1 /* 2 * regmap based irq_chip 3 * 4 * Copyright 2011 Wolfson Microelectronics plc 5 * 6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/device.h> 14 #include <linux/export.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/irqdomain.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/regmap.h> 20 #include <linux/slab.h> 21 22 #include "internal.h" 23 24 struct regmap_irq_chip_data { 25 struct mutex lock; 26 struct irq_chip irq_chip; 27 28 struct regmap *map; 29 const struct regmap_irq_chip *chip; 30 31 int irq_base; 32 struct irq_domain *domain; 33 34 int irq; 35 int wake_count; 36 37 void *status_reg_buf; 38 unsigned int *status_buf; 39 unsigned int *mask_buf; 40 unsigned int *mask_buf_def; 41 unsigned int *wake_buf; 42 unsigned int *type_buf; 43 unsigned int *type_buf_def; 44 45 unsigned int irq_reg_stride; 46 unsigned int type_reg_stride; 47 48 bool clear_status:1; 49 }; 50 51 static inline const 52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, 53 int irq) 54 { 55 return &data->chip->irqs[irq]; 56 } 57 58 static void regmap_irq_lock(struct irq_data *data) 59 { 60 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 61 62 mutex_lock(&d->lock); 63 } 64 65 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d, 66 unsigned int reg, unsigned int mask, 67 unsigned int val) 68 { 69 if (d->chip->mask_writeonly) 70 return regmap_write_bits(d->map, reg, mask, val); 71 else 72 return regmap_update_bits(d->map, reg, mask, val); 73 } 74 75 static void regmap_irq_sync_unlock(struct irq_data *data) 76 { 77 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 78 struct regmap *map = d->map; 79 int i, ret; 80 u32 reg; 81 u32 unmask_offset; 82 u32 val; 83 84 if (d->chip->runtime_pm) { 85 ret = pm_runtime_get_sync(map->dev); 86 if (ret < 0) 87 dev_err(map->dev, "IRQ sync failed to resume: %d\n", 88 ret); 89 } 90 91 if (d->clear_status) { 92 for (i = 0; i < d->chip->num_regs; i++) { 93 reg = d->chip->status_base + 94 (i * map->reg_stride * d->irq_reg_stride); 95 96 ret = regmap_read(map, reg, &val); 97 if (ret) 98 dev_err(d->map->dev, 99 "Failed to clear the interrupt status bits\n"); 100 } 101 102 d->clear_status = false; 103 } 104 105 /* 106 * If there's been a change in the mask write it back to the 107 * hardware. We rely on the use of the regmap core cache to 108 * suppress pointless writes. 109 */ 110 for (i = 0; i < d->chip->num_regs; i++) { 111 if (!d->chip->mask_base) 112 continue; 113 114 reg = d->chip->mask_base + 115 (i * map->reg_stride * d->irq_reg_stride); 116 if (d->chip->mask_invert) { 117 ret = regmap_irq_update_bits(d, reg, 118 d->mask_buf_def[i], ~d->mask_buf[i]); 119 } else if (d->chip->unmask_base) { 120 /* set mask with mask_base register */ 121 ret = regmap_irq_update_bits(d, reg, 122 d->mask_buf_def[i], ~d->mask_buf[i]); 123 if (ret < 0) 124 dev_err(d->map->dev, 125 "Failed to sync unmasks in %x\n", 126 reg); 127 unmask_offset = d->chip->unmask_base - 128 d->chip->mask_base; 129 /* clear mask with unmask_base register */ 130 ret = regmap_irq_update_bits(d, 131 reg + unmask_offset, 132 d->mask_buf_def[i], 133 d->mask_buf[i]); 134 } else { 135 ret = regmap_irq_update_bits(d, reg, 136 d->mask_buf_def[i], d->mask_buf[i]); 137 } 138 if (ret != 0) 139 dev_err(d->map->dev, "Failed to sync masks in %x\n", 140 reg); 141 142 reg = d->chip->wake_base + 143 (i * map->reg_stride * d->irq_reg_stride); 144 if (d->wake_buf) { 145 if (d->chip->wake_invert) 146 ret = regmap_irq_update_bits(d, reg, 147 d->mask_buf_def[i], 148 ~d->wake_buf[i]); 149 else 150 ret = regmap_irq_update_bits(d, reg, 151 d->mask_buf_def[i], 152 d->wake_buf[i]); 153 if (ret != 0) 154 dev_err(d->map->dev, 155 "Failed to sync wakes in %x: %d\n", 156 reg, ret); 157 } 158 159 if (!d->chip->init_ack_masked) 160 continue; 161 /* 162 * Ack all the masked interrupts unconditionally, 163 * OR if there is masked interrupt which hasn't been Acked, 164 * it'll be ignored in irq handler, then may introduce irq storm 165 */ 166 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { 167 reg = d->chip->ack_base + 168 (i * map->reg_stride * d->irq_reg_stride); 169 /* some chips ack by write 0 */ 170 if (d->chip->ack_invert) 171 ret = regmap_write(map, reg, ~d->mask_buf[i]); 172 else 173 ret = regmap_write(map, reg, d->mask_buf[i]); 174 if (ret != 0) 175 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", 176 reg, ret); 177 } 178 } 179 180 /* Don't update the type bits if we're using mask bits for irq type. */ 181 if (!d->chip->type_in_mask) { 182 for (i = 0; i < d->chip->num_type_reg; i++) { 183 if (!d->type_buf_def[i]) 184 continue; 185 reg = d->chip->type_base + 186 (i * map->reg_stride * d->type_reg_stride); 187 if (d->chip->type_invert) 188 ret = regmap_irq_update_bits(d, reg, 189 d->type_buf_def[i], ~d->type_buf[i]); 190 else 191 ret = regmap_irq_update_bits(d, reg, 192 d->type_buf_def[i], d->type_buf[i]); 193 if (ret != 0) 194 dev_err(d->map->dev, "Failed to sync type in %x\n", 195 reg); 196 } 197 } 198 199 if (d->chip->runtime_pm) 200 pm_runtime_put(map->dev); 201 202 /* If we've changed our wakeup count propagate it to the parent */ 203 if (d->wake_count < 0) 204 for (i = d->wake_count; i < 0; i++) 205 irq_set_irq_wake(d->irq, 0); 206 else if (d->wake_count > 0) 207 for (i = 0; i < d->wake_count; i++) 208 irq_set_irq_wake(d->irq, 1); 209 210 d->wake_count = 0; 211 212 mutex_unlock(&d->lock); 213 } 214 215 static void regmap_irq_enable(struct irq_data *data) 216 { 217 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 218 struct regmap *map = d->map; 219 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 220 unsigned int mask, type; 221 222 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val; 223 224 /* 225 * The type_in_mask flag means that the underlying hardware uses 226 * separate mask bits for rising and falling edge interrupts, but 227 * we want to make them into a single virtual interrupt with 228 * configurable edge. 229 * 230 * If the interrupt we're enabling defines the falling or rising 231 * masks then instead of using the regular mask bits for this 232 * interrupt, use the value previously written to the type buffer 233 * at the corresponding offset in regmap_irq_set_type(). 234 */ 235 if (d->chip->type_in_mask && type) 236 mask = d->type_buf[irq_data->reg_offset / map->reg_stride]; 237 else 238 mask = irq_data->mask; 239 240 if (d->chip->clear_on_unmask) 241 d->clear_status = true; 242 243 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask; 244 } 245 246 static void regmap_irq_disable(struct irq_data *data) 247 { 248 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 249 struct regmap *map = d->map; 250 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 251 252 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; 253 } 254 255 static int regmap_irq_set_type(struct irq_data *data, unsigned int type) 256 { 257 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 