xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 29d97219)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 	unsigned int **virt_buf;
42 
43 	unsigned int irq_reg_stride;
44 	unsigned int type_reg_stride;
45 
46 	bool clear_status:1;
47 };
48 
49 static int sub_irq_reg(struct regmap_irq_chip_data *data,
50 		       unsigned int base_reg, int i)
51 {
52 	const struct regmap_irq_chip *chip = data->chip;
53 	struct regmap *map = data->map;
54 	struct regmap_irq_sub_irq_map *subreg;
55 	unsigned int offset;
56 	int reg = 0;
57 
58 	if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
59 		/* Assume linear mapping */
60 		reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
61 	} else {
62 		subreg = &chip->sub_reg_offsets[i];
63 		offset = subreg->offset[0];
64 		reg = base_reg + offset;
65 	}
66 
67 	return reg;
68 }
69 
70 static inline const
71 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
72 				     int irq)
73 {
74 	return &data->chip->irqs[irq];
75 }
76 
77 static void regmap_irq_lock(struct irq_data *data)
78 {
79 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
80 
81 	mutex_lock(&d->lock);
82 }
83 
84 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
85 				  unsigned int reg, unsigned int mask,
86 				  unsigned int val)
87 {
88 	if (d->chip->mask_writeonly)
89 		return regmap_write_bits(d->map, reg, mask, val);
90 	else
91 		return regmap_update_bits(d->map, reg, mask, val);
92 }
93 
94 static void regmap_irq_sync_unlock(struct irq_data *data)
95 {
96 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
97 	struct regmap *map = d->map;
98 	int i, j, ret;
99 	u32 reg;
100 	u32 unmask_offset;
101 	u32 val;
102 
103 	if (d->chip->runtime_pm) {
104 		ret = pm_runtime_get_sync(map->dev);
105 		if (ret < 0)
106 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
107 				ret);
108 	}
109 
110 	if (d->clear_status) {
111 		for (i = 0; i < d->chip->num_regs; i++) {
112 			reg = sub_irq_reg(d, d->chip->status_base, i);
113 
114 			ret = regmap_read(map, reg, &val);
115 			if (ret)
116 				dev_err(d->map->dev,
117 					"Failed to clear the interrupt status bits\n");
118 		}
119 
120 		d->clear_status = false;
121 	}
122 
123 	/*
124 	 * If there's been a change in the mask write it back to the
125 	 * hardware.  We rely on the use of the regmap core cache to
126 	 * suppress pointless writes.
127 	 */
128 	for (i = 0; i < d->chip->num_regs; i++) {
129 		if (!d->chip->mask_base)
130 			continue;
131 
132 		reg = sub_irq_reg(d, d->chip->mask_base, i);
133 		if (d->chip->mask_invert) {
134 			ret = regmap_irq_update_bits(d, reg,
135 					 d->mask_buf_def[i], ~d->mask_buf[i]);
136 		} else if (d->chip->unmask_base) {
137 			/* set mask with mask_base register */
138 			ret = regmap_irq_update_bits(d, reg,
139 					d->mask_buf_def[i], ~d->mask_buf[i]);
140 			if (ret < 0)
141 				dev_err(d->map->dev,
142 					"Failed to sync unmasks in %x\n",
143 					reg);
144 			unmask_offset = d->chip->unmask_base -
145 							d->chip->mask_base;
146 			/* clear mask with unmask_base register */
147 			ret = regmap_irq_update_bits(d,
148 					reg + unmask_offset,
149 					d->mask_buf_def[i],
150 					d->mask_buf[i]);
151 		} else {
152 			ret = regmap_irq_update_bits(d, reg,
153 					 d->mask_buf_def[i], d->mask_buf[i]);
154 		}
155 		if (ret != 0)
156 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
157 				reg);
158 
159 		reg = sub_irq_reg(d, d->chip->wake_base, i);
160 		if (d->wake_buf) {
161 			if (d->chip->wake_invert)
162 				ret = regmap_irq_update_bits(d, reg,
