xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 	unsigned int *type_buf;
43 	unsigned int *type_buf_def;
44 
45 	unsigned int irq_reg_stride;
46 	unsigned int type_reg_stride;
47 };
48 
49 static inline const
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 				     int irq)
52 {
53 	return &data->chip->irqs[irq];
54 }
55 
56 static void regmap_irq_lock(struct irq_data *data)
57 {
58 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59 
60 	mutex_lock(&d->lock);
61 }
62 
63 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
64 				  unsigned int reg, unsigned int mask,
65 				  unsigned int val)
66 {
67 	if (d->chip->mask_writeonly)
68 		return regmap_write_bits(d->map, reg, mask, val);
69 	else
70 		return regmap_update_bits(d->map, reg, mask, val);
71 }
72 
73 static void regmap_irq_sync_unlock(struct irq_data *data)
74 {
75 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
76 	struct regmap *map = d->map;
77 	int i, ret;
78 	u32 reg;
79 	u32 unmask_offset;
80 
81 	if (d->chip->runtime_pm) {
82 		ret = pm_runtime_get_sync(map->dev);
83 		if (ret < 0)
84 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 				ret);
86 	}
87 
88 	/*
89 	 * If there's been a change in the mask write it back to the
90 	 * hardware.  We rely on the use of the regmap core cache to
91 	 * suppress pointless writes.
92 	 */
93 	for (i = 0; i < d->chip->num_regs; i++) {
94 		reg = d->chip->mask_base +
95 			(i * map->reg_stride * d->irq_reg_stride);
96 		if (d->chip->mask_invert) {
97 			ret = regmap_irq_update_bits(d, reg,
98 					 d->mask_buf_def[i], ~d->mask_buf[i]);
99 		} else if (d->chip->unmask_base) {
100 			/* set mask with mask_base register */
101 			ret = regmap_irq_update_bits(d, reg,
102 					d->mask_buf_def[i], ~d->mask_buf[i]);
103 			if (ret < 0)
104 				dev_err(d->map->dev,
105 					"Failed to sync unmasks in %x\n",
106 					reg);
107 			unmask_offset = d->chip->unmask_base -
108 							d->chip->mask_base;
109 			/* clear mask with unmask_base register */
110 			ret = regmap_irq_update_bits(d,
111 					reg + unmask_offset,
112 					d->mask_buf_def[i],
113 					d->mask_buf[i]);
114 		} else {
115 			ret = regmap_irq_update_bits(d, reg,
116 					 d->mask_buf_def[i], d->mask_buf[i]);
117 		}
118 		if (ret != 0)
119 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
120 				reg);
121 
122 		reg = d->chip->wake_base +
123 			(i * map->reg_stride * d->irq_reg_stride);
124 		if (d->wake_buf) {
125 			if (d->chip->wake_invert)
126 				ret = regmap_irq_update_bits(d, reg,
127 							 d->mask_buf_def[i],
128 							 ~d->wake_buf[i]);
129 			else
130 				ret = regmap_irq_update_bits(d, reg,
131 							 d->mask_buf_def[i],
132 							 d->wake_buf[i]);
133 			if (ret != 0)
134 				dev_err(d->map->dev,
135 					"Failed to sync wakes in %x: %d\n",
136 					reg, ret);
137 		}
138 
139 		if (!d->chip->init_ack_masked)
140 			continue;
141 		/*
142 		 * Ack all the masked interrupts unconditionally,
143 		 * OR if there is masked interrupt which hasn't been Acked,
144 		 * it'll be ignored in irq handler, then may introduce irq storm
145 		 */
146 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147 			reg = d->chip->ack_base +
148 				(i * map->reg_stride * d->irq_reg_stride);
149 			/* some chips ack by write 0 */
150 			if (d->chip->ack_invert)
151 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
152 			else
153 				ret = regmap_write(map, reg, d->mask_buf[i]);
154 			if (ret != 0)
155 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
156 					reg, ret);
157 		}
158 	}
159 
160 	for (i = 0; i < d->chip->num_type_reg; i++) {
161 		if (!d->type_buf_def[i])
162 			continue;
163 		reg = d->chip->type_base +
164 			(i * map->reg_stride * d->type_reg_stride);
165 		if (d->chip->type_invert)
