xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 4f3db074)
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "internal.h"
23 
24 struct regmap_irq_chip_data {
25 	struct mutex lock;
26 	struct irq_chip irq_chip;
27 
28 	struct regmap *map;
29 	const struct regmap_irq_chip *chip;
30 
31 	int irq_base;
32 	struct irq_domain *domain;
33 
34 	int irq;
35 	int wake_count;
36 
37 	void *status_reg_buf;
38 	unsigned int *status_buf;
39 	unsigned int *mask_buf;
40 	unsigned int *mask_buf_def;
41 	unsigned int *wake_buf;
42 
43 	unsigned int irq_reg_stride;
44 };
45 
46 static inline const
47 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
48 				     int irq)
49 {
50 	return &data->chip->irqs[irq];
51 }
52 
53 static void regmap_irq_lock(struct irq_data *data)
54 {
55 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
56 
57 	mutex_lock(&d->lock);
58 }
59 
60 static void regmap_irq_sync_unlock(struct irq_data *data)
61 {
62 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
63 	struct regmap *map = d->map;
64 	int i, ret;
65 	u32 reg;
66 
67 	if (d->chip->runtime_pm) {
68 		ret = pm_runtime_get_sync(map->dev);
69 		if (ret < 0)
70 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
71 				ret);
72 	}
73 
74 	/*
75 	 * If there's been a change in the mask write it back to the
76 	 * hardware.  We rely on the use of the regmap core cache to
77 	 * suppress pointless writes.
78 	 */
79 	for (i = 0; i < d->chip->num_regs; i++) {
80 		reg = d->chip->mask_base +
81 			(i * map->reg_stride * d->irq_reg_stride);
82 		if (d->chip->mask_invert)
83 			ret = regmap_update_bits(d->map, reg,
84 					 d->mask_buf_def[i], ~d->mask_buf[i]);
85 		else
86 			ret = regmap_update_bits(d->map, reg,
87 					 d->mask_buf_def[i], d->mask_buf[i]);
88 		if (ret != 0)
89 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
90 				reg);
91 
92 		reg = d->chip->wake_base +
93 			(i * map->reg_stride * d->irq_reg_stride);
94 		if (d->wake_buf) {
95 			if (d->chip->wake_invert)
96 				ret = regmap_update_bits(d->map, reg,
97 							 d->mask_buf_def[i],
98 							 ~d->wake_buf[i]);
99 			else
100 				ret = regmap_update_bits(d->map, reg,
101 							 d->mask_buf_def[i],
102 							 d->wake_buf[i]);
103 			if (ret != 0)
104 				dev_err(d->map->dev,
105 					"Failed to sync wakes in %x: %d\n",
106 					reg, ret);
107 		}
108 
109 		if (!d->chip->init_ack_masked)
110 			continue;
111 		/*
112 		 * Ack all the masked interrupts uncondictionly,
113 		 * OR if there is masked interrupt which hasn't been Acked,
114 		 * it'll be ignored in irq handler, then may introduce irq storm
115 		 */
116 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
117 			reg = d->chip->ack_base +
118 				(i * map->reg_stride * d->irq_reg_stride);
119 			ret = regmap_write(map, reg, d->mask_buf[i]);
120 			if (ret != 0)
121 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
122 					reg, ret);
123 		}
124 	}
125 
126 	if (d->chip->runtime_pm)
127 		pm_runtime_put(map->dev);
128 
129 	/* If we've changed our wakeup count propagate it to the parent */
130 	if (d->wake_count < 0)
131 		for (i = d->wake_count; i < 0; i++)
132 			irq_set_irq_wake(d->irq, 0);
133 	else if (d->wake_count > 0)
134 		for (i = 0; i < d->wake_count; i++)
135 			irq_set_irq_wake(d->irq, 1);
136 
137 	d->wake_count = 0;
138 
139 	mutex_unlock(&d->lock);
140 }
141 
142 static void regmap_irq_enable(struct irq_data *data)
143 {
144 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
145 	struct regmap *map = d->map;
146 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
147 
148 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
149 }
150 
151 static void regmap_irq_disable(struct irq_data *data)
152 {
153 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
154 	struct regmap *map = d->map;
155 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
156 
157 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
158 }
159 
160 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
161 {
162 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
163 	struct regmap *map = d->map;
164 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
165 
166 	if (on) {
167 		if (d->wake_buf)
168 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
169 				&= ~irq_data->mask;
170 		d->wake_count++;
171 	} else {
172 		if (d->wake_buf)
173 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
174 				|= irq_data->mask;
175 		d->wake_count--;
176 	}
177 
178 	return 0;
179 }
180 
181 static const struct irq_chip regmap_irq_chip = {
182 	.irq_bus_lock		= regmap_irq_lock,
183 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
184 	.irq_disable		= regmap_irq_disable,
185 	.irq_enable		= regmap_irq_enable,
186 	.irq_set_wake		= regmap_irq_set_wake,
187 };
188 
189 static irqreturn_t regmap_irq_thread(int irq, void *d)
190 {
191 	struct regmap_irq_chip_data *data = d;
192 	const struct regmap_irq_chip *chip = data->chip;
193 	struct regmap *map = data->map;
194 	int ret, i;
195 	bool handled = false;
196 	u32 reg;
197 
198 	if (chip->runtime_pm) {
199 		ret = pm_runtime_get_sync(map->dev);
200 		if (ret < 0) {
201 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
202 				ret);
203 			pm_runtime_put(map->dev);
204 			return IRQ_NONE;
205 		}
206 	}
207 
208 	/*
209 	 * Read in the statuses, using a single bulk read if possible
210 	 * in order to reduce the I/O overheads.