163 							 d->mask_buf_def[i],
164 							 ~d->wake_buf[i]);
165 			else
166 				ret = regmap_irq_update_bits(d, reg,
167 							 d->mask_buf_def[i],
168 							 d->wake_buf[i]);
169 			if (ret != 0)
170 				dev_err(d->map->dev,
171 					"Failed to sync wakes in %x: %d\n",
172 					reg, ret);
173 		}
174 
175 		if (!d->chip->init_ack_masked)
176 			continue;
177 		/*
178 		 * Ack all the masked interrupts unconditionally,
179 		 * OR if there is masked interrupt which hasn't been Acked,
180 		 * it'll be ignored in irq handler, then may introduce irq storm
181 		 */
182 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
183 			reg = sub_irq_reg(d, d->chip->ack_base, i);
184 
185 			/* some chips ack by write 0 */
186 			if (d->chip->ack_invert)
187 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
188 			else
189 				ret = regmap_write(map, reg, d->mask_buf[i]);
190 			if (d->chip->clear_ack) {
191 				if (d->chip->ack_invert && !ret)
192 					ret = regmap_write(map, reg,
193 							   d->mask_buf[i]);
194 				else if (!ret)
195 					ret = regmap_write(map, reg,
196 							   ~d->mask_buf[i]);
197 			}
198 			if (ret != 0)
199 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
200 					reg, ret);
201 		}
202 	}
203 
204 	/* Don't update the type bits if we're using mask bits for irq type. */
205 	if (!d->chip->type_in_mask) {
206 		for (i = 0; i < d->chip->num_type_reg; i++) {
207 			if (!d->type_buf_def[i])
208 				continue;
209 			reg = sub_irq_reg(d, d->chip->type_base, i);
210 			if (d->chip->type_invert)
211 				ret = regmap_irq_update_bits(d, reg,
212 					d->type_buf_def[i], ~d->type_buf[i]);
213 			else
214 				ret = regmap_irq_update_bits(d, reg,
215 					d->type_buf_def[i], d->type_buf[i]);
216 			if (ret != 0)
217 				dev_err(d->map->dev, "Failed to sync type in %x\n",
218 					reg);
219 		}
220 	}
221 
222 	if (d->chip->num_virt_regs) {
223 		for (i = 0; i < d->chip->num_virt_regs; i++) {
224 			for (j = 0; j < d->chip->num_regs; j++) {
225 				reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
226 						  j);
227 				ret = regmap_write(map, reg, d->virt_buf[i][j]);
228 				if (ret != 0)
229 					dev_err(d->map->dev,
230 						"Failed to write virt 0x%x: %d\n",
231 						reg, ret);
232 			}
233 		}
234 	}
235 
236 	if (d->chip->runtime_pm)
237 		pm_runtime_put(map->dev);
238 
239 	/* If we've changed our wakeup count propagate it to the parent */
240 	if (d->wake_count < 0)
241 		for (i = d->wake_count; i < 0; i++)
242 			irq_set_irq_wake(d->irq, 0);
243 	else if (d->wake_count > 0)
244 		for (i = 0; i < d->wake_count; i++)
245 			irq_set_irq_wake(d->irq, 1);
246 
247 	d->wake_count = 0;
248 
249 	mutex_unlock(&d->lock);
250 }
251 
252 static void regmap_irq_enable(struct irq_data *data)
253 {
254 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 	struct regmap *map = d->map;
256 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 	unsigned int mask, type;
258 
259 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
260 
261 	/*
262 	 * The type_in_mask flag means that the underlying hardware uses
263 	 * separate mask bits for rising and falling edge interrupts, but
264 	 * we want to make them into a single virtual interrupt with
265 	 * configurable edge.
266 	 *
267 	 * If the interrupt we're enabling defines the falling or rising
268 	 * masks then instead of using the regular mask bits for this
269 	 * interrupt, use the value previously written to the type buffer
270 	 * at the corresponding offset in regmap_irq_set_type().
