1 /* 2 * regmap based irq_chip 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/export.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/irqdomain.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/regmap.h> 20 #include <linux/slab.h> 21 22 #include "internal.h" 23 24 struct regmap_irq_chip_data { 25 struct mutex lock; 26 struct irq_chip irq_chip; 27 28 struct regmap *map; 29 const struct regmap_irq_chip *chip; 30 31 int irq_base; 32 struct irq_domain *domain; 33 34 int irq; 35 int wake_count; 36 37 void *status_reg_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 45 unsigned int irq_reg_stride; 46 unsigned int type_reg_stride; 47 }; 48 49 static inline const 50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 51 int irq) 52 { 53 return &data->chip->irqs[irq]; 54 } 55 56 static void regmap_irq_lock(struct irq_data *data) 57 { 58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 59 60 mutex_lock(&d->lock); 61 } 62 63 static void regmap_irq_sync_unlock(struct irq_data *data) 64 { 65 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 66 struct regmap *map = d->map; 67 int i, ret; 68 u32 reg; 69 u32 unmask_offset; 70 71 if (d->chip->runtime_pm) { 72 ret = pm_runtime_get_sync(map->dev); 73 if (ret < 0) 74 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 75 ret); 76 } 77 78 /* 79 * If there's been a change in the mask write it back to the 80 * hardware. We rely on the use of the regmap core cache to 81 * suppress pointless writes. 82 */ 83 for (i = 0; i < d->chip->num_regs; i++) { 84 reg = d->chip->mask_base + 85 (i * map->reg_stride * d->irq_reg_stride); 86 if (d->chip->mask_invert) { 87 ret = regmap_update_bits(d->map, reg, 88 d->mask_buf_def[i], ~d->mask_buf[i]); 89 } else if (d->chip->unmask_base) { 90 /* set mask with mask_base register */ 91 ret = regmap_update_bits(d->map, reg, 92 d->mask_buf_def[i], ~d->mask_buf[i]); 93 if (ret < 0) 94 dev_err(d->map->dev, 95 "Failed to sync unmasks in %x\n", 96 reg); 97 unmask_offset = d->chip->unmask_base - 98 d->chip->mask_base; 99 /* clear mask with unmask_base register */ 100 ret = regmap_update_bits(d->map, 101 reg + unmask_offset, 102 d->mask_buf_def[i], 103 d->mask_buf[i]); 104 } else { 105 ret = regmap_update_bits(d->map, reg, 106 d->mask_buf_def[i], d->mask_buf[i]); 107 } 108 if (ret != 0) 109 dev_err(d->map->dev, "Failed to sync masks in %x\n", 110 reg); 111 112 reg = d->chip->wake_base + 113 (i * map->reg_stride * d->irq_reg_stride); 114 if (d->wake_buf) { 115 if (d->chip->wake_invert) 116 ret = regmap_update_bits(d->map, reg, 117 d->mask_buf_def[i], 118 ~d->wake_buf[i]); 119 else 120 ret = regmap_update_bits(d->map, reg, 121 d->mask_buf_def[i], 122 d->wake_buf[i]); 123 if (ret != 0) 124 dev_err(d->map->dev, 125 "Failed to sync wakes in %x: %d\n", 126 reg, ret); 127 } 128 129 if (!d->chip->init_ack_masked) 130 continue; 131 /* 132 * Ack all the masked interrupts unconditionally, 133 * OR if there is masked interrupt which hasn't been Acked, 134 * it'll be ignored in irq handler, then may introduce irq storm 135 */ 136 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 137 reg = d->chip->ack_base + 138 (i * map->reg_stride * d->irq_reg_stride); 139 /* some chips ack by write 0 */ 140 if (d->chip->ack_invert) 141 ret = regmap_write(map, reg, ~d->mask_buf[i]); 142 else 143 ret = regmap_write(map, reg, d->mask_buf[i]); 144 if (ret != 0) 145 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 146 reg, ret); 147 } 148 } 149 150 for (i = 0; i < d->chip->num_type_reg; i++) { 151 if (!d->type_buf_def[i]) 152 continue; 153 reg = d->chip->type_base + 154 (i * map->reg_stride * d->type_reg_stride); 155 if (d->chip->type_invert) 