xref: /openbmc/linux/drivers/base/regmap/regmap-irq.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17 
18 #include "internal.h"
19 
20 struct regmap_irq_chip_data {
21 	struct mutex lock;
22 	struct irq_chip irq_chip;
23 
24 	struct regmap *map;
25 	const struct regmap_irq_chip *chip;
26 
27 	int irq_base;
28 	struct irq_domain *domain;
29 
30 	int irq;
31 	int wake_count;
32 
33 	void *status_reg_buf;
34 	unsigned int *main_status_buf;
35 	unsigned int *status_buf;
36 	unsigned int *mask_buf;
37 	unsigned int *mask_buf_def;
38 	unsigned int *wake_buf;
39 	unsigned int *type_buf;
40 	unsigned int *type_buf_def;
41 
42 	unsigned int irq_reg_stride;
43 	unsigned int type_reg_stride;
44 
45 	bool clear_status:1;
46 };
47 
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 				     int irq)
51 {
52 	return &data->chip->irqs[irq];
53 }
54 
55 static void regmap_irq_lock(struct irq_data *data)
56 {
57 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58 
59 	mutex_lock(&d->lock);
60 }
61 
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 				  unsigned int reg, unsigned int mask,
64 				  unsigned int val)
65 {
66 	if (d->chip->mask_writeonly)
67 		return regmap_write_bits(d->map, reg, mask, val);
68 	else
69 		return regmap_update_bits(d->map, reg, mask, val);
70 }
71 
72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 	struct regmap *map = d->map;
76 	int i, ret;
77 	u32 reg;
78 	u32 unmask_offset;
79 	u32 val;
80 
81 	if (d->chip->runtime_pm) {
82 		ret = pm_runtime_get_sync(map->dev);
83 		if (ret < 0)
84 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 				ret);
86 	}
87 
88 	if (d->clear_status) {
89 		for (i = 0; i < d->chip->num_regs; i++) {
90 			reg = d->chip->status_base +
91 				(i * map->reg_stride * d->irq_reg_stride);
92 
93 			ret = regmap_read(map, reg, &val);
94 			if (ret)
95 				dev_err(d->map->dev,
96 					"Failed to clear the interrupt status bits\n");
97 		}
98 
99 		d->clear_status = false;
100 	}
101 
102 	/*
103 	 * If there's been a change in the mask write it back to the
104 	 * hardware.  We rely on the use of the regmap core cache to
105 	 * suppress pointless writes.
106 	 */
107 	for (i = 0; i < d->chip->num_regs; i++) {
108 		if (!d->chip->mask_base)
109 			continue;
110 
111 		reg = d->chip->mask_base +
112 			(i * map->reg_stride * d->irq_reg_stride);
113 		if (d->chip->mask_invert) {
114 			ret = regmap_irq_update_bits(d, reg,
115 					 d->mask_buf_def[i], ~d->mask_buf[i]);
116 		} else if (d->chip->unmask_base) {
117 			/* set mask with mask_base register */
118 			ret = regmap_irq_update_bits(d, reg,
119 					d->mask_buf_def[i], ~d->mask_buf[i]);
120 			if (ret < 0)
121 				dev_err(d->map->dev,
122 					"Failed to sync unmasks in %x\n",
123 					reg);
124 			unmask_offset = d->chip->unmask_base -
125 							d->chip->mask_base;
126 			/* clear mask with unmask_base register */
127 			ret = regmap_irq_update_bits(d,
128 					reg + unmask_offset,
129 					d->mask_buf_def[i],
130 					d->mask_buf[i]);
131 		} else {
132 			ret = regmap_irq_update_bits(d, reg,
133 					 d->mask_buf_def[i], d->mask_buf[i]);
134 		}
135 		if (ret != 0)
136 			dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 				reg);
138 
139 		reg = d->chip->wake_base +
140 			(i * map->reg_stride * d->irq_reg_stride);
141 		if (d->wake_buf) {
142 			if (d->chip->wake_invert)
143 				ret = regmap_irq_update_bits(d, reg,
144 							 d->mask_buf_def[i],
145 							 ~d->wake_buf[i]);
146 			else
147 				ret = regmap_irq_update_bits(d, reg,
148 							 d->mask_buf_def[i],
149 							 d->wake_buf[i]);