271 	 */
272 	if (d->chip->type_in_mask && type)
273 		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
274 	else
275 		mask = irq_data->mask;
276 
277 	if (d->chip->clear_on_unmask)
278 		d->clear_status = true;
279 
280 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
281 }
282 
283 static void regmap_irq_disable(struct irq_data *data)
284 {
285 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
286 	struct regmap *map = d->map;
287 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
288 
289 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
290 }
291 
292 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
293 {
294 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
295 	struct regmap *map = d->map;
296 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
297 	int reg;
298 	const struct regmap_irq_type *t = &irq_data->type;
299 
300 	if ((t->types_supported & type) != type)
301 		return 0;
302 
303 	reg = t->type_reg_offset / map->reg_stride;
304 
305 	if (t->type_reg_mask)
306 		d->type_buf[reg] &= ~t->type_reg_mask;
307 	else
308 		d->type_buf[reg] &= ~(t->type_falling_val |
309 				      t->type_rising_val |
310 				      t->type_level_low_val |
311 				      t->type_level_high_val);
312 	switch (type) {
313 	case IRQ_TYPE_EDGE_FALLING:
314 		d->type_buf[reg] |= t->type_falling_val;
315 		break;
316 
317 	case IRQ_TYPE_EDGE_RISING:
318 		d->type_buf[reg] |= t->type_rising_val;
319 		break;
320 
321 	case IRQ_TYPE_EDGE_BOTH:
322 		d->type_buf[reg] |= (t->type_falling_val |
323 					t->type_rising_val);
324 		break;
325 
326 	case IRQ_TYPE_LEVEL_HIGH:
327 		d->type_buf[reg] |= t->type_level_high_val;
328 		break;
329 
330 	case IRQ_TYPE_LEVEL_LOW:
331 		d->type_buf[reg] |= t->type_level_low_val;
332 		break;
333 	default:
334 		return -EINVAL;
335 	}
336 
337 	if (d->chip->set_type_virt)
338 		return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
339 					      reg);
340 
341 	return 0;
342 }
343 
344 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
345 {
346 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
347 	struct regmap *map = d->map;
348 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
349 
350 	if (on) {
351 		if (d->wake_buf)
352 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
353 				&= ~irq_data->mask;
354 		d->wake_count++;
355 	} else {
356 		if (d->wake_buf)
357 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
358 				|= irq_data->mask;
359 		d->wake_count--;
360 	}
361 
362 	return 0;
363 }
364 
365 static const struct irq_chip regmap_irq_chip = {
366 	.irq_bus_lock		= regmap_irq_lock,
367 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
368 	.irq_disable		= regmap_irq_disable,
369 	.irq_enable		= regmap_irq_enable,
370 	.irq_set_type		= regmap_irq_set_type,
371 	.irq_set_wake		= regmap_irq_set_wake,
372 };
373 
374 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
375 					   unsigned int b)
376 {
377 	const struct regmap_irq_chip *chip = data->chip;
378 	struct regmap *map = data->map;
379 	struct regmap_irq_sub_irq_map *subreg;
380 	int i, ret = 0;
381 
382 	if (!chip->sub_reg_offsets) {
383 		/* Assume linear mapping */
384 		ret = regmap_read(map, chip->status_base +
385 				  (b * map->reg_stride * data->irq_reg_stride),
386 				   &data->status_buf[b]);
387 	} else {
388 		subreg = &chip->sub_reg_offsets[b];
389 		for (i = 0; i < subreg->num_regs; i++) {
390 			unsigned int offset = subreg->offset[i];
391 
392 			if (chip->not_fixed_stride)
393 				ret = regmap_read(map,
394 						chip->status_base + offset,
395 						&data->status_buf[b]);
396 			else
397 				ret = regmap_read(map,
398 						chip->status_base + offset,
399 						&data->status_buf[offset]);
400 
401 			if (ret)
402 				break;
403 		}
404 	}
405 	return ret;
406 }
407 
408 static irqreturn_t regmap_irq_thread(int irq, void *d)
409 {
410 	struct regmap_irq_chip_data *data = d;
411 	const struct regmap_irq_chip *chip = data->chip;
412 	struct regmap *map = data->map;
413 	int ret, i;
414 	bool handled = false;
415 	u32 reg;
416 
417 	if (chip->handle_pre_irq)
418 		chip->handle_pre_irq(chip->irq_drv_data);
419 
420 	if (chip->runtime_pm) {
421 		ret = pm_runtime_get_sync(map->dev);
422 		if (ret < 0) {
423 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
424 				ret);
425 			goto exit;
426 		}
427 	}
428 
429 	/*
430 	 * Read only registers with active IRQs if the chip has 'main status
431 	 * register'. Else read in the statuses, using a single bulk read if
432 	 * possible in order to reduce the I/O overheads.
433 	 */
434 
435 	if (chip->num_main_regs) {
436 		unsigned int max_main_bits;
437 		unsigned long size;
438 
439 		size = chip->num_regs * sizeof(unsigned int);
440 
441 		max_main_bits = (chip->num_main_status_bits) ?