156 ret = regmap_update_bits(d->map, reg, 157 d->type_buf_def[i], ~d->type_buf[i]); 158 else 159 ret = regmap_update_bits(d->map, reg, 160 d->type_buf_def[i], d->type_buf[i]); 161 if (ret != 0) 162 dev_err(d->map->dev, "Failed to sync type in %x\n", 163 reg); 164 } 165 166 if (d->chip->runtime_pm) 167 pm_runtime_put(map->dev); 168 169 /* If we've changed our wakeup count propagate it to the parent */ 170 if (d->wake_count < 0) 171 for (i = d->wake_count; i < 0; i++) 172 irq_set_irq_wake(d->irq, 0); 173 else if (d->wake_count > 0) 174 for (i = 0; i < d->wake_count; i++) 175 irq_set_irq_wake(d->irq, 1); 176 177 d->wake_count = 0; 178 179 mutex_unlock(&d->lock); 180 } 181 182 static void regmap_irq_enable(struct irq_data *data) 183 { 184 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 185 struct regmap *map = d->map; 186 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 187 188 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask; 189 } 190 191 static void regmap_irq_disable(struct irq_data *data) 192 { 193 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 194 struct regmap *map = d->map; 195 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 196 197 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 198 } 199 200 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 201 { 202 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 203 struct regmap *map = d->map; 204 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 205 int reg = irq_data->type_reg_offset / map->reg_stride; 206 207 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask)) 208 return 0; 209 210 d->type_buf[reg] &= ~(irq_data->type_falling_mask | 211 irq_data->type_rising_mask); 212 switch (type) { 213 case IRQ_TYPE_EDGE_FALLING: 214 d->type_buf[reg] |= irq_data->type_falling_mask; 215 break; 216 217 case IRQ_TYPE_EDGE_RISING: 218 d->type_buf[reg] |= irq_data->type_rising_mask; 219 break; 220 221 case IRQ_TYPE_EDGE_BOTH: 222 d->type_buf[reg] |= (irq_data->type_falling_mask | 223 irq_data->type_rising_mask); 224 break; 225 226 default: 227 return -EINVAL; 228 } 229 return 0; 230 } 231 232 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 233 { 234 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 235 struct regmap *map = d->map; 236 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 237 238 if (on) { 239 if (d->wake_buf) 240 d->wake_buf[irq_data->reg_offset / map->reg_stride] 241 &= ~irq_data->mask; 242 d->wake_count++; 243 } else { 244 if (d->wake_buf) 245 d->wake_buf[irq_data->reg_offset / map->reg_stride] 246 |= irq_data->mask; 247 d->wake_count--; 248 } 249 250 return 0; 251 } 252 253 static const struct irq_chip regmap_irq_chip = { 254 .irq_bus_lock = regmap_irq_lock, 255 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 256 .irq_disable = regmap_irq_disable, 257 .irq_enable = regmap_irq_enable, 258 .irq_set_type = regmap_irq_set_type, 259 .irq_set_wake = regmap_irq_set_wake, 260 }; 261 262 static irqreturn_t regmap_irq_thread(int irq, void *d) 263 { 264 struct regmap_irq_chip_data *data = d; 265 const struct regmap_irq_chip *chip = data->chip; 266 struct regmap *map = data->map; 267 int ret, i; 268 bool handled = false; 269 u32 reg; 270 271 if (chip->handle_pre_irq) 272 chip->handle_pre_irq(chip->irq_drv_data); 273 274 if (chip->runtime_pm) { 275 ret = pm_runtime_get_sync(map->dev); 276 if (ret < 0) { 277 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 278 ret); 279 pm_runtime_put(map->dev); 280 goto exit; 281 } 282 } 283 284 /* 285 * Read in the statuses, using a single bulk read if possible 286 * in order to reduce the I/O overheads. 