150 			if (ret != 0)
151 				dev_err(d->map->dev,
152 					"Failed to sync wakes in %x: %d\n",
153 					reg, ret);
154 		}
155 
156 		if (!d->chip->init_ack_masked)
157 			continue;
158 		/*
159 		 * Ack all the masked interrupts unconditionally,
160 		 * OR if there is masked interrupt which hasn't been Acked,
161 		 * it'll be ignored in irq handler, then may introduce irq storm
162 		 */
163 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 			reg = d->chip->ack_base +
165 				(i * map->reg_stride * d->irq_reg_stride);
166 			/* some chips ack by write 0 */
167 			if (d->chip->ack_invert)
168 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 			else
170 				ret = regmap_write(map, reg, d->mask_buf[i]);
171 			if (ret != 0)
172 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 					reg, ret);
174 		}
175 	}
176 
177 	/* Don't update the type bits if we're using mask bits for irq type. */
178 	if (!d->chip->type_in_mask) {
179 		for (i = 0; i < d->chip->num_type_reg; i++) {
180 			if (!d->type_buf_def[i])
181 				continue;
182 			reg = d->chip->type_base +
183 				(i * map->reg_stride * d->type_reg_stride);
184 			if (d->chip->type_invert)
185 				ret = regmap_irq_update_bits(d, reg,
186 					d->type_buf_def[i], ~d->type_buf[i]);
187 			else
188 				ret = regmap_irq_update_bits(d, reg,
189 					d->type_buf_def[i], d->type_buf[i]);
190 			if (ret != 0)
191 				dev_err(d->map->dev, "Failed to sync type in %x\n",
192 					reg);
193 		}
194 	}
195 
196 	if (d->chip->runtime_pm)
197 		pm_runtime_put(map->dev);
198 
199 	/* If we've changed our wakeup count propagate it to the parent */
200 	if (d->wake_count < 0)
201 		for (i = d->wake_count; i < 0; i++)
202 			irq_set_irq_wake(d->irq, 0);
203 	else if (d->wake_count > 0)
204 		for (i = 0; i < d->wake_count; i++)
205 			irq_set_irq_wake(d->irq, 1);
206 
207 	d->wake_count = 0;
208 
209 	mutex_unlock(&d->lock);
210 }
211 
212 static void regmap_irq_enable(struct irq_data *data)
213 {
214 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 	struct regmap *map = d->map;
216 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 	unsigned int mask, type;
218 
219 	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220 
221 	/*
222 	 * The type_in_mask flag means that the underlying hardware uses
223 	 * separate mask bits for rising and falling edge interrupts, but
224 	 * we want to make them into a single virtual interrupt with
225 	 * configurable edge.
226 	 *
227 	 * If the interrupt we're enabling defines the falling or rising
228 	 * masks then instead of using the regular mask bits for this
229 	 * interrupt, use the value previously written to the type buffer
230 	 * at the corresponding offset in regmap_irq_set_type().
231 	 */
232 	if (d->chip->type_in_mask && type)
233 		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 	else
235 		mask = irq_data->mask;
236 
237 	if (d->chip->clear_on_unmask)
238 		d->clear_status = true;
239 
240 	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 }
242 
243 static void regmap_irq_disable(struct irq_data *data)
244 {
245 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 	struct regmap *map = d->map;
247 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248 
249 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 }
251 
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253 {
254 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 	struct regmap *map = d->map;
256 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 	int reg;
258 	const struct regmap_irq_type *t = &irq_data->type;
259 