442 				 chip->num_main_status_bits : chip->num_regs;
443 		/* Clear the status buf as we don't read all status regs */
444 		memset(data->status_buf, 0, size);
445 
446 		/* We could support bulk read for main status registers
447 		 * but I don't expect to see devices with really many main
448 		 * status registers so let's only support single reads for the
449 		 * sake of simplicity. and add bulk reads only if needed
450 		 */
451 		for (i = 0; i < chip->num_main_regs; i++) {
452 			ret = regmap_read(map, chip->main_status +
453 				  (i * map->reg_stride
454 				   * data->irq_reg_stride),
455 				  &data->main_status_buf[i]);
456 			if (ret) {
457 				dev_err(map->dev,
458 					"Failed to read IRQ status %d\n",
459 					ret);
460 				goto exit;
461 			}
462 		}
463 
464 		/* Read sub registers with active IRQs */
465 		for (i = 0; i < chip->num_main_regs; i++) {
466 			unsigned int b;
467 			const unsigned long mreg = data->main_status_buf[i];
468 
469 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
470 				if (i * map->format.val_bytes * 8 + b >
471 				    max_main_bits)
472 					break;
473 				ret = read_sub_irq_data(data, b);
474 
475 				if (ret != 0) {
476 					dev_err(map->dev,
477 						"Failed to read IRQ status %d\n",
478 						ret);
479 					goto exit;
480 				}
481 			}
482 
483 		}
484 	} else if (!map->use_single_read && map->reg_stride == 1 &&
485 		   data->irq_reg_stride == 1) {
486 
487 		u8 *buf8 = data->status_reg_buf;
488 		u16 *buf16 = data->status_reg_buf;
489 		u32 *buf32 = data->status_reg_buf;
490 
491 		BUG_ON(!data->status_reg_buf);
492 
493 		ret = regmap_bulk_read(map, chip->status_base,
494 				       data->status_reg_buf,
495 				       chip->num_regs);
496 		if (ret != 0) {
497 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
498 				ret);
499 			goto exit;
500 		}
501 
502 		for (i = 0; i < data->chip->num_regs; i++) {
503 			switch (map->format.val_bytes) {
504 			case 1:
505 				data->status_buf[i] = buf8[i];
506 				break;
507 			case 2:
508 				data->status_buf[i] = buf16[i];
509 				break;
510 			case 4:
511 				data->status_buf[i] = buf32[i];
512 				break;
513 			default:
514 				BUG();
515 				goto exit;
516 			}
517 		}
518 
519 	} else {
520 		for (i = 0; i < data->chip->num_regs; i++) {
521 			unsigned int reg = sub_irq_reg(data,
522 					data->chip->status_base, i);
523 			ret = regmap_read(map, reg, &data->status_buf[i]);
524 
525 			if (ret != 0) {
526 				dev_err(map->dev,
527 					"Failed to read IRQ status: %d\n",
528 					ret);
529 				goto exit;
530 			}
531 		}
532 	}
533 
534 	/*
535 	 * Ignore masked IRQs and ack if we need to; we ack early so
536 	 * there is no race between handling and acknowleding the
537 	 * interrupt.  We assume that typically few of the interrupts
538 	 * will fire simultaneously so don't worry about overhead from
539 	 * doing a write per register.