211 	 */
212 	if (!map->use_single_rw && map->reg_stride == 1 &&
213 	    data->irq_reg_stride == 1) {
214 		u8 *buf8 = data->status_reg_buf;
215 		u16 *buf16 = data->status_reg_buf;
216 		u32 *buf32 = data->status_reg_buf;
217 
218 		BUG_ON(!data->status_reg_buf);
219 
220 		ret = regmap_bulk_read(map, chip->status_base,
221 				       data->status_reg_buf,
222 				       chip->num_regs);
223 		if (ret != 0) {
224 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
225 				ret);
226 			return IRQ_NONE;
227 		}
228 
229 		for (i = 0; i < data->chip->num_regs; i++) {
230 			switch (map->format.val_bytes) {
231 			case 1:
232 				data->status_buf[i] = buf8[i];
233 				break;
234 			case 2:
235 				data->status_buf[i] = buf16[i];
236 				break;
237 			case 4:
238 				data->status_buf[i] = buf32[i];
239 				break;
240 			default:
241 				BUG();
242 				return IRQ_NONE;
243 			}
244 		}
245 
246 	} else {
247 		for (i = 0; i < data->chip->num_regs; i++) {
248 			ret = regmap_read(map, chip->status_base +
249 					  (i * map->reg_stride
250 					   * data->irq_reg_stride),
251 					  &data->status_buf[i]);
252 
253 			if (ret != 0) {
254 				dev_err(map->dev,
255 					"Failed to read IRQ status: %d\n",
256 					ret);
257 				if (chip->runtime_pm)
258 					pm_runtime_put(map->dev);
259 				return IRQ_NONE;
260 			}
261 		}
262 	}
263 
264 	/*
265 	 * Ignore masked IRQs and ack if we need to; we ack early so
266 	 * there is no race between handling and acknowleding the
267 	 * interrupt.  We assume that typically few of the interrupts
268 	 * will fire simultaneously so don't worry about overhead from
269 	 * doing a write per register.
270 	 */
271 	for (i = 0; i < data->chip->num_regs; i++) {
272 		data->status_buf[i] &= ~data->mask_buf[i];
273 
274 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
275 			reg = chip->ack_base +
276 				(i * map->reg_stride * data->irq_reg_stride);
277 			ret = regmap_write(map, reg, data->status_buf[i]);
278 			if (ret != 0)
279 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
280 					reg, ret);
281 		}
282 	}
283 
284 	for (i = 0; i < chip->num_irqs; i++) {
285 		if (data->status_buf[chip->irqs[i].reg_offset /
286 				     map->reg_stride] & chip->irqs[i].mask) {
287 			handle_nested_irq(irq_find_mapping(data->domain, i));
288 			handled = true;
289 		}
290 	}
291 
292 	if (chip->runtime_pm)
293 		pm_runtime_put(map->dev);
294 
295 	if (handled)
296 		return IRQ_HANDLED;
297 	else
298 		return IRQ_NONE;
299 }
300 
301 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
302 			  irq_hw_number_t hw)
303 {
304 	struct regmap_irq_chip_data *data = h->host_data;
305 
306 	irq_set_chip_data(virq, data);
307 	irq_set_chip(virq, &data->irq_chip);
308 	irq_set_nested_thread(virq, 1);
309 
310 	/* ARM needs us to explicitly flag the IRQ as valid
311 	 * and will set them noprobe when we do so. */
312 #ifdef CONFIG_ARM
313 	set_irq_flags(virq, IRQF_VALID);
314 #else
315 	irq_set_noprobe(virq);
316 #endif
317 
318 	return 0;
319 }
320 
321 static struct irq_domain_ops regmap_domain_ops = {
322 	.map	= regmap_irq_map,
323 	.xlate	= irq_domain_xlate_twocell,
324 };
325 
326 /**
327  * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
328  *
329  * map:       The regmap for the device.