260 	if ((t->types_supported & type) != type)
261 		return 0;
262 
263 	reg = t->type_reg_offset / map->reg_stride;
264 
265 	if (t->type_reg_mask)
266 		d->type_buf[reg] &= ~t->type_reg_mask;
267 	else
268 		d->type_buf[reg] &= ~(t->type_falling_val |
269 				      t->type_rising_val |
270 				      t->type_level_low_val |
271 				      t->type_level_high_val);
272 	switch (type) {
273 	case IRQ_TYPE_EDGE_FALLING:
274 		d->type_buf[reg] |= t->type_falling_val;
275 		break;
276 
277 	case IRQ_TYPE_EDGE_RISING:
278 		d->type_buf[reg] |= t->type_rising_val;
279 		break;
280 
281 	case IRQ_TYPE_EDGE_BOTH:
282 		d->type_buf[reg] |= (t->type_falling_val |
283 					t->type_rising_val);
284 		break;
285 
286 	case IRQ_TYPE_LEVEL_HIGH:
287 		d->type_buf[reg] |= t->type_level_high_val;
288 		break;
289 
290 	case IRQ_TYPE_LEVEL_LOW:
291 		d->type_buf[reg] |= t->type_level_low_val;
292 		break;
293 	default:
294 		return -EINVAL;
295 	}
296 	return 0;
297 }
298 
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300 {
301 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 	struct regmap *map = d->map;
303 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304 
305 	if (on) {
306 		if (d->wake_buf)
307 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 				&= ~irq_data->mask;
309 		d->wake_count++;
310 	} else {
311 		if (d->wake_buf)
312 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 				|= irq_data->mask;
314 		d->wake_count--;
315 	}
316 
317 	return 0;
318 }
319 
320 static const struct irq_chip regmap_irq_chip = {
321 	.irq_bus_lock		= regmap_irq_lock,
322 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
323 	.irq_disable		= regmap_irq_disable,
324 	.irq_enable		= regmap_irq_enable,
325 	.irq_set_type		= regmap_irq_set_type,
326 	.irq_set_wake		= regmap_irq_set_wake,
327 };
328 
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 					   unsigned int b)
331 {
332 	const struct regmap_irq_chip *chip = data->chip;
333 	struct regmap *map = data->map;
334 	struct regmap_irq_sub_irq_map *subreg;
335 	int i, ret = 0;
336 
337 	if (!chip->sub_reg_offsets) {
338 		/* Assume linear mapping */
339 		ret = regmap_read(map, chip->status_base +
340 				  (b * map->reg_stride * data->irq_reg_stride),
341 				   &data->status_buf[b]);
342 	} else {
343 		subreg = &chip->sub_reg_offsets[b];
344 		for (i = 0; i < subreg->num_regs; i++) {
345 			unsigned int offset = subreg->offset[i];
346 
347 			ret = regmap_read(map, chip->status_base + offset,
348 					  &data->status_buf[offset]);
349 			if (ret)
350 				break;
351 		}
352 	}
353 	return ret;
354 }
355 
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
357 {
358 	struct regmap_irq_chip_data *data = d;
359 	const struct regmap_irq_chip *chip = data->chip;
360 	struct regmap *map = data->map;
361 	int ret, i;
362 	bool handled = false;
363 	u32 reg;
364 
365 	if (chip->handle_pre_irq)
366 		chip->handle_pre_irq(chip->irq_drv_data);
367 
368 	if (chip->runtime_pm) {
369 		ret = pm_runtime_get_sync(map->dev);
370 		if (ret < 0) {
371 			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 				ret);
373 			pm_runtime_put(map->dev);
374 			goto exit;
375 		}
376 	}
377 
378 	/*
379 	 * Read only registers with active IRQs if the chip has 'main status
380 	 * register'. Else read in the statuses, using a single bulk read if
381 	 * possible in order to reduce the I/O overheads.
382 	 */
383 
384 	if (chip->num_main_regs) {
385 		unsigned int max_main_bits;
386 		unsigned long size;
387 
388 		size = chip->num_regs * sizeof(unsigned int);
389 
390 		max_main_bits = (chip->num_main_status_bits) ?