540 	 */
541 	for (i = 0; i < data->chip->num_regs; i++) {
542 		data->status_buf[i] &= ~data->mask_buf[i];
543 
544 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
545 			reg = sub_irq_reg(data, data->chip->ack_base, i);
546 
547 			if (chip->ack_invert)
548 				ret = regmap_write(map, reg,
549 						~data->status_buf[i]);
550 			else
551 				ret = regmap_write(map, reg,
552 						data->status_buf[i]);
553 			if (chip->clear_ack) {
554 				if (chip->ack_invert && !ret)
555 					ret = regmap_write(map, reg,
556 							data->status_buf[i]);
557 				else if (!ret)
558 					ret = regmap_write(map, reg,
559 							~data->status_buf[i]);
560 			}
561 			if (ret != 0)
562 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
563 					reg, ret);
564 		}
565 	}
566 
567 	for (i = 0; i < chip->num_irqs; i++) {
568 		if (data->status_buf[chip->irqs[i].reg_offset /
569 				     map->reg_stride] & chip->irqs[i].mask) {
570 			handle_nested_irq(irq_find_mapping(data->domain, i));
571 			handled = true;
572 		}
573 	}
574 
575 exit:
576 	if (chip->runtime_pm)
577 		pm_runtime_put(map->dev);
578 
579 	if (chip->handle_post_irq)
580 		chip->handle_post_irq(chip->irq_drv_data);
581 
582 	if (handled)
583 		return IRQ_HANDLED;
584 	else
585 		return IRQ_NONE;
586 }
587 
588 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
589 			  irq_hw_number_t hw)
590 {
591 	struct regmap_irq_chip_data *data = h->host_data;
592 
593 	irq_set_chip_data(virq, data);
594 	irq_set_chip(virq, &data->irq_chip);
595 	irq_set_nested_thread(virq, 1);
596 	irq_set_parent(virq, data->irq);
597 	irq_set_noprobe(virq);
598 
599 	return 0;
600 }
601 
602 static const struct irq_domain_ops regmap_domain_ops = {
603 	.map	= regmap_irq_map,
604 	.xlate	= irq_domain_xlate_onetwocell,
605 };
606 
607 /**
608  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
609  *
610  * @fwnode: The firmware node where the IRQ domain should be added to.
611  * @map: The regmap for the device.
612  * @irq: The IRQ the device uses to signal interrupts.
613  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
614  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
615  * @chip: Configuration for the interrupt controller.
616  * @data: Runtime data structure for the controller, allocated on success.
617  *
618  * Returns 0 on success or an errno on failure.
619  *
620  * In order for this to be efficient the chip really should use a
621  * register cache.  The chip driver is responsible for restoring the
622  * register values used by the IRQ controller over suspend and resume.
623  */
624 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
625 			       struct regmap *map, int irq,
626 			       int irq_flags, int irq_base,
627 			       const struct regmap_irq_chip *chip,
628 			       struct regmap_irq_chip_data **data)
629 {
630 	struct regmap_irq_chip_data *d;
631 	int i;
632 	int ret = -ENOMEM;
633 	int num_type_reg;
634 	u32 reg;
635 	u32 unmask_offset;
636 
637 	if (chip->num_regs <= 0)
638 		return -EINVAL;
639 
640 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
641 		return -EINVAL;
642 
643 	for (i = 0; i < chip->num_irqs; i++) {
644 		if (chip->irqs[i].reg_offset % map->reg_stride)
645 			return -EINVAL;
646 		if (chip->irqs[i].reg_offset / map->reg_stride >=
647 		    chip->num_regs)
648 			return -EINVAL;
649 	}
650 
651 	if (chip->not_fixed_stride) {
652 		for (i = 0; i < chip->num_regs; i++)
653 			if (chip->sub_reg_offsets[i].num_regs != 1)
654 				return -EINVAL;
655 	}
656 
657 	if (irq_base) {
658 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
659 		if (irq_base < 0) {
660 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
661 				 irq_base);
662 			return irq_base;
663 		}
664 	}
665 
666 	d = kzalloc(sizeof(*d), GFP_KERNEL);
667 	if (!d)
668 		return -ENOMEM;
669 
670 	if (chip->num_main_regs) {
671 		d->main_status_buf = kcalloc(chip->num_main_regs,
672 					     sizeof(unsigned int),
673 					     GFP_KERNEL);
674 
675 		if (!d->main_status_buf)
676 			goto err_alloc;
677 	}
678 
679 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
680 				GFP_KERNEL);
681 	if (!d->status_buf)
682 		goto err_alloc;
683 
684 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
685 			      GFP_KERNEL);
686 	if (!d->mask_buf)
687 		goto err_alloc;
688 
689 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
690 				  GFP_KERNEL);