330  * irq:       The IRQ the device uses to signal interrupts
331  * irq_flags: The IRQF_ flags to use for the primary interrupt.
332  * chip:      Configuration for the interrupt controller.
333  * data:      Runtime data structure for the controller, allocated on success
334  *
335  * Returns 0 on success or an errno on failure.
336  *
337  * In order for this to be efficient the chip really should use a
338  * register cache.  The chip driver is responsible for restoring the
339  * register values used by the IRQ controller over suspend and resume.
340  */
341 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
342 			int irq_base, const struct regmap_irq_chip *chip,
343 			struct regmap_irq_chip_data **data)
344 {
345 	struct regmap_irq_chip_data *d;
346 	int i;
347 	int ret = -ENOMEM;
348 	u32 reg;
349 
350 	if (chip->num_regs <= 0)
351 		return -EINVAL;
352 
353 	for (i = 0; i < chip->num_irqs; i++) {
354 		if (chip->irqs[i].reg_offset % map->reg_stride)
355 			return -EINVAL;
356 		if (chip->irqs[i].reg_offset / map->reg_stride >=
357 		    chip->num_regs)
358 			return -EINVAL;
359 	}
360 
361 	if (irq_base) {
362 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
363 		if (irq_base < 0) {
364 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
365 				 irq_base);
366 			return irq_base;
367 		}
368 	}
369 
370 	d = kzalloc(sizeof(*d), GFP_KERNEL);
371 	if (!d)
372 		return -ENOMEM;
373 
374 	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
375 				GFP_KERNEL);
376 	if (!d->status_buf)
377 		goto err_alloc;
378 
379 	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
380 			      GFP_KERNEL);
381 	if (!d->mask_buf)
382 		goto err_alloc;
383 
384 	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
385 				  GFP_KERNEL);
386 	if (!d->mask_buf_def)
387 		goto err_alloc;
388 
389 	if (chip->wake_base) {
390 		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
391 				      GFP_KERNEL);
392 		if (!d->wake_buf)
393 			goto err_alloc;
394 	}
395 
396 	d->irq_chip = regmap_irq_chip;
397 	d->irq_chip.name = chip->name;
398 	d->irq = irq;
399 	d->map = map;
400 	d->chip = chip;
401 	d->irq_base = irq_base;
402 
403 	if (chip->irq_reg_stride)
404 		d->irq_reg_stride = chip->irq_reg_stride;
405 	else
406 		d->irq_reg_stride = 1;
407 
408 	if (!map->use_single_rw && map->reg_stride == 1 &&
409 	    d->irq_reg_stride == 1) {
410 		d->status_reg_buf = kmalloc(map->format.val_bytes *
411 					    chip->num_regs, GFP_KERNEL);
412 		if (!d->status_reg_buf)
413 			goto err_alloc;
414 	}
415 
416 	mutex_init(&d->lock);
417 
418 	for (i = 0; i < chip->num_irqs; i++)
419 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
420 			|= chip->irqs[i].mask;
421 
422 	/* Mask all the interrupts by default */
423 	for (i = 0; i < chip->num_regs; i++) {
424 		d->mask_buf[i] = d->mask_buf_def[i];
425 		reg = chip->mask_base +
426 			(i * map->reg_stride * d->irq_reg_stride);
427 		if (chip->mask_invert)
428 			ret = regmap_update_bits(map, reg,
429 					 d->mask_buf[i], ~d->mask_buf[i]);
430 		else
431 			ret = regmap_update_bits(map, reg,
432 					 d->mask_buf[i], d->mask_buf[i]);
433 		if (ret != 0) {
434 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
435 				reg, ret);
436 			goto err_alloc;
437 		}
438 
439 		if (!chip->init_ack_masked)
440 			continue;
441 
442 		/* Ack masked but set interrupts */
443 		reg = chip->status_base +
444 			(i * map->reg_stride * d->irq_reg_stride);
445 		ret = regmap_read(map, reg, &d->status_buf[i]);
446 		if (ret != 0) {
447 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
448 				ret);
449 			goto err_alloc;
450 		}
451 
452 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
453 			reg = chip->ack_base +
454 				(i * map->reg_stride * d->irq_reg_stride);
455 			ret = regmap_write(map, reg,
456 					d->status_buf[i] & d->mask_buf[i]);
457 			if (ret != 0) {