287 */ 288 if (!map->use_single_read && map->reg_stride == 1 && 289 data->irq_reg_stride == 1) { 290 u8 *buf8 = data->status_reg_buf; 291 u16 *buf16 = data->status_reg_buf; 292 u32 *buf32 = data->status_reg_buf; 293 294 BUG_ON(!data->status_reg_buf); 295 296 ret = regmap_bulk_read(map, chip->status_base, 297 data->status_reg_buf, 298 chip->num_regs); 299 if (ret != 0) { 300 dev_err(map->dev, "Failed to read IRQ status: %d\n", 301 ret); 302 goto exit; 303 } 304 305 for (i = 0; i < data->chip->num_regs; i++) { 306 switch (map->format.val_bytes) { 307 case 1: 308 data->status_buf[i] = buf8[i]; 309 break; 310 case 2: 311 data->status_buf[i] = buf16[i]; 312 break; 313 case 4: 314 data->status_buf[i] = buf32[i]; 315 break; 316 default: 317 BUG(); 318 goto exit; 319 } 320 } 321 322 } else { 323 for (i = 0; i < data->chip->num_regs; i++) { 324 ret = regmap_read(map, chip->status_base + 325 (i * map->reg_stride 326 * data->irq_reg_stride), 327 &data->status_buf[i]); 328 329 if (ret != 0) { 330 dev_err(map->dev, 331 "Failed to read IRQ status: %d\n", 332 ret); 333 if (chip->runtime_pm) 334 pm_runtime_put(map->dev); 335 goto exit; 336 } 337 } 338 } 339 340 /* 341 * Ignore masked IRQs and ack if we need to; we ack early so 342 * there is no race between handling and acknowleding the 343 * interrupt. We assume that typically few of the interrupts 344 * will fire simultaneously so don't worry about overhead from 345 * doing a write per register. 346 */ 347 for (i = 0; i < data->chip->num_regs; i++) { 348 data->status_buf[i] &= ~data->mask_buf[i]; 349 350 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 351 reg = chip->ack_base + 352 (i * map->reg_stride * data->irq_reg_stride); 353 ret = regmap_write(map, reg, data->status_buf[i]); 354 if (ret != 0) 355 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 356 reg, ret); 357 } 358 } 359 360 for (i = 0; i < chip->num_irqs; i++) { 361 if (data->status_buf[chip->irqs[i].reg_offset / 362 map->reg_stride] & chip->irqs[i].mask) { 363 handle_nested_irq(irq_find_mapping(data->domain, i)); 364 handled = true; 365 } 366 } 367 368 if (chip->runtime_pm) 369 pm_runtime_put(map->dev); 370 371 exit: 372 if (chip->handle_post_irq) 373 chip->handle_post_irq(chip->irq_drv_data); 374 375 if (handled) 376 return IRQ_HANDLED; 377 else 378 return IRQ_NONE; 379 } 380 381 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 382 irq_hw_number_t hw) 383 { 384 struct regmap_irq_chip_data *data = h->host_data; 385 386 irq_set_chip_data(virq, data); 387 irq_set_chip(virq, &data->irq_chip); 388 irq_set_nested_thread(virq, 1); 389 irq_set_parent(virq, data->irq); 390 irq_set_noprobe(virq); 391 392 return 0; 393 } 394 395 static const struct irq_domain_ops regmap_domain_ops = { 396 .map = regmap_irq_map, 397 .xlate = irq_domain_xlate_twocell, 398 }; 399 400 /** 401 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 402 * 403 * @map: The regmap for the device. 404 * @irq: The IRQ the device uses to signal interrupts. 405 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 406 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 407 * @chip: Configuration for the interrupt controller. 408 * @data: Runtime data structure for the controller, allocated on success. 409 * 410 * Returns 0 on success or an errno on failure. 411 * 412 * In order for this to be efficient the chip really should use a 413 * register cache. The chip driver is responsible for restoring the 414 * register values used by the IRQ controller over suspend and resume. 