691 	if (!d->mask_buf_def)
692 		goto err_alloc;
693 
694 	if (chip->wake_base) {
695 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
696 				      GFP_KERNEL);
697 		if (!d->wake_buf)
698 			goto err_alloc;
699 	}
700 
701 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
702 	if (num_type_reg) {
703 		d->type_buf_def = kcalloc(num_type_reg,
704 					  sizeof(unsigned int), GFP_KERNEL);
705 		if (!d->type_buf_def)
706 			goto err_alloc;
707 
708 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
709 				      GFP_KERNEL);
710 		if (!d->type_buf)
711 			goto err_alloc;
712 	}
713 
714 	if (chip->num_virt_regs) {
715 		/*
716 		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
717 		 */
718 		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
719 				      GFP_KERNEL);
720 		if (!d->virt_buf)
721 			goto err_alloc;
722 
723 		for (i = 0; i < chip->num_virt_regs; i++) {
724 			d->virt_buf[i] = kcalloc(chip->num_regs,
725 						 sizeof(unsigned int),
726 						 GFP_KERNEL);
727 			if (!d->virt_buf[i])
728 				goto err_alloc;
729 		}
730 	}
731 
732 	d->irq_chip = regmap_irq_chip;
733 	d->irq_chip.name = chip->name;
734 	d->irq = irq;
735 	d->map = map;
736 	d->chip = chip;
737 	d->irq_base = irq_base;
738 
739 	if (chip->irq_reg_stride)
740 		d->irq_reg_stride = chip->irq_reg_stride;
741 	else
742 		d->irq_reg_stride = 1;
743 
744 	if (chip->type_reg_stride)
745 		d->type_reg_stride = chip->type_reg_stride;
746 	else
747 		d->type_reg_stride = 1;
748 
749 	if (!map->use_single_read && map->reg_stride == 1 &&
750 	    d->irq_reg_stride == 1) {
751 		d->status_reg_buf = kmalloc_array(chip->num_regs,
752 						  map->format.val_bytes,
753 						  GFP_KERNEL);
754 		if (!d->status_reg_buf)
755 			goto err_alloc;
756 	}
757 
758 	mutex_init(&d->lock);
759 
760 	for (i = 0; i < chip->num_irqs; i++)
761 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
762 			|= chip->irqs[i].mask;
763 
764 	/* Mask all the interrupts by default */
765 	for (i = 0; i < chip->num_regs; i++) {
766 		d->mask_buf[i] = d->mask_buf_def[i];
767 		if (!chip->mask_base)
768 			continue;
769 
770 		reg = sub_irq_reg(d, d->chip->mask_base, i);
771 
772 		if (chip->mask_invert)
773 			ret = regmap_irq_update_bits(d, reg,
774 					 d->mask_buf[i], ~d->mask_buf[i]);
775 		else if (d->chip->unmask_base) {
776 			unmask_offset = d->chip->unmask_base -
777 					d->chip->mask_base;
778 			ret = regmap_irq_update_bits(d,
779 					reg + unmask_offset,
780 					d->mask_buf[i],
781 					d->mask_buf[i]);
782 		} else
783 			ret = regmap_irq_update_bits(d, reg,
784 					 d->mask_buf[i], d->mask_buf[i]);
785 		if (ret != 0) {
786 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
787 				reg, ret);
788 			goto err_alloc;
789 		}
790 
791 		if (!chip->init_ack_masked)
792 			continue;
793 
794 		/* Ack masked but set interrupts */
795 		reg = sub_irq_reg(d, d->chip->status_base, i);
796 		ret = regmap_read(map, reg, &d->status_buf[i]);
797 		if (ret != 0) {
798 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
799 				ret);
800 			goto err_alloc;
801 		}
802 
803 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
804 			reg = sub_irq_reg(d, d->chip->ack_base, i);
805 			if (chip->ack_invert)
806 				ret = regmap_write(map, reg,
807 					~(d->status_buf[i] & d->mask_buf[i]));
808 			else
809 				ret = regmap_write(map, reg,
810 					d->status_buf[i] & d->mask_buf[i]);
811 			if (chip->clear_ack) {
812 				if (chip->ack_invert && !ret)
813 					ret = regmap_write(map, reg,
814 						(d->status_buf[i] &
815 						 d->mask_buf[i]));
816 				else if (!ret)
817 					ret = regmap_write(map, reg,
818 						~(d->status_buf[i] &
819 						  d->mask_buf[i]));
820 			}
821 			if (ret != 0) {
822 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
823 					reg, ret);
824 				goto err_alloc;
825 			}
826 		}
827 	}
828 
829 	/* Wake is disabled by default */
830 	if (d->wake_buf) {
831 		for (i = 0; i < chip->num_regs; i++) {
832 			d->wake_buf[i] = d->mask_buf_def[i];
833 			reg = sub_irq_reg(d, d->chip->wake_base, i);
834 
835 			if (chip->wake_invert)
836 				ret = regmap_irq_update_bits(d, reg,
837 							 d->mask_buf_def[i],
838 							 0);
839 			else
840 				ret = regmap_irq_update_bits(d, reg,
841 							 d->mask_buf_def[i],
842 							 d->wake_buf[i]);
843 			if (ret != 0) {
844 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