458 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
459 					reg, ret);
460 				goto err_alloc;
461 			}
462 		}
463 	}
464 
465 	/* Wake is disabled by default */
466 	if (d->wake_buf) {
467 		for (i = 0; i < chip->num_regs; i++) {
468 			d->wake_buf[i] = d->mask_buf_def[i];
469 			reg = chip->wake_base +
470 				(i * map->reg_stride * d->irq_reg_stride);
471 
472 			if (chip->wake_invert)
473 				ret = regmap_update_bits(map, reg,
474 							 d->mask_buf_def[i],
475 							 0);
476 			else
477 				ret = regmap_update_bits(map, reg,
478 							 d->mask_buf_def[i],
479 							 d->wake_buf[i]);
480 			if (ret != 0) {
481 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
482 					reg, ret);
483 				goto err_alloc;
484 			}
485 		}
486 	}
487 
488 	if (irq_base)
489 		d->domain = irq_domain_add_legacy(map->dev->of_node,
490 						  chip->num_irqs, irq_base, 0,
491 						  &regmap_domain_ops, d);
492 	else
493 		d->domain = irq_domain_add_linear(map->dev->of_node,
494 						  chip->num_irqs,
495 						  &regmap_domain_ops, d);
496 	if (!d->domain) {
497 		dev_err(map->dev, "Failed to create IRQ domain\n");
498 		ret = -ENOMEM;
499 		goto err_alloc;
500 	}
501 
502 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
503 				   irq_flags | IRQF_ONESHOT,
504 				   chip->name, d);
505 	if (ret != 0) {
506 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
507 			irq, chip->name, ret);
508 		goto err_domain;
509 	}
510 
511 	*data = d;
512 
513 	return 0;
514 
515 err_domain:
516 	/* Should really dispose of the domain but... */
517 err_alloc:
518 	kfree(d->wake_buf);
519 	kfree(d->mask_buf_def);
520 	kfree(d->mask_buf);
521 	kfree(d->status_buf);
522 	kfree(d->status_reg_buf);
523 	kfree(d);
524 	return ret;
525 }
526 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
527 
528 /**
529  * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
530  *
531  * @irq: Primary IRQ for the device
532  * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
533  */
534 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
535 {
536 	if (!d)
537 		return;
538 
539 	free_irq(irq, d);
540 	irq_domain_remove(d->domain);
541 	kfree(d->wake_buf);
542 	kfree(d->mask_buf_def);
543 	kfree(d->mask_buf);
544 	kfree(d->status_reg_buf);
545 	kfree(d->status_buf);
546 	kfree(d);
547 }
548 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
549 
550 /**
551  * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
552  *
553  * Useful for drivers to request their own IRQs.
554  *
555  * @data: regmap_irq controller to operate on.
556  */
557 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
558 {
559 	WARN_ON(!data->irq_base);
560 	return data->irq_base;
561 }
562 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
563 
564 /**
565  * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
566  *
567  * Useful for drivers to request their own IRQs.
568  *
569  * @data: regmap_irq controller to operate on.
570  * @irq: index of the interrupt requested in the chip IRQs
571  */
572 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
573 {
574 	/* Handle holes in the IRQ list */
575 	if (!data->chip->irqs[irq].mask)
576 		return -EINVAL;
577 
578 	return irq_create_mapping(data->domain, irq);
579 }
580 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
581 
582 /**
583  * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
584  *
585  * Useful for drivers to request their own IRQs and for integration
586  * with subsystems.  For ease of integration NULL is accepted as a
587  * domain, allowing devices to just call this even if no domain is
588  * allocated.
589  *
590  * @data: regmap_irq controller to operate on.
591  */
592 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
593 {
594 	if (data)
595 		return data->domain;
596 	else
597 		return NULL;
598 }
599 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
600