166 			ret = regmap_irq_update_bits(d, reg,
167 				d->type_buf_def[i], ~d->type_buf[i]);
168 		else
169 			ret = regmap_irq_update_bits(d, reg,
170 				d->type_buf_def[i], d->type_buf[i]);
171 		if (ret != 0)
172 			dev_err(d->map->dev, "Failed to sync type in %x\n",
173 				reg);
174 	}
175 
176 	if (d->chip->runtime_pm)
177 		pm_runtime_put(map->dev);
178 
179 	/* If we've changed our wakeup count propagate it to the parent */
180 	if (d->wake_count < 0)
181 		for (i = d->wake_count; i < 0; i++)
182 			irq_set_irq_wake(d->irq, 0);
183 	else if (d->wake_count > 0)
184 		for (i = 0; i < d->wake_count; i++)
185 			irq_set_irq_wake(d->irq, 1);
186 
187 	d->wake_count = 0;
188 
189 	mutex_unlock(&d->lock);
190 }
191 
192 static void regmap_irq_enable(struct irq_data *data)
193 {
194 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195 	struct regmap *map = d->map;
196 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
197 
198 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
199 }
200 
201 static void regmap_irq_disable(struct irq_data *data)
202 {
203 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204 	struct regmap *map = d->map;
205 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
206 
207 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
208 }
209 
210 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
211 {
212 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213 	struct regmap *map = d->map;
214 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215 	int reg = irq_data->type_reg_offset / map->reg_stride;
216 
217 	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
218 		return 0;
219 
220 	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221 					irq_data->type_rising_mask);
222 	switch (type) {
223 	case IRQ_TYPE_EDGE_FALLING:
224 		d->type_buf[reg] |= irq_data->type_falling_mask;
225 		break;
226 
227 	case IRQ_TYPE_EDGE_RISING:
228 		d->type_buf[reg] |= irq_data->type_rising_mask;
229 		break;
230 
231 	case IRQ_TYPE_EDGE_BOTH:
232 		d->type_buf[reg] |= (irq_data->type_falling_mask |
233 					irq_data->type_rising_mask);
234 		break;
235 
236 	default:
237 		return -EINVAL;
238 	}
239 	return 0;
240 }
241 
242 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
243 {
244 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245 	struct regmap *map = d->map;
246 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
247 
248 	if (on) {
249 		if (d->wake_buf)
250 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
251 				&= ~irq_data->mask;
252 		d->wake_count++;
253 	} else {
254 		if (d->wake_buf)
255 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
256 				|= irq_data->mask;
257 		d->wake_count--;
258 	}
259 
260 	return 0;
261 }
262 
263 static const struct irq_chip regmap_irq_chip = {
264 	.irq_bus_lock		= regmap_irq_lock,
265 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
266 	.irq_disable		= regmap_irq_disable,
267 	.irq_enable		= regmap_irq_enable,
268 	.irq_set_type		= regmap_irq_set_type,
269 	.irq_set_wake		= regmap_irq_set_wake,
270 };
271 
272 static irqreturn_t regmap_irq_thread(int irq, void *d)
273 {
274 	struct regmap_irq_chip_data *data = d;
275 	const struct regmap_irq_chip *chip = data->chip;
276 	struct regmap *map = data->map;
277 	int ret, i;
278 	bool handled = false;
279 	u32 reg;
280 
281 	if (chip->handle_pre_irq)
282 		chip->handle_pre_irq(chip->irq_drv_data);
283 
284 	if (chip->runtime_pm) {
285 		ret = pm_runtime_get_sync(map->dev);
286 		if (ret < 0) {
287 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
288 				ret);
289 			pm_runtime_put(map->dev);
290 			goto exit;
291 		}
292 	}
293 
294 	/*
295 	 * Read in the statuses, using a single bulk read if possible
296 	 * in order to reduce the I/O overheads.
