1 /*
2  * Register cache access API - rbtree caching support
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Dimitris Papastamos <dp@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/debugfs.h>
14 #include <linux/device.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/slab.h>
18 
19 #include "internal.h"
20 
21 static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
22 				 unsigned int value);
23 static int regcache_rbtree_exit(struct regmap *map);
24 
25 struct regcache_rbtree_node {
26 	/* block of adjacent registers */
27 	void *block;
28 	/* Which registers are present */
29 	long *cache_present;
30 	/* base register handled by this block */
31 	unsigned int base_reg;
32 	/* number of registers available in the block */
33 	unsigned int blklen;
34 	/* the actual rbtree node holding this block */
35 	struct rb_node node;
36 } __attribute__ ((packed));
37 
38 struct regcache_rbtree_ctx {
39 	struct rb_root root;
40 	struct regcache_rbtree_node *cached_rbnode;
41 };
42 
43 static inline void regcache_rbtree_get_base_top_reg(
44 	struct regmap *map,
45 	struct regcache_rbtree_node *rbnode,
46 	unsigned int *base, unsigned int *top)
47 {
48 	*base = rbnode->base_reg;
49 	*top = rbnode->base_reg + ((rbnode->blklen - 1) * map->reg_stride);
50 }
51 
52 static unsigned int regcache_rbtree_get_register(struct regmap *map,
53 	struct regcache_rbtree_node *rbnode, unsigned int idx)
54 {
55 	return regcache_get_val(map, rbnode->block, idx);
56 }
57 
58 static void regcache_rbtree_set_register(struct regmap *map,
59 					 struct regcache_rbtree_node *rbnode,
60 					 unsigned int idx, unsigned int val)
61 {
62 	set_bit(idx, rbnode->cache_present);
63 	regcache_set_val(map, rbnode->block, idx, val);
64 }
65 
66 static struct regcache_rbtree_node *regcache_rbtree_lookup(struct regmap *map,
67 							   unsigned int reg)
68 {
69 	struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
70 	struct rb_node *node;
71 	struct regcache_rbtree_node *rbnode;
72 	unsigned int base_reg, top_reg;
73 
74 	rbnode = rbtree_ctx->cached_rbnode;
75 	if (rbnode) {
76 		regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
77 						 &top_reg);
78 		if (reg >= base_reg && reg <= top_reg)
79 			return rbnode;
80 	}
81 
82 	node = rbtree_ctx->root.rb_node;
83 	while (node) {
84 		rbnode = rb_entry(node, struct regcache_rbtree_node, node);
85 		regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
86 						 &top_reg);
87 		if (reg >= base_reg && reg <= top_reg) {
88 			rbtree_ctx->cached_rbnode = rbnode;
89 			return rbnode;
90 		} else if (reg > top_reg) {
91 			node = node->rb_right;
92 		} else if (reg < base_reg) {
93 			node = node->rb_left;
94 		}
95 	}
96 
97 	return NULL;
98 }
99 
100 static int regcache_rbtree_insert(struct regmap *map, struct rb_root *root,
101 				  struct regcache_rbtree_node *rbnode)
102 {
103 	struct rb_node **new, *parent;
104 	struct regcache_rbtree_node *rbnode_tmp;
105 	unsigned int base_reg_tmp, top_reg_tmp;
106 	unsigned int base_reg;
107 
108 	parent = NULL;
109 	new = &root->rb_node;
110 	while (*new) {