845 					reg, ret);
846 				goto err_alloc;
847 			}
848 		}
849 	}
850 
851 	if (chip->num_type_reg && !chip->type_in_mask) {
852 		for (i = 0; i < chip->num_type_reg; ++i) {
853 			reg = sub_irq_reg(d, d->chip->type_base, i);
854 
855 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
856 
857 			if (d->chip->type_invert)
858 				d->type_buf_def[i] = ~d->type_buf_def[i];
859 
860 			if (ret) {
861 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
862 					reg, ret);
863 				goto err_alloc;
864 			}
865 		}
866 	}
867 
868 	if (irq_base)
869 		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
870 						     irq_base, 0,
871 						     &regmap_domain_ops, d);
872 	else
873 		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
874 						     &regmap_domain_ops, d);
875 	if (!d->domain) {
876 		dev_err(map->dev, "Failed to create IRQ domain\n");
877 		ret = -ENOMEM;
878 		goto err_alloc;
879 	}
880 
881 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
882 				   irq_flags | IRQF_ONESHOT,
883 				   chip->name, d);
884 	if (ret != 0) {
885 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
886 			irq, chip->name, ret);
887 		goto err_domain;
888 	}
889 
890 	*data = d;
891 
892 	return 0;
893 
894 err_domain:
895 	/* Should really dispose of the domain but... */
896 err_alloc:
897 	kfree(d->type_buf);
898 	kfree(d->type_buf_def);
899 	kfree(d->wake_buf);
900 	kfree(d->mask_buf_def);
901 	kfree(d->mask_buf);
902 	kfree(d->status_buf);
903 	kfree(d->status_reg_buf);
904 	if (d->virt_buf) {
905 		for (i = 0; i < chip->num_virt_regs; i++)
906 			kfree(d->virt_buf[i]);
907 		kfree(d->virt_buf);
908 	}
909 	kfree(d);
910 	return ret;
911 }
912 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
913 
914 /**
915  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
916  *
917  * @map: The regmap for the device.
918  * @irq: The IRQ the device uses to signal interrupts.
919  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
920  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
921  * @chip: Configuration for the interrupt controller.
922  * @data: Runtime data structure for the controller, allocated on success.
923  *
924  * Returns 0 on success or an errno on failure.
925  *
926  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
927  * node of the regmap is used.
928  */
929 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
930 			int irq_base, const struct regmap_irq_chip *chip,
931 			struct regmap_irq_chip_data **data)
932 {
933 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
934 					  irq_flags, irq_base, chip, data);
935 }
936 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
937 
938 /**
939  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
940  *
941  * @irq: Primary IRQ for the device
942  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
943  *
944  * This function also disposes of all mapped IRQs on the chip.
945  */
946 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
947 {
948 	unsigned int virq;
949 	int hwirq;
950 
951 	if (!d)
952 		return;
953 
954 	free_irq(irq, d);
955 
956 	/* Dispose all virtual irq from irq domain before removing it */
957 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
958 		/* Ignore hwirq if holes in the IRQ list */
959 		if (!d->chip->irqs[hwirq].mask)
960 			continue;
961 
962 		/*
963 		 * Find the virtual irq of hwirq on chip and if it is
964 		 * there then dispose it
965 		 */
966 		virq = irq_find_mapping(d->domain, hwirq);
967 		if (virq)
968 			irq_dispose_mapping(virq);
969 	}
970 
971 	irq_domain_remove(d->domain);
972 	kfree(d->type_buf);
973 	kfree(d->type_buf_def);
974 	kfree(d->wake_buf);
975 	kfree(d->mask_buf_def);
976 	kfree(d->mask_buf);
977 	kfree(d->status_reg_buf);
978 	kfree(d->status_buf);
979 	kfree(d);
980 }
981 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
982 
983 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
984 {
985 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
986 
987 	regmap_del_irq_chip(d->irq, d);
988 }
989 
990 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
991 
992 {
993 	struct regmap_irq_chip_data **r = res;
994 
995 	if (!r || !*r) {
996 		WARN_ON(!r || !*r);
997 		return 0;
998 	}
999 	return *r == data;
1000 }
1001 
1002 /**
1003  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1004  *
1005  * @dev: The device pointer on which irq_chip belongs to.
