree(d->status_buf);
475 	kfree(d->status_reg_buf);
476 	kfree(d);
477 	return ret;
478 }
479 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
480 
481 /**
482  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
483  *
484  * @irq: Primary IRQ for the device
485  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
486  */
487 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
488 {
489 	if (!d)
490 		return;
491 
492 	free_irq(irq, d);
493 	/* We should unmap the domain but... */
494 	kfree(d->wake_buf);
495 	kfree(d->mask_buf_def);
496 	kfree(d->mask_buf);
497 	kfree(d->status_reg_buf);
498 	kfree(d->status_buf);
499 	kfree(d);
500 }
501 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
502 
503 /**
504  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
505  *
506  * Useful for drivers to request their own IRQs.
507  *
508  * @data: regmap_irq controller to operate on.
509  */
510 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
511 {
512 	WARN_ON(!data->irq_base);
513 	return data->irq_base;
514 }
515 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
516 
517 /**
518  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
519  *
520  * Useful for drivers to request their own IRQs.
521  *
522  * @data: regmap_irq controller to operate on.
523  * @irq: index of the interrupt requested in the chip IRQs
524  */
525 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
526 {
527 	/* Handle holes in the IRQ list */
528 	if (!data->chip->irqs[irq].mask)
529 		return -EINVAL;
530 
531 	return irq_create_mapping(data->domain, irq);
532 }
533 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
534 
535 /**
536  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
537  *
538  * Useful for drivers to request their own IRQs and for integration
539  * with subsystems.  For ease of integration NULL is accepted as a
540  * domain, allowing devices to just call this even if no domain is
541  * allocated.
542  *
543  * @data: regmap_irq controller to operate on.
544  */
545 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
546 {
547 	if (data)
548 		return data->domain;
549 	else
550 		return NULL;
551 }
552 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
553