111 		rbnode_tmp = rb_entry(*new, struct regcache_rbtree_node, node);
112 		/* base and top registers of the current rbnode */
113 		regcache_rbtree_get_base_top_reg(map, rbnode_tmp, &base_reg_tmp,
114 						 &top_reg_tmp);
115 		/* base register of the rbnode to be added */
116 		base_reg = rbnode->base_reg;
117 		parent = *new;
118 		/* if this register has already been inserted, just return */
119 		if (base_reg >= base_reg_tmp &&
120 		    base_reg <= top_reg_tmp)
121 			return 0;
122 		else if (base_reg > top_reg_tmp)
123 			new = &((*new)->rb_right);
124 		else if (base_reg < base_reg_tmp)
125 			new = &((*new)->rb_left);
126 	}
127 
128 	/* insert the node into the rbtree */
129 	rb_link_node(&rbnode->node, parent, new);
130 	rb_insert_color(&rbnode->node, root);
131 
132 	return 1;
133 }
134 
135 #ifdef CONFIG_DEBUG_FS
136 static int rbtree_show(struct seq_file *s, void *ignored)
137 {
138 	struct regmap *map = s->private;
139 	struct regcache_rbtree_ctx *rbtree_ctx = map->cache;
140 	struct regcache_rbtree_node *n;
141 	struct rb_node *node;
142 	unsigned int base, top;
143 	size_t mem_size;
144 	int nodes = 0;
145 	int registers = 0;
146 	int this_registers, average;
147 
148 	map->lock(map->lock_arg);
149 
150 	mem_size = sizeof(*rbtree_ctx);
151 
152 	for (node = rb_first(&rbtree_ctx->root); node != NULL;
153 	     node = rb_next(node)) {
154 		n = rb_entry(node, struct regcache_rbtree_node, node);
155 		mem_size += sizeof(*n);
156 		mem_size += (n->blklen * map->cache_word_size);
157 		mem_size += BITS_TO_LONGS(n->blklen) * sizeof(long);
158 
159 		regcache_rbtree_get_base_top_reg(map, n, &base, &top);
160 		this_registers = ((top - base) / map->reg_stride) + 1;
161 		seq_printf(s, "%x-%x (%d)\n", base, top, this_registers);
162 
163 		nodes++;
164 		registers += this_registers;
165 	}
166 
167 	if (nodes)
168 		average = registers / nodes;
169 	else
170 		average = 0;
171 
172 	seq_printf(s, "%d nodes, %d registers, average %d registers, used %zu bytes\n",
173 		   nodes, registers, average, mem_size);
174 
175 	map->unlock(map->lock_arg);
176 
177 	return 0;
178 }
179 
180 DEFINE_SHOW_ATTRIBUTE(rbtree);
181 
182 static void rbtree_debugfs_init(struct regmap *map)
183 {
184 	debugfs_create_file("rbtree", 0400, map->debugfs, map, &rbtree_fops);
185 }
186 #endif
187 
188 static int regcache_rbtree_init(struct regmap *map)
189 {
190 	struct regcache_rbtree_ctx *rbtree_ctx;
191 	int i;
192 	int ret;
193 
194 	map->cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
195 	if (!map->cache)
196 		return -ENOMEM;
197 
198 	rbtree_ctx = map->cache;
199 	rbtree_ctx->root = RB_ROOT;
200 	rbtree_ctx->cached_rbnode = NULL;
201 
202 	for (i = 0; i < map->num_reg_defaults; i++) {
203 		ret = regcache_rbtree_write(map,
204 					    map->reg_defaults[i].reg,
205 					    map->reg_defaults[i].def);
206 		if (ret)
207 			goto err;
208 	}
209 
210 	return 0;
211 
212 err:
213 	regcache_rbtree_exit(map);
214 	return ret;
215 }
216 
217 static int regcache_rbtree_exit(struct regmap *map)
218 {
219 	struct rb_node *next;
220 	struct regcache_rbtree_ctx *rbtree_ctx;
221 	struct regcache_rbtree_node *rbtree_node;