391 				 chip->num_main_status_bits : chip->num_regs;
392 		/* Clear the status buf as we don't read all status regs */
393 		memset(data->status_buf, 0, size);
394 
395 		/* We could support bulk read for main status registers
396 		 * but I don't expect to see devices with really many main
397 		 * status registers so let's only support single reads for the
398 		 * sake of simplicity. and add bulk reads only if needed
399 		 */
400 		for (i = 0; i < chip->num_main_regs; i++) {
401 			ret = regmap_read(map, chip->main_status +
402 				  (i * map->reg_stride
403 				   * data->irq_reg_stride),
404 				  &data->main_status_buf[i]);
405 			if (ret) {
406 				dev_err(map->dev,
407 					"Failed to read IRQ status %d\n",
408 					ret);
409 				goto exit;
410 			}
411 		}
412 
413 		/* Read sub registers with active IRQs */
414 		for (i = 0; i < chip->num_main_regs; i++) {
415 			unsigned int b;
416 			const unsigned long mreg = data->main_status_buf[i];
417 
418 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
419 				if (i * map->format.val_bytes * 8 + b >
420 				    max_main_bits)
421 					break;
422 				ret = read_sub_irq_data(data, b);
423 
424 				if (ret != 0) {
425 					dev_err(map->dev,
426 						"Failed to read IRQ status %d\n",
427 						ret);
428 					if (chip->runtime_pm)
429 						pm_runtime_put(map->dev);
430 					goto exit;
431 				}
432 			}
433 
434 		}
435 	} else if (!map->use_single_read && map->reg_stride == 1 &&
436 		   data->irq_reg_stride == 1) {
437 
438 		u8 *buf8 = data->status_reg_buf;
439 		u16 *buf16 = data->status_reg_buf;
440 		u32 *buf32 = data->status_reg_buf;
441 
442 		BUG_ON(!data->status_reg_buf);
443 
444 		ret = regmap_bulk_read(map, chip->status_base,
445 				       data->status_reg_buf,
446 				       chip->num_regs);
447 		if (ret != 0) {
448 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
449 				ret);
450 			goto exit;
451 		}
452 
453 		for (i = 0; i < data->chip->num_regs; i++) {
454 			switch (map->format.val_bytes) {
455 			case 1:
456 				data->status_buf[i] = buf8[i];
457 				break;
458 			case 2:
459 				data->status_buf[i] = buf16[i];
460 				break;
461 			case 4:
462 				data->status_buf[i] = buf32[i];
463 				break;
464 			default:
465 				BUG();
466 				goto exit;
467 			}
468 		}
469 
470 	} else {
471 		for (i = 0; i < data->chip->num_regs; i++) {
472 			ret = regmap_read(map, chip->status_base +
473 					  (i * map->reg_stride
474 					   * data->irq_reg_stride),
475 					  &data->status_buf[i]);
476 
477 			if (ret != 0) {
478 				dev_err(map->dev,
479 					"Failed to read IRQ status: %d\n",
480 					ret);
481 				if (chip->runtime_pm)
482 					pm_runtime_put(map->dev);
483 				goto exit;
484 			}
485 		}
486 	}
487 
488 	/*
489 	 * Ignore masked IRQs and ack if we need to; we ack early so
490 	 * there is no race between handling and acknowleding the
491 	 * interrupt.  We assume that typically few of the interrupts
492 	 * will fire simultaneously so don't worry about overhead from
493 	 * doing a write per register.
494 	 */
495 	for (i = 0; i < data->chip->num_regs; i++) {
496 		data->status_buf[i] &= ~data->mask_buf[i];
497 
498 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
499 			reg = chip->ack_base +
500 				(i * map->reg_stride * data->irq_reg_stride);
501 			ret = regmap_write(map, reg, data->status_buf[i]);
502 			if (ret != 0)
503 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
504 					reg, ret);
505 		}
506 	}
507 
508 	for (i = 0; i < chip->num_irqs; i++) {
509 		if (data->status_buf[chip->irqs[i].reg_offset /
510 				     map->reg_stride] & chip->irqs[i].mask) {
511 			handle_nested_irq(irq_find_mapping(data->domain, i));
512 			handled = true;
513 		}
514 	}
515 
516 	if (chip->runtime_pm)
517 		pm_runtime_put(map->dev);
518 
519 exit:
520 	if (chip->handle_post_irq)
521 		chip->handle_post_irq(chip->irq_drv_data);
522 
523 	if (handled)
524 		return IRQ_HANDLED;
525 	else
526 		return IRQ_NONE;
527 }
528 
529 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
530 			  irq_hw_number_t hw)
531 {
532 	struct regmap_irq_chip_data *data = h->host_data;
533 
534 	irq_set_chip_data(virq, data);
535 	irq_set_chip(virq, &data->irq_chip);
536 	irq_set_nested_thread(virq, 1);
537 	irq_set_parent(virq, data->irq);
538 	irq_set_noprobe(virq);
539 
540 	return 0;
541 }
542 
543 static const struct irq_domain_ops regmap_domain_ops = {
544 	.map	= regmap_irq_map,
545 	.xlate	= irq_domain_xlate_onetwocell,
546 };
547 
548 /**
549  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
550  *
551  * @map: The regmap for the device.
552  * @irq: The IRQ the device uses to signal interrupts.
553  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
554  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
555  * @chip: Configuration for the interrupt controller.
556  * @data: Runtime data structure for the controller, allocated on success.