297 	 */
298 	if (!map->use_single_read && map->reg_stride == 1 &&
299 	    data->irq_reg_stride == 1) {
300 		u8 *buf8 = data->status_reg_buf;
301 		u16 *buf16 = data->status_reg_buf;
302 		u32 *buf32 = data->status_reg_buf;
303 
304 		BUG_ON(!data->status_reg_buf);
305 
306 		ret = regmap_bulk_read(map, chip->status_base,
307 				       data->status_reg_buf,
308 				       chip->num_regs);
309 		if (ret != 0) {
310 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
311 				ret);
312 			goto exit;
313 		}
314 
315 		for (i = 0; i < data->chip->num_regs; i++) {
316 			switch (map->format.val_bytes) {
317 			case 1:
318 				data->status_buf[i] = buf8[i];
319 				break;
320 			case 2:
321 				data->status_buf[i] = buf16[i];
322 				break;
323 			case 4:
324 				data->status_buf[i] = buf32[i];
325 				break;
326 			default:
327 				BUG();
328 				goto exit;
329 			}
330 		}
331 
332 	} else {
333 		for (i = 0; i < data->chip->num_regs; i++) {
334 			ret = regmap_read(map, chip->status_base +
335 					  (i * map->reg_stride
336 					   * data->irq_reg_stride),
337 					  &data->status_buf[i]);
338 
339 			if (ret != 0) {
340 				dev_err(map->dev,
341 					"Failed to read IRQ status: %d\n",
342 					ret);
343 				if (chip->runtime_pm)
344 					pm_runtime_put(map->dev);
345 				goto exit;
346 			}
347 		}
348 	}
349 
350 	/*
351 	 * Ignore masked IRQs and ack if we need to; we ack early so
352 	 * there is no race between handling and acknowleding the
353 	 * interrupt.  We assume that typically few of the interrupts
354 	 * will fire simultaneously so don't worry about overhead from
355 	 * doing a write per register.
356 	 */
357 	for (i = 0; i < data->chip->num_regs; i++) {
358 		data->status_buf[i] &= ~data->mask_buf[i];
359 
360 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361 			reg = chip->ack_base +
362 				(i * map->reg_stride * data->irq_reg_stride);
363 			ret = regmap_write(map, reg, data->status_buf[i]);
364 			if (ret != 0)
365 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
366 					reg, ret);
367 		}
368 	}
369 
370 	for (i = 0; i < chip->num_irqs; i++) {
371 		if (data->status_buf[chip->irqs[i].reg_offset /
372 				     map->reg_stride] & chip->irqs[i].mask) {
373 			handle_nested_irq(irq_find_mapping(data->domain, i));
374 			handled = true;
375 		}
376 	}
377 
378 	if (chip->runtime_pm)
379 		pm_runtime_put(map->dev);
380 
381 exit:
382 	if (chip->handle_post_irq)
383 		chip->handle_post_irq(chip->irq_drv_data);
384 
385 	if (handled)
386 		return IRQ_HANDLED;
387 	else
388 		return IRQ_NONE;
389 }
390 
391 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
392 			  irq_hw_number_t hw)
393 {
394 	struct regmap_irq_chip_data *data = h->host_data;
395 
396 	irq_set_chip_data(virq, data);
397 	irq_set_chip(virq, &data->irq_chip);
398 	irq_set_nested_thread(virq, 1);
399 	irq_set_parent(virq, data->irq);
400 	irq_set_noprobe(virq);
401 
402 	return 0;
403 }
404 
405 static const struct irq_domain_ops regmap_domain_ops = {
406 	.map	= regmap_irq_map,
407 	.xlate	= irq_domain_xlate_onetwocell,
408 };
409 
410 /**
411  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
412  *
413  * @map: The regmap for the device.
414  * @irq: The IRQ the device uses to signal interrupts.
415  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417  * @chip: Configuration for the interrupt controller.
418  * @data: Runtime data structure for the controller, allocated on success.
419  *
420  * Returns 0 on success or an errno on failure.
421  *
422  * In order for this to be efficient the chip really should use a
423  * register cache.  The chip driver is responsible for restoring the
424  * register values used by the IRQ controller over suspend and resume.