222 
223 	/* if we've already been called then just return */
224 	rbtree_ctx = map->cache;
225 	if (!rbtree_ctx)
226 		return 0;
227 
228 	/* free up the rbtree */
229 	next = rb_first(&rbtree_ctx->root);
230 	while (next) {
231 		rbtree_node = rb_entry(next, struct regcache_rbtree_node, node);
232 		next = rb_next(&rbtree_node->node);
233 		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
234 		kfree(rbtree_node->cache_present);
235 		kfree(rbtree_node->block);
236 		kfree(rbtree_node);
237 	}
238 
239 	/* release the resources */
240 	kfree(map->cache);
241 	map->cache = NULL;
242 
243 	return 0;
244 }
245 
246 static int regcache_rbtree_read(struct regmap *map,
247 				unsigned int reg, unsigned int *value)
248 {
249 	struct regcache_rbtree_node *rbnode;
250 	unsigned int reg_tmp;
251 
252 	rbnode = regcache_rbtree_lookup(map, reg);
253 	if (rbnode) {
254 		reg_tmp = (reg - rbnode->base_reg) / map->reg_stride;
255 		if (!test_bit(reg_tmp, rbnode->cache_present))
256 			return -ENOENT;
257 		*value = regcache_rbtree_get_register(map, rbnode, reg_tmp);
258 	} else {
259 		return -ENOENT;
260 	}
261 
262 	return 0;
263 }
264 
265 
266 static int regcache_rbtree_insert_to_block(struct regmap *map,
267 					   struct regcache_rbtree_node *rbnode,
268 					   unsigned int base_reg,
269 					   unsigned int top_reg,
270 					   unsigned int reg,
271 					   unsigned int value)
272 {
273 	unsigned int blklen;
274 	unsigned int pos, offset;
275 	unsigned long *present;
276 	u8 *blk;
277 
278 	blklen = (top_reg - base_reg) / map->reg_stride + 1;
279 	pos = (reg - base_reg) / map->reg_stride;
280 	offset = (rbnode->base_reg - base_reg) / map->reg_stride;
281 
282 	blk = krealloc(rbnode->block,
283 		       blklen * map->cache_word_size,
284 		       GFP_KERNEL);
285 	if (!blk)
286 		return -ENOMEM;
287 
288 	if (BITS_TO_LONGS(blklen) > BITS_TO_LONGS(rbnode->blklen)) {
289 		present = krealloc(rbnode->cache_present,
290 				   BITS_TO_LONGS(blklen) * sizeof(*present),
291 				   GFP_KERNEL);
292 		if (!present) {
293 			kfree(blk);
294 			return -ENOMEM;
295 		}
296 
297 		memset(present + BITS_TO_LONGS(rbnode->blklen), 0,
298 		       (BITS_TO_LONGS(blklen) - BITS_TO_LONGS(rbnode->blklen))
299 		       * sizeof(*present));
300 	} else {
301 		present = rbnode->cache_present;
302 	}
303 
304 	/* insert the register value in the correct place in the rbnode block */
305 	if (pos == 0) {
306 		memmove(blk + offset * map->cache_word_size,
307 			blk, rbnode->blklen * map->cache_word_size);
308 		bitmap_shift_left(present, present, offset, blklen);
309 	}
310 
311 	/* update the rbnode block, its size and the base register */
312 	rbnode->block = blk;
313 	rbnode->blklen = blklen;
314 	rbnode->base_reg = base_reg;
315 	rbnode->cache_present = present;
316 
317 	regcache_rbtree_set_register(map, rbnode, pos, value);
318 	return 0;
319 }
320 
321 static struct regcache_rbtree_node *
322 regcache_rbtree_node_alloc(struct regmap *map, unsigned int reg)
323 {
324 	struct regcache_rbtree_node *rbnode;
325 	const struct regmap_range *range;
326 	int i;