557  *
558  * Returns 0 on success or an errno on failure.
559  *
560  * In order for this to be efficient the chip really should use a
561  * register cache.  The chip driver is responsible for restoring the
562  * register values used by the IRQ controller over suspend and resume.
563  */
564 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
565 			int irq_base, const struct regmap_irq_chip *chip,
566 			struct regmap_irq_chip_data **data)
567 {
568 	struct regmap_irq_chip_data *d;
569 	int i;
570 	int ret = -ENOMEM;
571 	int num_type_reg;
572 	u32 reg;
573 	u32 unmask_offset;
574 
575 	if (chip->num_regs <= 0)
576 		return -EINVAL;
577 
578 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
579 		return -EINVAL;
580 
581 	for (i = 0; i < chip->num_irqs; i++) {
582 		if (chip->irqs[i].reg_offset % map->reg_stride)
583 			return -EINVAL;
584 		if (chip->irqs[i].reg_offset / map->reg_stride >=
585 		    chip->num_regs)
586 			return -EINVAL;
587 	}
588 
589 	if (irq_base) {
590 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
591 		if (irq_base < 0) {
592 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
593 				 irq_base);
594 			return irq_base;
595 		}
596 	}
597 
598 	d = kzalloc(sizeof(*d), GFP_KERNEL);
599 	if (!d)
600 		return -ENOMEM;
601 
602 	if (chip->num_main_regs) {
603 		d->main_status_buf = kcalloc(chip->num_main_regs,
604 					     sizeof(unsigned int),
605 					     GFP_KERNEL);
606 
607 		if (!d->main_status_buf)
608 			goto err_alloc;
609 	}
610 
611 	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
612 				GFP_KERNEL);
613 	if (!d->status_buf)
614 		goto err_alloc;
615 
616 	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
617 			      GFP_KERNEL);
618 	if (!d->mask_buf)
619 		goto err_alloc;
620 
621 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
622 				  GFP_KERNEL);
623 	if (!d->mask_buf_def)
624 		goto err_alloc;
625 
626 	if (chip->wake_base) {
627 		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
628 				      GFP_KERNEL);
629 		if (!d->wake_buf)
630 			goto err_alloc;
631 	}
632 
633 	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
634 	if (num_type_reg) {
635 		d->type_buf_def = kcalloc(num_type_reg,
636 					  sizeof(unsigned int), GFP_KERNEL);
637 		if (!d->type_buf_def)
638 			goto err_alloc;
639 
640 		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
641 				      GFP_KERNEL);
642 		if (!d->type_buf)
643 			goto err_alloc;
644 	}
645 
646 	d->irq_chip = regmap_irq_chip;
647 	d->irq_chip.name = chip->name;
648 	d->irq = irq;
649 	d->map = map;
650 	d->chip = chip;
651 	d->irq_base = irq_base;
652 
653 	if (chip->irq_reg_stride)
654 		d->irq_reg_stride = chip->irq_reg_stride;
655 	else
656 		d->irq_reg_stride = 1;
657 
658 	if (chip->type_reg_stride)
659 		d->type_reg_stride = chip->type_reg_stride;
660 	else
661 		d->type_reg_stride = 1;
662 
663 	if (!map->use_single_read && map->reg_stride == 1 &&
664 	    d->irq_reg_stride == 1) {
665 		d->status_reg_buf = kmalloc_array(chip->num_regs,
666 						  map->format.val_bytes,
667 						  GFP_KERNEL);
668 		if (!d->status_reg_buf)
669 			goto err_alloc;
670 	}
671 
672 	mutex_init(&d->lock);
673 
674 	for (i = 0; i < chip->num_irqs; i++)
675 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
676 			|= chip->irqs[i].mask;
677 
678 	/* Mask all the interrupts by default */
679 	for (i = 0; i < chip->num_regs; i++) {
680 		d->mask_buf[i] = d->mask_buf_def[i];
681 		if (!chip->mask_base)
682 			continue;
683 
684 		reg = chip->mask_base +
685 			(i * map->reg_stride * d->irq_reg_stride);
686 		if (chip->mask_invert)
687 			ret = regmap_irq_update_bits(d, reg,
688 					 d->mask_buf[i], ~d->mask_buf[i]);
689 		else if (d->chip->unmask_base) {
690 			unmask_offset = d->chip->unmask_base -