258 struct regmap *map = d->map; 259 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 260 int reg; 261 const struct regmap_irq_type *t = &irq_data->type; 262 263 if ((t->types_supported & type) != type) 264 return 0; 265 266 reg = t->type_reg_offset / map->reg_stride; 267 268 if (t->type_reg_mask) 269 d->type_buf[reg] &= ~t->type_reg_mask; 270 else 271 d->type_buf[reg] &= ~(t->type_falling_val | 272 t->type_rising_val | 273 t->type_level_low_val | 274 t->type_level_high_val); 275 switch (type) { 276 case IRQ_TYPE_EDGE_FALLING: 277 d->type_buf[reg] |= t->type_falling_val; 278 break; 279 280 case IRQ_TYPE_EDGE_RISING: 281 d->type_buf[reg] |= t->type_rising_val; 282 break; 283 284 case IRQ_TYPE_EDGE_BOTH: 285 d->type_buf[reg] |= (t->type_falling_val | 286 t->type_rising_val); 287 break; 288 289 case IRQ_TYPE_LEVEL_HIGH: 290 d->type_buf[reg] |= t->type_level_high_val; 291 break; 292 293 case IRQ_TYPE_LEVEL_LOW: 294 d->type_buf[reg] |= t->type_level_low_val; 295 break; 296 default: 297 return -EINVAL; 298 } 299 return 0; 300 } 301 302 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) 303 { 304 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); 305 struct regmap *map = d->map; 306 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); 307 308 if (on) { 309 if (d->wake_buf) 310 d->wake_buf[irq_data->reg_offset / map->reg_stride] 311 &= ~irq_data->mask; 312 d->wake_count++; 313 } else { 314 if (d->wake_buf) 315 d->wake_buf[irq_data->reg_offset / map->reg_stride] 316 |= irq_data->mask; 317 d->wake_count--; 318 } 319 320 return 0; 321 } 322 323 static const struct irq_chip regmap_irq_chip = { 324 .irq_bus_lock = regmap_irq_lock, 325 .irq_bus_sync_unlock = regmap_irq_sync_unlock, 326 .irq_disable = regmap_irq_disable, 327 .irq_enable = regmap_irq_enable, 328 .irq_set_type = regmap_irq_set_type, 329 .irq_set_wake = regmap_irq_set_wake, 330 }; 331 332 static irqreturn_t regmap_irq_thread(int irq, void *d) 333 { 334 struct regmap_irq_chip_data *data = d; 335 const struct regmap_irq_chip *chip = data->chip; 336 struct regmap *map = data->map; 337 int ret, i; 338 bool handled = false; 339 u32 reg; 340 341 if (chip->handle_pre_irq) 342 chip->handle_pre_irq(chip->irq_drv_data); 343 344 if (chip->runtime_pm) { 345 ret = pm_runtime_get_sync(map->dev); 346 if (ret < 0) { 347 dev_err(map->dev, "IRQ thread failed to resume: %d\n", 348 ret); 349 pm_runtime_put(map->dev); 350 goto exit; 351 } 352 } 353 354 /* 355 * Read in the statuses, using a single bulk read if possible 356 * in order to reduce the I/O overheads. 357 */ 358 if (!map->use_single_read && map->reg_stride == 1 && 359 data->irq_reg_stride == 1) { 360 u8 *buf8 = data->status_reg_buf; 361 u16 *buf16 = data->status_reg_buf; 362 u32 *buf32 = data->status_reg_buf; 363 364 BUG_ON(!data->status_reg_buf); 365 366 ret = regmap_bulk_read(map, chip->status_base, 367 data->status_reg_buf, 368 chip->num_regs); 369 if (ret != 0) { 370 dev_err(map->dev, "Failed to read IRQ status: %d\n", 371 ret); 372 goto exit; 373 } 374 375 for (i = 0; i < data->chip->num_regs; i++) { 376 switch (map->format.val_bytes) { 377 case 1: 378 data->status_buf[i] = buf8[i]; 379 break; 380 case 2: 381 data->status_buf[i] = buf16[i]; 382 break; 383 case 4: 384 data->status_buf[i] = buf32[i]; 385 break; 386 default: 387 BUG(); 388 goto exit; 389 } 390 } 391 392 } else { 393 for (i = 0; i < data->chip->num_regs; i++) { 394 ret = regmap_read(map, chip->status_base + 395 (i * map->reg_stride 396 * data->irq_reg_stride), 397 &data->status_buf[i]); 398 399 if (ret != 0) { 400 dev_err(map->dev, 401 "Failed to read IRQ status: %d\n", 402 ret); 403 if (chip->runtime_pm) 404 pm_runtime_put(map->dev); 405 goto exit; 406 } 407 } 408 } 409 410 /* 411 * Ignore masked IRQs and ack if we need to; we ack early so 412 * there is no race between handling and acknowleding the 413 * interrupt. We assume that typically few of the interrupts 414 * will fire simultaneously so don't worry about overhead from 415 * doing a write per register. 416 */ 417 for (i = 0; i < data->chip->num_regs; i++) { 418 data->status_buf[i] &= ~data->mask_buf[i]; 419 420 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { 421 reg = chip->ack_base + 422 (i * map->reg_stride * data->irq_reg_stride); 423 ret = regmap_write(map, reg, data->status_buf[i]); 424 if (ret != 0) 425 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 426 reg, ret); 427 } 428 } 429 430 for (i = 0; i < chip->num_irqs; i++) { 431 if (data->status_buf[chip->irqs[i].reg_offset / 432 map->reg_stride] & chip->irqs[i].mask) { 433 handle_nested_irq(irq_find_mapping(data->domain, i)); 434 handled = true; 435 } 436 } 437 438 if (chip->runtime_pm) 439 pm_runtime_put(map->dev); 440 441 exit: 442 if (chip->handle_post_irq) 443 chip->handle_post_irq(chip->irq_drv_data); 444 445 if (handled) 446 return IRQ_HANDLED; 447 else 448 return IRQ_NONE; 449 } 450 451 static int regmap_irq_map(struct irq_domain *h, unsigned int virq, 452 irq_hw_number_t hw) 453 { 454 struct regmap_irq_chip_data *data = h->host_data; 455 456 irq_set_chip_data(virq, data); 457 irq_set_chip(virq, &data->irq_chip); 458 irq_set_nested_thread(virq, 1); 459 irq_set_parent(virq, data->irq); 460 irq_set_noprobe(virq); 461 462 return 0; 463 } 464 465 static const struct irq_domain_ops regmap_domain_ops = { 466 .map = regmap_irq_map, 467 .xlate = irq_domain_xlate_onetwocell, 468 }; 469 470 /** 471 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling 472 * 473 * @map: The regmap for the device. 474 * @irq: The IRQ the device uses to signal interrupts. 475 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 476 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 477 * @chip: Configuration for the interrupt controller. 478 * @data: Runtime data structure for the controller, allocated on success. 479 * 480 * Returns 0 on success or an errno on failure. 481 * 482 * In order for this to be efficient the chip really should use a 483 * register cache. The chip driver is responsible for restoring the 484 * register values used by the IRQ controller over suspend and resume. 485 */ 486 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, 487 int irq_base, const struct regmap_irq_chip *chip, 488 struct regmap_irq_chip_data **data) 489 { 490 struct regmap_irq_chip_data *d; 491 int i; 492 int ret = -ENOMEM; 493 int num_type_reg; 494 u32 reg; 495 u32 unmask_offset; 496 497 if (chip->num_regs <= 0) 498 return -EINVAL; 499 500 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) 501 return -EINVAL; 502 503 for (i = 0; i < chip->num_irqs; i++) { 504 if (chip->irqs[i].reg_offset % map->reg_stride) 505 return -EINVAL; 506 if (chip->irqs[i].reg_offset / map->reg_stride >= 507 chip->num_regs) 508 return -EINVAL; 509 } 510 511 if (irq_base) { 512 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); 513 if (irq_base < 0) { 514 dev_warn(map->dev, "Failed to allocate IRQs: %d\n", 515 irq_base); 516 return irq_base; 517 } 518 } 519 520 d = kzalloc(sizeof(*d), GFP_KERNEL); 521 if (!d) 522 return -ENOMEM; 523 524 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 525 GFP_KERNEL); 526 if (!d->status_buf) 527 goto err_alloc; 528 529 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 530 GFP_KERNEL); 531 if (!d->mask_buf) 532 goto err_alloc; 533 534 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), 535 GFP_KERNEL); 536 if (!d->mask_buf_def) 537 goto err_alloc; 538 539 if (chip->wake_base) { 540 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), 541 GFP_KERNEL); 542 if (!d->wake_buf) 543 goto err_alloc; 544 } 545 546 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg; 547 if (num_type_reg) { 548 d->type_buf_def = kcalloc(num_type_reg, 549 sizeof(unsigned int), GFP_KERNEL); 550 if (!d->type_buf_def) 551 goto err_alloc; 552 553 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int), 554 GFP_KERNEL); 555 if (!d->type_buf) 556 goto err_alloc; 557 } 558 559 d->irq_chip = regmap_irq_chip; 560 d->irq_chip.name = chip->name; 561 d->irq = irq; 562 d->map = map; 563 d->chip = chip; 564 d->irq_base = irq_base; 565 566 if (chip->irq_reg_stride) 567 d->irq_reg_stride = chip->irq_reg_stride; 568 else 569 d->irq_reg_stride = 1; 570 571 if (chip->type_reg_stride) 572 d->type_reg_stride = chip->type_reg_stride; 573 else 574 d->type_reg_stride = 1; 575 576 if (!map->use_single_read && map->reg_stride == 1 && 577 d->irq_reg_stride == 1) { 578 d->status_reg_buf = kmalloc_array(chip->num_regs, 579 map->format.val_bytes, 580 GFP_KERNEL); 581 if (!d->status_reg_buf) 582 goto err_alloc; 583 } 584 585 mutex_init(&d->lock); 586 587 for (i = 0; i < chip->num_irqs; i++) 588 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] 589 |= chip->irqs[i].mask; 590 591 /* Mask all the interrupts by default */ 592 for (i = 0; i < chip->num_regs; i++) { 593 d->mask_buf[i] = d->mask_buf_def[i]; 594 if (!chip->mask_base) 595 continue; 596 597 reg = chip->mask_base + 598 (i * map->reg_stride * d->irq_reg_stride); 599 if (chip->mask_invert) 600 ret = regmap_irq_update_bits(d, reg, 601 d->mask_buf[i], ~d->mask_buf[i]); 602 else if (d->chip->unmask_base) { 603 unmask_offset = d->chip->unmask_base - 604 d->chip->mask_base; 605 ret = regmap_irq_update_bits(d, 606 reg + unmask_offset, 607 d->mask_buf[i], 608 d->mask_buf[i]); 609 } else 610 ret = regmap_irq_update_bits(d, reg, 611 d->mask_buf[i], d->mask_buf[i]); 612 if (ret != 0) { 613 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 614 reg, ret); 615 goto err_alloc; 616 } 617 618 if (!chip->init_ack_masked) 619 continue; 620 621 /* Ack masked but set interrupts */ 622 reg = chip->status_base + 623 (i * map->reg_stride * d->irq_reg_stride); 624 ret = regmap_read(map, reg, &d->status_buf[i]); 625 if (ret != 0) { 626 dev_err(map->dev, "Failed to read IRQ status: %d\n", 627 ret); 628 goto err_alloc; 629 } 630 631 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { 632 reg = chip->ack_base + 633 (i * map->reg_stride * d->irq_reg_stride); 634 if (chip->ack_invert) 635 ret = regmap_write(map, reg, 636 ~(d->status_buf[i] & d->mask_buf[i])); 637 else 638 ret = regmap_write(map, reg, 639 d->status_buf[i] & d->mask_buf[i]); 640 if (ret != 0) { 641 dev_err(map->dev, "Failed to ack 0x%x: %d\n", 642 reg, ret); 643 goto err_alloc; 644 } 645 } 646 } 647 648 /* Wake is disabled by default */ 649 if (d->wake_buf) { 650 for (i = 0; i < chip->num_regs; i++) { 651 d->wake_buf[i] = d->mask_buf_def[i]; 652 reg = chip->wake_base + 653 (i * map->reg_stride * d->irq_reg_stride); 654 655 if (chip->wake_invert) 656 ret = regmap_irq_update_bits(d, reg, 657 d->mask_buf_def[i], 658 0); 659 else 660 ret = regmap_irq_update_bits(d, reg, 661 d->mask_buf_def[i], 662 d->wake_buf[i]); 663 if (ret != 0) { 664 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", 665 reg, ret); 666 goto err_alloc; 667 } 668 } 669 } 670 671 if (chip->num_type_reg && !chip->type_in_mask) { 672 for (i = 0; i < chip->num_type_reg; ++i) { 673 if (!d->type_buf_def[i]) 674 continue; 675 676 reg = chip->type_base + 677 (i * map->reg_stride * d->type_reg_stride); 678 679 ret = regmap_read(map, reg, &d->type_buf_def[i]); 680 681 if (d->chip->type_invert) 682 d->type_buf_def[i] = ~d->type_buf_def[i]; 683 684 if (ret) { 685 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", 686 reg, ret); 687 goto err_alloc; 688 } 689 } 690 } 691 692 if (irq_base) 693 d->domain = irq_domain_add_legacy(map->dev->of_node, 694 chip->num_irqs, irq_base, 0, 695 ®map_domain_ops, d); 696 else 697 d->domain = irq_domain_add_linear(map->dev->of_node, 698 chip->num_irqs, 699 ®map_domain_ops, d); 700 if (!d->domain) { 701 dev_err(map->dev, "Failed to create IRQ domain\n"); 702 ret = -ENOMEM; 703 goto err_alloc; 704 } 705 706 ret = request_threaded_irq(irq, NULL, regmap_irq_thread, 707 irq_flags | IRQF_ONESHOT, 708 chip->name, d); 709 if (ret != 0) { 710 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", 711 irq, chip->name, ret); 712 goto err_domain; 713 } 714 715 *data = d; 716 717 return 0; 718 719 err_domain: 720 /* Should really dispose of the domain but... */ 721 err_alloc: 722 kfree(d->type_buf); 723 kfree(d->type_buf_def); 724 kfree(d->wake_buf); 725 kfree(d->mask_buf_def); 726 kfree(d->mask_buf); 727 kfree(d->status_buf); 728 kfree(d->status_reg_buf); 729 kfree(d); 730 return ret; 731 } 732 EXPORT_SYMBOL_GPL(regmap_add_irq_chip); 733 734 /** 735 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip 736 * 737 * @irq: Primary IRQ for the device 738 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() 739 * 740 * This function also disposes of all mapped IRQs on the chip. 741 */ 742 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) 743 { 744 unsigned int virq; 745 int hwirq; 746 747 if (!d) 748 return; 749 750 free_irq(irq, d); 751 752 /* Dispose all virtual irq from irq domain before removing it */ 753 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { 754 /* Ignore hwirq if holes in the IRQ list */ 755 if (!d->chip->irqs[hwirq].mask) 756 continue; 757 758 /* 759 * Find the virtual irq of hwirq on chip and if it is 760 * there then dispose it 761 */ 762 virq = irq_find_mapping(d->domain, hwirq); 763 if (virq) 764 irq_dispose_mapping(virq); 765 } 766 767 irq_domain_remove(d->domain); 768 kfree(d->type_buf); 769 kfree(d->type_buf_def); 770 kfree(d->wake_buf); 771 kfree(d->mask_buf_def); 772 kfree(d->mask_buf); 773 kfree(d->status_reg_buf); 774 kfree(d->status_buf); 775 kfree(d); 776 } 777 EXPORT_SYMBOL_GPL(regmap_del_irq_chip); 778 779 static void devm_regmap_irq_chip_release(struct device *dev, void *res) 780 { 781 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; 782 783 regmap_del_irq_chip(d->irq, d); 784 } 785 786 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) 787 788 { 789 struct regmap_irq_chip_data **r = res; 790 791 if (!r || !*r) { 792 WARN_ON(!r || !