327 
328 	rbnode = kzalloc(sizeof(*rbnode), GFP_KERNEL);
329 	if (!rbnode)
330 		return NULL;
331 
332 	/* If there is a read table then use it to guess at an allocation */
333 	if (map->rd_table) {
334 		for (i = 0; i < map->rd_table->n_yes_ranges; i++) {
335 			if (regmap_reg_in_range(reg,
336 						&map->rd_table->yes_ranges[i]))
337 				break;
338 		}
339 
340 		if (i != map->rd_table->n_yes_ranges) {
341 			range = &map->rd_table->yes_ranges[i];
342 			rbnode->blklen = (range->range_max - range->range_min) /
343 				map->reg_stride	+ 1;
344 			rbnode->base_reg = range->range_min;
345 		}
346 	}
347 
348 	if (!rbnode->blklen) {
349 		rbnode->blklen = 1;
350 		rbnode->base_reg = reg;
351 	}
352 
353 	rbnode->block = kmalloc_array(rbnode->blklen, map->cache_word_size,
354 				      GFP_KERNEL);
355 	if (!rbnode->block)
356 		goto err_free;
357 
358 	rbnode->cache_present = kcalloc(BITS_TO_LONGS(rbnode->blklen),
359 					sizeof(*rbnode->cache_present),
360 					GFP_KERNEL);
361 	if (!rbnode->cache_present)
362 		goto err_free_block;
363 
364 	return rbnode;
365 
366 err_free_block:
367 	kfree(rbnode->block);
368 err_free:
369 	kfree(rbnode);
370 	return NULL;
371 }
372 
373 static int regcache_rbtree_write(struct regmap *map, unsigned int reg,
374 				 unsigned int value)
375 {
376 	struct regcache_rbtree_ctx *rbtree_ctx;
377 	struct regcache_rbtree_node *rbnode, *rbnode_tmp;
378 	struct rb_node *node;
379 	unsigned int reg_tmp;
380 	int ret;
381 
382 	rbtree_ctx = map->cache;
383 
384 	/* if we can't locate it in the cached rbnode we'll have
385 	 * to traverse the rbtree looking for it.
386 	 */
387 	rbnode = regcache_rbtree_lookup(map, reg);
388 	if (rbnode) {
389 		reg_tmp = (reg - rbnode->base_reg) / map->reg_stride;
390 		regcache_rbtree_set_register(map, rbnode, reg_tmp, value);
391 	} else {
392 		unsigned int base_reg, top_reg;
393 		unsigned int new_base_reg, new_top_reg;
394 		unsigned int min, max;
395 		unsigned int max_dist;
396 		unsigned int dist, best_dist = UINT_MAX;
397 
398 		max_dist = map->reg_stride * sizeof(*rbnode_tmp) /
399 			map->cache_word_size;
400 		if (reg < max_dist)
401 			min = 0;
402 		else
403 			min = reg - max_dist;
404 		max = reg + max_dist;
405 
406 		/* look for an adjacent register to the one we are about to add */
407 		node = rbtree_ctx->root.rb_node;
408 		while (node) {
409 			rbnode_tmp = rb_entry(node, struct regcache_rbtree_node,
410 					      node);
411 
412 			regcache_rbtree_get_base_top_reg(map, rbnode_tmp,
413 				&base_reg, &top_reg);
414 
415 			if (base_reg <= max && top_reg >= min) {
416 				if (reg < base_reg)
417 					dist = base_reg - reg;
418 				else if (reg > top_reg)
419 					dist = reg - top_reg;
420 				else
421 					dist = 0;
422 				if (dist < best_dist) {
423 					rbnode = rbnode_tmp;
424 					best_dist = dist;
425 					new_base_reg = min(reg, base_reg);
426 					new_top_reg = max(reg, top_reg);
427 				}
428 			}
429 
430 			/*
431 			 * Keep looking, we want to choose the closest block,
432 			 * otherwise we might end up creating overlapping
433 			 * blocks, which breaks the rbtree.