415 */ 416 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 417 int irq_base, const struct regmap_irq_chip *chip, 418 struct regmap_irq_chip_data **data) 419 { 420 struct regmap_irq_chip_data *d; 421 int i; 422 int ret = -ENOMEM; 423 u32 reg; 424 u32 unmask_offset; 425 426 if (chip->num_regs <= 0) 427 return -EINVAL; 428 429 for (i = 0; i < chip->num_irqs; i++) { 430 if (chip->irqs[i].reg_offset % map->reg_stride) 431 return -EINVAL; 432 if (chip->irqs[i].reg_offset / map->reg_stride >= 433 chip->num_regs) 434 return -EINVAL; 435 } 436 437 if (irq_base) { 438 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 439 if (irq_base < 0) { 440 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 441 irq_base); 442 return irq_base; 443 } 444 } 445 446 d = kzalloc(sizeof(*d), GFP_KERNEL); 447 if (!d) 448 return -ENOMEM; 449 450 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 451 GFP_KERNEL); 452 if (!d->status_buf) 453 goto err_alloc; 454 455 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 456 GFP_KERNEL); 457 if (!d->mask_buf) 458 goto err_alloc; 459 460 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), 461 GFP_KERNEL); 462 if (!d->mask_buf_def) 463 goto err_alloc; 464 465 if (chip->wake_base) { 466 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 467 GFP_KERNEL); 468 if (!d->wake_buf) 469 goto err_alloc; 470 } 471 472 if (chip->num_type_reg) { 473 d->type_buf_def = kcalloc(chip->num_type_reg, 474 sizeof(unsigned int), GFP_KERNEL); 475 if (!d->type_buf_def) 476 goto err_alloc; 477 478 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int), 479 GFP_KERNEL); 480 if (!d->type_buf) 481 goto err_alloc; 482 } 483 484 d->irq_chip = regmap_irq_chip; 485 d->irq_chip.name = chip->name; 486 d->irq = irq; 487 d->map = map; 488 d->chip = chip; 489 d->irq_base = irq_base; 490 491 if (chip->irq_reg_stride) 492 d->irq_reg_stride = chip->irq_reg_stride; 493 else 494 d->irq_reg_stride = 1; 495 496 if (chip->type_reg_stride) 497 d->type_reg_stride = chip->type_reg_stride; 498 else 499 d->type_reg_stride = 1; 500 501 if (!map->use_single_read && map->reg_stride == 1 && 502 d->irq_reg_stride == 1) { 503 d->status_reg_buf = kmalloc_array(chip->num_regs, 504 map->format.val_bytes, 505 GFP_KERNEL); 506 if (!d->status_reg_buf) 507 goto err_alloc; 508 } 509 510 mutex_init(&d->lock); 511 512 for (i = 0; i < chip->num_irqs; i++) 513 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 514 |= chip->irqs[i].mask; 515 516 /* Mask all the interrupts by default */ 517 for (i = 0; i < chip->num_regs; i++) { 518 d->mask_buf[i] = d->mask_buf_def[i]; 519 reg = chip->mask_base + 520 (i * map->reg_stride * d->irq_reg_stride); 521 if (chip->mask_invert) 522 ret = regmap_update_bits(map, reg, 523 d->mask_buf[i], ~d->mask_buf[i]); 524 else if (d->chip->unmask_base) { 525 unmask_offset = d->chip->unmask_base - 526 d->chip->mask_base; 527 ret = regmap_update_bits(d->map, 528 reg + unmask_offset, 529 d->mask_buf[i], 530 d->mask_buf[i]); 531 } else 532 ret = regmap_update_bits(map, reg, 533 d->mask_buf[i], d->mask_buf[i]); 534 if (ret != 0) { 535 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 536 reg, ret); 537 goto err_alloc; 538 } 539 540 if (!chip->init_ack_masked) 541 continue; 542 543 /* Ack masked but set interrupts */ 544 reg = chip->status_base + 545 (i * map->reg_stride * d->irq_reg_stride); 546 ret = regmap_read(map, reg, &d->status_buf[i]); 547 if (ret != 0) { 548 dev_err(map->dev, "Failed to read IRQ status: %d\n", 549 ret); 550 goto err_alloc; 551 } 552 553 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 554 reg = chip->ack_base + 555 (i * map->reg_stride * d->irq_reg_stride); 556 if (chip->ack_invert) 557 ret = regmap_write(map, reg, 558 ~(d->status_buf[i] & d->mask_buf[i])); 559 else 560 ret = regmap_write(map, reg, 561 d->status_buf[i] & d->mask_buf[i]); 562 if (ret != 0) { 563 