425  */
426 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427 			int irq_base, const struct regmap_irq_chip *chip,
428 			struct regmap_irq_chip_data **data)
429 {
430 	struct regmap_irq_chip_data *d;
431 	int i;
432 	int ret = -ENOMEM;
433 	u32 reg;
434 	u32 unmask_offset;
435 
436 	if (chip->num_regs <= 0)
437 		return -EINVAL;
438 
439 	for (i = 0; i < chip->num_irqs; i++) {
440 		if (chip->irqs[i].reg_offset % map->reg_stride)
441 			return -EINVAL;
442 		if (chip->irqs[i].reg_offset / map->reg_stride >=
443 		    chip->num_regs)
444 			return -EINVAL;
445 	}
446 
447 	if (irq_base) {
448 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
449 		if (irq_base < 0) {
450 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
451 				 irq_base);
452 			return irq_base;
453 		}
454 	}
455 
456 	d = kzalloc(sizeof(*d), GFP_KERNEL);
457 	if (!d)
458 		return -ENOMEM;
459 
460 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
461 				GFP_KERNEL);
462 	if (!d->status_buf)
463 		goto err_alloc;
464 
465 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466 			      GFP_KERNEL);
467 	if (!d->mask_buf)
468 		goto err_alloc;
469 
470 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
471 				  GFP_KERNEL);
472 	if (!d->mask_buf_def)
473 		goto err_alloc;
474 
475 	if (chip->wake_base) {
476 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
477 				      GFP_KERNEL);
478 		if (!d->wake_buf)
479 			goto err_alloc;
480 	}
481 
482 	if (chip->num_type_reg) {
483 		d->type_buf_def = kcalloc(chip->num_type_reg,
484 					sizeof(unsigned int), GFP_KERNEL);
485 		if (!d->type_buf_def)
486 			goto err_alloc;
487 
488 		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
489 				      GFP_KERNEL);
490 		if (!d->type_buf)
491 			goto err_alloc;
492 	}
493 
494 	d->irq_chip = regmap_irq_chip;
495 	d->irq_chip.name = chip->name;
496 	d->irq = irq;
497 	d->map = map;
498 	d->chip = chip;
499 	d->irq_base = irq_base;
500 
501 	if (chip->irq_reg_stride)
502 		d->irq_reg_stride = chip->irq_reg_stride;
503 	else
504 		d->irq_reg_stride = 1;
505 
506 	if (chip->type_reg_stride)
507 		d->type_reg_stride = chip->type_reg_stride;
508 	else
509 		d->type_reg_stride = 1;
510 
511 	if (!map->use_single_read && map->reg_stride == 1 &&
512 	    d->irq_reg_stride == 1) {
513 		d->status_reg_buf = kmalloc_array(chip->num_regs,
514 						  map->format.val_bytes,
515 						  GFP_KERNEL);
516 		if (!d->status_reg_buf)
517 			goto err_alloc;
518 	}
519 
520 	mutex_init(&d->lock);
521 
522 	for (i = 0; i < chip->num_irqs; i++)
523 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524 			|= chip->irqs[i].mask;
525 
526 	/* Mask all the interrupts by default */
527 	for (i = 0; i < chip->num_regs; i++) {
528 		d->mask_buf[i] = d->mask_buf_def[i];
529 		reg = chip->mask_base +
530 			(i * map->reg_stride * d->irq_reg_stride);
531 		if (chip->mask_invert)
532 			ret = regmap_irq_update_bits(d, reg,
533 					 d->mask_buf[i], ~d->mask_buf[i]);
534 		else if (d->chip->unmask_base) {
535 			unmask_offset = d->chip->unmask_base -
536 					d->chip->mask_base;
537 			ret = regmap_irq_update_bits(d,
538 					reg + unmask_offset,
539 					d->mask_buf[i],
540 					d->mask_buf[i]);
541 		} else
542 			ret = regmap_irq_update_bits(d, reg,
543 					 d->mask_buf[i], d->mask_buf[i]);
544 		if (ret != 0) {
545 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
546 				reg, ret);
547 			goto err_alloc;
548 		}
549 
550 		if (!chip->init_ack_masked)
551 			continue;
552 
553 		/* Ack masked but set interrupts */