691 					d->chip->mask_base;
692 			ret = regmap_irq_update_bits(d,
693 					reg + unmask_offset,
694 					d->mask_buf[i],
695 					d->mask_buf[i]);
696 		} else
697 			ret = regmap_irq_update_bits(d, reg,
698 					 d->mask_buf[i], d->mask_buf[i]);
699 		if (ret != 0) {
700 			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
701 				reg, ret);
702 			goto err_alloc;
703 		}
704 
705 		if (!chip->init_ack_masked)
706 			continue;
707 
708 		/* Ack masked but set interrupts */
709 		reg = chip->status_base +
710 			(i * map->reg_stride * d->irq_reg_stride);
711 		ret = regmap_read(map, reg, &d->status_buf[i]);
712 		if (ret != 0) {
713 			dev_err(map->dev, "Failed to read IRQ status: %d\n",
714 				ret);
715 			goto err_alloc;
716 		}
717 
718 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
719 			reg = chip->ack_base +
720 				(i * map->reg_stride * d->irq_reg_stride);
721 			if (chip->ack_invert)
722 				ret = regmap_write(map, reg,
723 					~(d->status_buf[i] & d->mask_buf[i]));
724 			else
725 				ret = regmap_write(map, reg,
726 					d->status_buf[i] & d->mask_buf[i]);
727 			if (ret != 0) {
728 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
729 					reg, ret);
730 				goto err_alloc;
731 			}
732 		}
733 	}
734 
735 	/* Wake is disabled by default */
736 	if (d->wake_buf) {
737 		for (i = 0; i < chip->num_regs; i++) {
738 			d->wake_buf[i] = d->mask_buf_def[i];
739 			reg = chip->wake_base +
740 				(i * map->reg_stride * d->irq_reg_stride);
741 
742 			if (chip->wake_invert)
743 				ret = regmap_irq_update_bits(d, reg,
744 							 d->mask_buf_def[i],
745 							 0);
746 			else
747 				ret = regmap_irq_update_bits(d, reg,
748 							 d->mask_buf_def[i],
749 							 d->wake_buf[i]);
750 			if (ret != 0) {
751 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
752 					reg, ret);
753 				goto err_alloc;
754 			}
755 		}
756 	}
757 
758 	if (chip->num_type_reg && !chip->type_in_mask) {
759 		for (i = 0; i < chip->num_type_reg; ++i) {
760 			reg = chip->type_base +
761 				(i * map->reg_stride * d->type_reg_stride);
762 
763 			ret = regmap_read(map, reg, &d->type_buf_def[i]);
764 
765 			if (d->chip->type_invert)
766 				d->type_buf_def[i] = ~d->type_buf_def[i];
767 
768 			if (ret) {
769 				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
770 					reg, ret);
771 				goto err_alloc;
772 			}
773 		}
774 	}
775 
776 	if (irq_base)
777 		d->domain = irq_domain_add_legacy(map->dev->of_node,
778 						  chip->num_irqs, irq_base, 0,
779 						  &regmap_domain_ops, d);
780 	else
781 		d->domain = irq_domain_add_linear(map->dev->of_node,
782 						  chip->num_irqs,
783 						  &regmap_domain_ops, d);
784 	if (!d->domain) {
785 		dev_err(map->dev, "Failed to create IRQ domain\n");
786 		ret = -ENOMEM;
787 		goto err_alloc;
788 	}
789 
790 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
791 				   irq_flags | IRQF_ONESHOT,
792 				   chip->name, d);
793 	if (ret != 0) {
794 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
795 			irq, chip->name, ret);
796 		goto err_domain;
797 	}
798 
799 	*data = d;
800 
801 	return 0;
802 
803 err_domain:
804 	/* Should really dispose of the domain but... */
805 err_alloc:
806 	kfree(d->type_buf);
807 	kfree(d->type_buf_def);
808 	kfree(d->wake_buf);
809 	kfree(d->mask_buf_def);
810 	kfree(d->mask_buf);
811 	kfree(d->status_buf);
812 	kfree(d->status_reg_buf);
813 	kfree(d);
814 	return ret;
815 }
816 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
817 
818 /**
819  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
820  *
821  * @irq: Primary IRQ for the device
822  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
823  *
824  * This function also disposes of all mapped IRQs on the chip.