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 564 reg, ret); 565 goto err_alloc; 566 } 567 } 568 } 569 570 /* Wake is disabled by default */ 571 if (d->wake_buf) { 572 for (i = 0; i < chip->num_regs; i++) { 573 d->wake_buf[i] = d->mask_buf_def[i]; 574 reg = chip->wake_base + 575 (i * map->reg_stride * d->irq_reg_stride); 576 577 if (chip->wake_invert) 578 ret = regmap_update_bits(map, reg, 579 d->mask_buf_def[i], 580 0); 581 else 582 ret = regmap_update_bits(map, reg, 583 d->mask_buf_def[i], 584 d->wake_buf[i]); 585 if (ret != 0) { 586 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 587 reg, ret); 588 goto err_alloc; 589 } 590 } 591 } 592 593 if (chip->num_type_reg) { 594 for (i = 0; i < chip->num_irqs; i++) { 595 reg = chip->irqs[i].type_reg_offset / map->reg_stride; 596 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask | 597 chip->irqs[i].type_falling_mask; 598 } 599 for (i = 0; i < chip->num_type_reg; ++i) { 600 if (!d->type_buf_def[i]) 601 continue; 602 603 reg = chip->type_base + 604 (i * map->reg_stride * d->type_reg_stride); 605 if (chip->type_invert) 606 ret = regmap_update_bits(map, reg, 607 d->type_buf_def[i], 0xFF); 608 else 609 ret = regmap_update_bits(map, reg, 610 d->type_buf_def[i], 0x0); 611 if (ret != 0) { 612 dev_err(map->dev, 613 "Failed to set type in 0x%x: %x\n", 614 reg, ret); 615 goto err_alloc; 616 } 617 } 618 } 619 620 if (irq_base) 621 d->domain = irq_domain_add_legacy(map->dev->of_node, 622 chip->num_irqs, irq_base, 0, 623 ®map_domain_ops, d); 624 else 625 d->domain = irq_domain_add_linear(map->dev->of_node, 626 chip->num_irqs, 627 ®map_domain_ops, d); 628 if (!d->domain) { 629 dev_err(map->dev, "Failed to create IRQ domain\n"); 630 ret = -ENOMEM; 631 goto err_alloc; 632 } 633 634 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 635 irq_flags | IRQF_ONESHOT, 636 chip->name, d); 637 if (ret != 0) { 638 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 639 irq, chip->name, ret); 640 goto err_domain; 641 } 642 643 *data = d; 644 645 return 0; 646 647 err_domain: 648 /* Should really dispose of the domain but... */ 649 err_alloc: 650 kfree(d->type_buf); 651 kfree(d->type_buf_def); 652 kfree(d->wake_buf); 653 kfree(d->mask_buf_def); 654 kfree(d->mask_buf); 655 kfree(d->status_buf); 656 kfree(d->status_reg_buf); 657 kfree(d); 658 return ret; 659 } 660 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 661 662 /** 663 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 664 * 665 * @irq: Primary IRQ for the device 666 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 667 * 668 * This function also disposes of all mapped IRQs on the chip. 669 */ 670 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 671 { 672 unsigned int virq; 673 int hwirq; 674 675 if (!d) 676 return; 677 678 free_irq(irq, d); 679 680 /* Dispose all virtual irq from irq domain before removing it */ 681 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 682 /* Ignore hwirq if holes in the IRQ list */ 683 if (!d->chip->irqs[hwirq].mask) 684 continue; 685 686 /* 687 * Find the virtual irq of hwirq on chip and if it is 688 * there then dispose it 689 */ 690 virq = irq_find_mapping(d->domain, hwirq); 691 if (virq) 692 irq_dispose_mapping(virq); 693 } 694 695 irq_domain_remove(d->domain); 696 kfree(d->type_buf); 697 kfree(d->type_buf_def); 698 kfree(d->wake_buf); 699 kfree(d->mask_buf_def); 700 kfree(d->mask_buf); 701 kfree(d->status_reg_buf); 702 kfree(d->status_buf); 703 kfree(d); 704 } 705 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 706 707 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 708 { 709 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 710 711 regmap_del_irq_chip(d->irq, d); 712 } 713 714 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 715 716 { 717 struct regmap_irq_chip_data **r = res; 718 719 if (!r || !