434 			 */
435 			if (reg < base_reg)
436 				node = node->rb_left;
437 			else if (reg > top_reg)
438 				node = node->rb_right;
439 			else
440 				break;
441 		}
442 
443 		if (rbnode) {
444 			ret = regcache_rbtree_insert_to_block(map, rbnode,
445 							      new_base_reg,
446 							      new_top_reg, reg,
447 							      value);
448 			if (ret)
449 				return ret;
450 			rbtree_ctx->cached_rbnode = rbnode;
451 			return 0;
452 		}
453 
454 		/* We did not manage to find a place to insert it in
455 		 * an existing block so create a new rbnode.
456 		 */
457 		rbnode = regcache_rbtree_node_alloc(map, reg);
458 		if (!rbnode)
459 			return -ENOMEM;
460 		regcache_rbtree_set_register(map, rbnode,
461 					     reg - rbnode->base_reg, value);
462 		regcache_rbtree_insert(map, &rbtree_ctx->root, rbnode);
463 		rbtree_ctx->cached_rbnode = rbnode;
464 	}
465 
466 	return 0;
467 }
468 
469 static int regcache_rbtree_sync(struct regmap *map, unsigned int min,
470 				unsigned int max)
471 {
472 	struct regcache_rbtree_ctx *rbtree_ctx;
473 	struct rb_node *node;
474 	struct regcache_rbtree_node *rbnode;
475 	unsigned int base_reg, top_reg;
476 	unsigned int start, end;
477 	int ret;
478 
479 	rbtree_ctx = map->cache;
480 	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
481 		rbnode = rb_entry(node, struct regcache_rbtree_node, node);
482 
483 		regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
484 			&top_reg);
485 		if (base_reg > max)
486 			break;
487 		if (top_reg < min)
488 			continue;
489 
490 		if (min > base_reg)
491 			start = (min - base_reg) / map->reg_stride;
492 		else
493 			start = 0;
494 
495 		if (max < top_reg)
496 			end = (max - base_reg) / map->reg_stride + 1;
497 		else
498 			end = rbnode->blklen;
499 
500 		ret = regcache_sync_block(map, rbnode->block,
501 					  rbnode->cache_present,
502 					  rbnode->base_reg, start, end);
503 		if (ret != 0)
504 			return ret;
505 	}
506 
507 	return regmap_async_complete(map);
508 }
509 
510 static int regcache_rbtree_drop(struct regmap *map, unsigned int min,
511 				unsigned int max)
512 {
513 	struct regcache_rbtree_ctx *rbtree_ctx;
514 	struct regcache_rbtree_node *rbnode;
515 	struct rb_node *node;
516 	unsigned int base_reg, top_reg;
517 	unsigned int start, end;
518 
519 	rbtree_ctx = map->cache;
520 	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
521 		rbnode = rb_entry(node, struct regcache_rbtree_node, node);
522 
523 		regcache_rbtree_get_base_top_reg(map, rbnode, &base_reg,
524 			&top_reg);
525 		if (base_reg > max)
526 			break;
527 		if (top_reg < min)
528 			continue;
529 
530 		if (min > base_reg)
531 			start = (min - base_reg) / map->reg_stride;
532 		else
533 			start = 0;
534 
535 		if (max < top_reg)
536 			end = (max - base_reg) / map->reg_stride + 1;
537 		else
538 			end = rbnode->blklen;
539 
540 		bitmap_clear(rbnode->cache_present, start, end - start);
541 	}
542 
543 	return 0;
544 }
545 
546 struct regcache_ops regcache_rbtree_ops = {
547 	.type = REGCACHE_RBTREE,
548 	.name = "rbtree",
549 	.init = regcache_rbtree_init,
550 	.exit = regcache_rbtree_exit,
551 #ifdef CONFIG_DEBUG_FS
552 	.debugfs_init = rbtree_debugfs_init,
553 #endif
554 	.read = regcache_rbtree_read,
555 	.write = regcache_rbtree_write,
556 	.sync = regcache_rbtree_sync,
557 	.drop = regcache_rbtree_drop,
558 };
559