*r); 793 return 0; 794 } 795 return *r == data; 796 } 797 798 /** 799 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip() 800 * 801 * @dev: The device pointer on which irq_chip belongs to. 802 * @map: The regmap for the device. 803 * @irq: The IRQ the device uses to signal interrupts 804 * @irq_flags: The IRQF_ flags to use for the primary interrupt. 805 * @irq_base: Allocate at specific IRQ number if irq_base > 0. 806 * @chip: Configuration for the interrupt controller. 807 * @data: Runtime data structure for the controller, allocated on success 808 * 809 * Returns 0 on success or an errno on failure. 810 * 811 * The ®map_irq_chip_data will be automatically released when the device is 812 * unbound. 813 */ 814 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, 815 int irq_flags, int irq_base, 816 const struct regmap_irq_chip *chip, 817 struct regmap_irq_chip_data **data) 818 { 819 struct regmap_irq_chip_data **ptr, *d; 820 int ret; 821 822 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), 823 GFP_KERNEL); 824 if (!ptr) 825 return -ENOMEM; 826 827 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base, 828 chip, &d); 829 if (ret < 0) { 830 devres_free(ptr); 831 return ret; 832 } 833 834 *ptr = d; 835 devres_add(dev, ptr); 836 *data = d; 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); 840 841 /** 842 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() 843 * 844 * @dev: Device for which which resource was allocated. 845 * @irq: Primary IRQ for the device. 846 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). 847 * 848 * A resource managed version of regmap_del_irq_chip(). 849 */ 850 void devm_regmap_del_irq_chip(struct device *dev, int irq, 851 struct regmap_irq_chip_data *data) 852 { 853 int rc; 854 855 WARN_ON(irq != data->irq); 856 rc = devres_release(dev, devm_regmap_irq_chip_release, 857 devm_regmap_irq_chip_match, data); 858 859 if (rc != 0) 860 WARN_ON(rc); 861 } 862 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); 863 864 /** 865 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip 866 * 867 * @data: regmap irq controller to operate on. 868 * 869 * Useful for drivers to request their own IRQs. 870 */ 871 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) 872 { 873 WARN_ON(!data->irq_base); 874 return data->irq_base; 875 } 876 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); 877 878 /** 879 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ 880 * 881 * @data: regmap irq controller to operate on. 882 * @irq: index of the interrupt requested in the chip IRQs. 883 * 884 * Useful for drivers to request their own IRQs. 885 */ 886 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) 887 { 888 /* Handle holes in the IRQ list */ 889 if (!data->chip->irqs[irq].mask) 890 return -EINVAL; 891 892 return irq_create_mapping(data->domain, irq); 893 } 894 EXPORT_SYMBOL_GPL(regmap_irq_get_virq); 895 896 /** 897 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip 898 * 899 * @data: regmap_irq controller to operate on. 900 * 901 * Useful for drivers to request their own IRQs and for integration 902 * with subsystems. For ease of integration NULL is accepted as a 903 * domain, allowing devices to just call this even if no domain is 904 * allocated. 905 */ 906 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) 907 { 908 if (data) 909 return data->domain; 910 else 911 return NULL; 912 } 913 EXPORT_SYMBOL_GPL(regmap_irq_get_domain); 914