*r) { 720 WARN_ON(!r || !*r); 721 return 0; 722 } 723 return *r == data; 724 } 725 726 /** 727 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip() 728 * 729 * @dev: The device pointer on which irq_chip belongs to. 730 * @map: The regmap for the device. 731 * @irq: The IRQ the device uses to signal interrupts 732 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 733 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 734 * @chip: Configuration for the interrupt controller. 735 * @data: Runtime data structure for the controller, allocated on success 736 * 737 * Returns 0 on success or an errno on failure. 738 * 739 * The ®map_irq_chip_data will be automatically released when the device is 740 * unbound. 741 */ 742 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 743 int irq_flags, int irq_base, 744 const struct regmap_irq_chip *chip, 745 struct regmap_irq_chip_data **data) 746 { 747 struct regmap_irq_chip_data **ptr, *d; 748 int ret; 749 750 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 751 GFP_KERNEL); 752 if (!ptr) 753 return -ENOMEM; 754 755 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base, 756 chip, &d); 757 if (ret < 0) { 758 devres_free(ptr); 759 return ret; 760 } 761 762 *ptr = d; 763 devres_add(dev, ptr); 764 *data = d; 765 return 0; 766 } 767 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 768 769 /** 770 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 771 * 772 * @dev: Device for which which resource was allocated. 773 * @irq: Primary IRQ for the device. 774 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 775 * 776 * A resource managed version of regmap_del_irq_chip(). 777 */ 778 void devm_regmap_del_irq_chip(struct device *dev, int irq, 779 struct regmap_irq_chip_data *data) 780 { 781 int rc; 782 783 WARN_ON(irq != data->irq); 784 rc = devres_release(dev, devm_regmap_irq_chip_release, 785 devm_regmap_irq_chip_match, data); 786 787 if (rc != 0) 788 WARN_ON(rc); 789 } 790 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 791 792 /** 793 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 794 * 795 * @data: regmap irq controller to operate on. 796 * 797 * Useful for drivers to request their own IRQs. 798 */ 799 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 800 { 801 WARN_ON(!data->irq_base); 802 return data->irq_base; 803 } 804 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 805 806 /** 807 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 808 * 809 * @data: regmap irq controller to operate on. 810 * @irq: index of the interrupt requested in the chip IRQs. 811 * 812 * Useful for drivers to request their own IRQs. 813 */ 814 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 815 { 816 /* Handle holes in the IRQ list */ 817 if (!data->chip->irqs[irq].mask) 818 return -EINVAL; 819 820 return irq_create_mapping(data->domain, irq); 821 } 822 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 823 824 /** 825 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 826 * 827 * @data: regmap_irq controller to operate on. 828 * 829 * Useful for drivers to request their own IRQs and for integration 830 * with subsystems. For ease of integration NULL is accepted as a 831 * domain, allowing devices to just call this even if no domain is 832 * allocated. 833 */ 834 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 835 { 836 if (data) 837 return data->domain; 838 else 839 return NULL; 840 } 841 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 842