1006  * @fwnode: The firmware node where the IRQ domain should be added to.
1007  * @map: The regmap for the device.
1008  * @irq: The IRQ the device uses to signal interrupts
1009  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1010  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1011  * @chip: Configuration for the interrupt controller.
1012  * @data: Runtime data structure for the controller, allocated on success
1013  *
1014  * Returns 0 on success or an errno on failure.
1015  *
1016  * The &regmap_irq_chip_data will be automatically released when the device is
1017  * unbound.
1018  */
1019 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1020 				    struct fwnode_handle *fwnode,
1021 				    struct regmap *map, int irq,
1022 				    int irq_flags, int irq_base,
1023 				    const struct regmap_irq_chip *chip,
1024 				    struct regmap_irq_chip_data **data)
1025 {
1026 	struct regmap_irq_chip_data **ptr, *d;
1027 	int ret;
1028 
1029 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1030 			   GFP_KERNEL);
1031 	if (!ptr)
1032 		return -ENOMEM;
1033 
1034 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1035 					 chip, &d);
1036 	if (ret < 0) {
1037 		devres_free(ptr);
1038 		return ret;
1039 	}
1040 
1041 	*ptr = d;
1042 	devres_add(dev, ptr);
1043 	*data = d;
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1047 
1048 /**
1049  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
1050  *
1051  * @dev: The device pointer on which irq_chip belongs to.
1052  * @map: The regmap for the device.
1053  * @irq: The IRQ the device uses to signal interrupts
1054  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1055  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1056  * @chip: Configuration for the interrupt controller.
1057  * @data: Runtime data structure for the controller, allocated on success
1058  *
1059  * Returns 0 on success or an errno on failure.
1060  *
1061  * The &regmap_irq_chip_data will be automatically released when the device is
1062  * unbound.
1063  */
1064 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1065 			     int irq_flags, int irq_base,
1066 			     const struct regmap_irq_chip *chip,
1067 			     struct regmap_irq_chip_data **data)
1068 {
1069 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1070 					       irq, irq_flags, irq_base, chip,
1071 					       data);
1072 }
1073 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1074 
1075 /**
1076  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1077  *
1078  * @dev: Device for which which resource was allocated.
1079  * @irq: Primary IRQ for the device.
1080  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1081  *
1082  * A resource managed version of regmap_del_irq_chip().
1083  */
1084 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1085 			      struct regmap_irq_chip_data *data)
1086 {
1087 	int rc;
1088 
1089 	WARN_ON(irq != data->irq);
1090 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1091 			    devm_regmap_irq_chip_match, data);
1092 
1093 	if (rc != 0)
1094 		WARN_ON(rc);
1095 }
1096 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1097 
1098 /**
1099  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1100  *
1101  * @data: regmap irq controller to operate on.
1102  *
1103  * Useful for drivers to request their own IRQs.
1104  */
1105 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1106 {
1107 	WARN_ON(!data->irq_base);
1108 	return data->irq_base;
1109 }
1110 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1111 
1112 /**
1113  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1114  *
1115  * @data: regmap irq controller to operate on.
1116  * @irq: index of the interrupt requested in the chip IRQs.
1117  *
1118  * Useful for drivers to request their own IRQs.
1119  */
1120 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1121 {
1122 	/* Handle holes in the IRQ list */
1123 	if (!data->chip->irqs[irq].mask)
1124 		return -EINVAL;
1125 
1126 	return irq_create_mapping(data->domain, irq);
1127 }
1128 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1129 
1130 /**
1131  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1132  *
1133  * @data: regmap_irq controller to operate on.
1134  *
1135  * Useful for drivers to request their own IRQs and for integration
1136  * with subsystems.  For ease of integration NULL is accepted as a
1137  * domain, allowing devices to just call this even if no domain is
1138  * allocated.
1139  */
1140 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1141 {
1142 	if (data)
1143 		return data->domain;
1144 	else
1145 		return NULL;
1146 }
1147 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1148