825  */
826 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
827 {
828 	unsigned int virq;
829 	int hwirq;
830 
831 	if (!d)
832 		return;
833 
834 	free_irq(irq, d);
835 
836 	/* Dispose all virtual irq from irq domain before removing it */
837 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
838 		/* Ignore hwirq if holes in the IRQ list */
839 		if (!d->chip->irqs[hwirq].mask)
840 			continue;
841 
842 		/*
843 		 * Find the virtual irq of hwirq on chip and if it is
844 		 * there then dispose it
845 		 */
846 		virq = irq_find_mapping(d->domain, hwirq);
847 		if (virq)
848 			irq_dispose_mapping(virq);
849 	}
850 
851 	irq_domain_remove(d->domain);
852 	kfree(d->type_buf);
853 	kfree(d->type_buf_def);
854 	kfree(d->wake_buf);
855 	kfree(d->mask_buf_def);
856 	kfree(d->mask_buf);
857 	kfree(d->status_reg_buf);
858 	kfree(d->status_buf);
859 	kfree(d);
860 }
861 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
862 
863 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
864 {
865 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
866 
867 	regmap_del_irq_chip(d->irq, d);
868 }
869 
870 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
871 
872 {
873 	struct regmap_irq_chip_data **r = res;
874 
875 	if (!r || !*r) {
876 		WARN_ON(!r || !*r);
877 		return 0;
878 	}
879 	return *r == data;
880 }
881 
882 /**
883  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
884  *
885  * @dev: The device pointer on which irq_chip belongs to.
886  * @map: The regmap for the device.
887  * @irq: The IRQ the device uses to signal interrupts
888  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
889  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
890  * @chip: Configuration for the interrupt controller.
891  * @data: Runtime data structure for the controller, allocated on success
892  *
893  * Returns 0 on success or an errno on failure.
894  *
895  * The &regmap_irq_chip_data will be automatically released when the device is
896  * unbound.
897  */
898 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
899 			     int irq_flags, int irq_base,
900 			     const struct regmap_irq_chip *chip,
901 			     struct regmap_irq_chip_data **data)
902 {
903 	struct regmap_irq_chip_data **ptr, *d;
904 	int ret;
905 
906 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
907 			   GFP_KERNEL);
908 	if (!ptr)
909 		return -ENOMEM;
910 
911 	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
912 				  chip, &d);
913 	if (ret < 0) {
914 		devres_free(ptr);
915 		return ret;
916 	}
917 
918 	*ptr = d;
919 	devres_add(dev, ptr);
920 	*data = d;
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
924 
925 /**
926  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
927  *
928  * @dev: Device for which which resource was allocated.
929  * @irq: Primary IRQ for the device.
930  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
931  *
932  * A resource managed version of regmap_del_irq_chip().
933  */
934 void devm_regmap_del_irq_chip(struct device *dev, int irq,
935 			      struct regmap_irq_chip_data *data)
936 {
937 	int rc;
938 
939 	WARN_ON(irq != data->irq);
940 	rc = devres_release(dev, devm_regmap_irq_chip_release,
941 			    devm_regmap_irq_chip_match, data);
942 
943 	if (rc != 0)
944 		WARN_ON(rc);
945 }
946 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
947 
948 /**
949  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
950  *
951  * @data: regmap irq controller to operate on.
952  *
953  * Useful for drivers to request their own IRQs.
954  */
955 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
956 {
957 	WARN_ON(!data->irq_base);
958 	return data->irq_base;
959 }
960 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
961 
962 /**
963  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
964  *
965  * @data: regmap irq controller to operate on.
966  * @irq: index of the interrupt requested in the chip IRQs.
967  *
968  * Useful for drivers to request their own IRQs.
969  */
970 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
971 {
972 	/* Handle holes in the IRQ list */
973 	if (!data->chip->irqs[irq].mask)
974 		return -EINVAL;
975 
976 	return irq_create_mapping(data->domain, irq);
977 }
978 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
979 
980 /**
981  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
982  *
983  * @data: regmap_irq controller to operate on.
984  *
985  * Useful for drivers to request their own IRQs and for integration
986  * with subsystems.  For ease of integration NULL is accepted as a
987  * domain, allowing devices to just call this even if no domain is
988  * allocated.
989  */
990 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
991 {
992 	if (data)
993 		return data->domain;
994 	else
995 		return NULL;
996 }
997 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
998