554 		reg = chip->status_base +
555 			(i * map->reg_stride * d->irq_reg_stride);
556 		ret = regmap_read(map, reg, &d->status_buf[i]);
557 		if (ret != 0) {
558 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
559 				ret);
560 			goto err_alloc;
561 		}
562 
563 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564 			reg = chip->ack_base +
565 				(i * map->reg_stride * d->irq_reg_stride);
566 			if (chip->ack_invert)
567 				ret = regmap_write(map, reg,
568 					~(d->status_buf[i] & d->mask_buf[i]));
569 			else
570 				ret = regmap_write(map, reg,
571 					d->status_buf[i] & d->mask_buf[i]);
572 			if (ret != 0) {
573 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
574 					reg, ret);
575 				goto err_alloc;
576 			}
577 		}
578 	}
579 
580 	/* Wake is disabled by default */
581 	if (d->wake_buf) {
582 		for (i = 0; i < chip->num_regs; i++) {
583 			d->wake_buf[i] = d->mask_buf_def[i];
584 			reg = chip->wake_base +
585 				(i * map->reg_stride * d->irq_reg_stride);
586 
587 			if (chip->wake_invert)
588 				ret = regmap_irq_update_bits(d, reg,
589 							 d->mask_buf_def[i],
590 							 0);
591 			else
592 				ret = regmap_irq_update_bits(d, reg,
593 							 d->mask_buf_def[i],
594 							 d->wake_buf[i]);
595 			if (ret != 0) {
596 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
597 					reg, ret);
598 				goto err_alloc;
599 			}
600 		}
601 	}
602 
603 	if (chip->num_type_reg) {
604 		for (i = 0; i < chip->num_irqs; i++) {
605 			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606 			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607 					chip->irqs[i].type_falling_mask;
608 		}
609 		for (i = 0; i < chip->num_type_reg; ++i) {
610 			if (!d->type_buf_def[i])
611 				continue;
612 
613 			reg = chip->type_base +
614 				(i * map->reg_stride * d->type_reg_stride);
615 			if (chip->type_invert)
616 				ret = regmap_irq_update_bits(d, reg,
617 					d->type_buf_def[i], 0xFF);
618 			else
619 				ret = regmap_irq_update_bits(d, reg,
620 					d->type_buf_def[i], 0x0);
621 			if (ret != 0) {
622 				dev_err(map->dev,
623 					"Failed to set type in 0x%x: %x\n",
624 					reg, ret);
625 				goto err_alloc;
626 			}
627 		}
628 	}
629 
630 	if (irq_base)
631 		d->domain = irq_domain_add_legacy(map->dev->of_node,
632 						  chip->num_irqs, irq_base, 0,
633 						  &regmap_domain_ops, d);
634 	else
635 		d->domain = irq_domain_add_linear(map->dev->of_node,
636 						  chip->num_irqs,
637 						  &regmap_domain_ops, d);
638 	if (!d->domain) {
639 		dev_err(map->dev, "Failed to create IRQ domain\n");
640 		ret = -ENOMEM;
641 		goto err_alloc;
642 	}
643 
644 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645 				   irq_flags | IRQF_ONESHOT,
646 				   chip->name, d);
647 	if (ret != 0) {
648 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649 			irq, chip->name, ret);
650 		goto err_domain;
651 	}
652 
653 	*data = d;
654 
655 	return 0;
656 
657 err_domain:
658 	/* Should really dispose of the domain but... */
659 err_alloc:
660 	kfree(d->type_buf);
661 	kfree(d->type_buf_def);
662 	kfree(d->wake_buf);
663 	kfree(d->mask_buf_def);
664 	kfree(d->mask_buf);
665 	kfree(d->status_buf);
666 	kfree(d->status_reg_buf);
667 	kfree(d);
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
671 
672 /**
673  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
674  *
675  * @irq: Primary IRQ for the device
676  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
677  *
678  * This function also disposes of all mapped IRQs on the chip.
679  */
680 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
681 {
682 	unsigned int virq;
683 	int hwirq;
684 
685 	if (!d)
686 		return;
687 
688 	free_irq(irq, d);
689 
690 	/* Dispose all virtual irq from irq domain before removing it */
691 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692 		/* Ignore hwirq if holes in the IRQ list */
693 		if (!d->chip->irqs[hwirq].mask)
694 			continue;
695 
696 		/*
697 		 * Find the virtual irq of hwirq on chip and if it is
698 		 * there then dispose it
699 		 */
700 		virq = irq_find_mapping(d->domain, hwirq);
701 		if (virq)
702 			irq_dispose_mapping(virq);
703 	}
704 
705 	irq_domain_remove(d->domain);
706 	kfree(d->type_buf);
707 	kfree(d->type_buf_def);
708 	kfree(d->wake_buf);
709 	kfree(d->mask_buf_def);
710 	kfree(d->mask_buf);
711 	kfree(d->status_reg_buf);
712 	kfree(d->status_buf);
713 	kfree(d);
714 }
715 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
716 
717 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
718 {
719 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
720 
721 	regmap_del_irq_chip(d->irq, d);
722 }
723 
724 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
725 
726 {
727 	struct regmap_irq_chip_data **r = res;
728 
729 	if (!r || !*r) {
730 		WARN_ON(!r || !*r);
731 		return 0;
732 	}
733 	return *r == data;
734 }
735 
736 /**
737  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
738  *
739  * @dev: The device pointer on which irq_chip belongs to.
740  * @map: The regmap for the device.
741  * @irq: The IRQ the device uses to signal interrupts
742  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744  * @chip: Configuration for the interrupt controller.
745  * @data: Runtime data structure for the controller, allocated on success
746  *
747  * Returns 0 on success or an errno on failure.
748  *
749  * The &regmap_irq_chip_data will be automatically released when the device is
750  * unbound.
751  */
752 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753 			     int irq_flags, int irq_base,
754 			     const struct regmap_irq_chip *chip,
755 			     struct regmap_irq_chip_data **data)
756 {
757 	struct regmap_irq_chip_data **ptr, *d;
758 	int ret;
759 
760 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
761 			   GFP_KERNEL);
762 	if (!ptr)
763 		return -ENOMEM;
764 
765 	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
766 				  chip, &d);
767 	if (ret < 0) {
768 		devres_free(ptr);
769 		return ret;
770 	}
771 
772 	*ptr = d;
773 	devres_add(dev, ptr);
774 	*data = d;
775 	return 0;
776 }
777 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
778 
779 /**
780  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
781  *
782  * @dev: Device for which which resource was allocated.
783  * @irq: Primary IRQ for the device.
784  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
785  *
786  * A resource managed version of regmap_del_irq_chip().
787  */
788 void devm_regmap_del_irq_chip(struct device *dev, int irq,
789 			      struct regmap_irq_chip_data *data)
790 {
791 	int rc;
792 
793 	WARN_ON(irq != data->irq);
794 	rc = devres_release(dev, devm_regmap_irq_chip_release,
795 			    devm_regmap_irq_chip_match, data);
796 
797 	if (rc != 0)
798 		WARN_ON(rc);
799 }
800 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
801 
802 /**
803  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
804  *
805  * @data: regmap irq controller to operate on.
806  *
807  * Useful for drivers to request their own IRQs.
808  */
809 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
810 {
811 	WARN_ON(!data->irq_base);
812 	return data->irq_base;
813 }
814 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
815 
816 /**
817  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
818  *
819  * @data: regmap irq controller to operate on.
820  * @irq: index of the interrupt requested in the chip IRQs.
821  *
822  * Useful for drivers to request their own IRQs.
823  */
824 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
825 {
826 	/* Handle holes in the IRQ list */
827 	if (!data->chip->irqs[irq].mask)
828 		return -EINVAL;
829 
830 	return irq_create_mapping(data->domain, irq);
831 }
832 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
833 
834 /**
835  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
836  *
837  * @data: regmap_irq controller to operate on.
838  *
839  * Useful for drivers to request their own IRQs and for integration
840  * with subsystems.  For ease of integration NULL is accepted as a
841  * domain, allowing devices to just call this even if no domain is
842  * allocated.
843  */
844 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
845 {
846 	if (data)
847 		return data->domain;
848 	else
849 		return NULL;
850 }
851 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
852