xref: /openbmc/linux/drivers/base/property.c (revision e8069f5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/phy.h>
19 
20 struct fwnode_handle *__dev_fwnode(struct device *dev)
21 {
22 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 		of_fwnode_handle(dev->of_node) : dev->fwnode;
24 }
25 EXPORT_SYMBOL_GPL(__dev_fwnode);
26 
27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28 {
29 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 		of_fwnode_handle(dev->of_node) : dev->fwnode;
31 }
32 EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33 
34 /**
35  * device_property_present - check if a property of a device is present
36  * @dev: Device whose property is being checked
37  * @propname: Name of the property
38  *
39  * Check if property @propname is present in the device firmware description.
40  *
41  * Return: true if property @propname is present. Otherwise, returns false.
42  */
43 bool device_property_present(const struct device *dev, const char *propname)
44 {
45 	return fwnode_property_present(dev_fwnode(dev), propname);
46 }
47 EXPORT_SYMBOL_GPL(device_property_present);
48 
49 /**
50  * fwnode_property_present - check if a property of a firmware node is present
51  * @fwnode: Firmware node whose property to check
52  * @propname: Name of the property
53  *
54  * Return: true if property @propname is present. Otherwise, returns false.
55  */
56 bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 			     const char *propname)
58 {
59 	bool ret;
60 
61 	if (IS_ERR_OR_NULL(fwnode))
62 		return false;
63 
64 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 	if (ret)
66 		return ret;
67 
68 	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69 }
70 EXPORT_SYMBOL_GPL(fwnode_property_present);
71 
72 /**
73  * device_property_read_u8_array - return a u8 array property of a device
74  * @dev: Device to get the property of
75  * @propname: Name of the property
76  * @val: The values are stored here or %NULL to return the number of values
77  * @nval: Size of the @val array
78  *
79  * Function reads an array of u8 properties with @propname from the device
80  * firmware description and stores them to @val if found.
81  *
82  * It's recommended to call device_property_count_u8() instead of calling
83  * this function with @val equals %NULL and @nval equals 0.
84  *
85  * Return: number of values if @val was %NULL,
86  *         %0 if the property was found (success),
87  *	   %-EINVAL if given arguments are not valid,
88  *	   %-ENODATA if the property does not have a value,
89  *	   %-EPROTO if the property is not an array of numbers,
90  *	   %-EOVERFLOW if the size of the property is not as expected.
91  *	   %-ENXIO if no suitable firmware interface is present.
92  */
93 int device_property_read_u8_array(const struct device *dev, const char *propname,
94 				  u8 *val, size_t nval)
95 {
96 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97 }
98 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99 
100 /**
101  * device_property_read_u16_array - return a u16 array property of a device
102  * @dev: Device to get the property of
103  * @propname: Name of the property
104  * @val: The values are stored here or %NULL to return the number of values
105  * @nval: Size of the @val array
106  *
107  * Function reads an array of u16 properties with @propname from the device
108  * firmware description and stores them to @val if found.
109  *
110  * It's recommended to call device_property_count_u16() instead of calling
111  * this function with @val equals %NULL and @nval equals 0.
112  *
113  * Return: number of values if @val was %NULL,
114  *         %0 if the property was found (success),
115  *	   %-EINVAL if given arguments are not valid,
116  *	   %-ENODATA if the property does not have a value,
117  *	   %-EPROTO if the property is not an array of numbers,
118  *	   %-EOVERFLOW if the size of the property is not as expected.
119  *	   %-ENXIO if no suitable firmware interface is present.
120  */
121 int device_property_read_u16_array(const struct device *dev, const char *propname,
122 				   u16 *val, size_t nval)
123 {
124 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125 }
126 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127 
128 /**
129  * device_property_read_u32_array - return a u32 array property of a device
130  * @dev: Device to get the property of
131  * @propname: Name of the property
132  * @val: The values are stored here or %NULL to return the number of values
133  * @nval: Size of the @val array
134  *
135  * Function reads an array of u32 properties with @propname from the device
136  * firmware description and stores them to @val if found.
137  *
138  * It's recommended to call device_property_count_u32() instead of calling
139  * this function with @val equals %NULL and @nval equals 0.
140  *
141  * Return: number of values if @val was %NULL,
142  *         %0 if the property was found (success),
143  *	   %-EINVAL if given arguments are not valid,
144  *	   %-ENODATA if the property does not have a value,
145  *	   %-EPROTO if the property is not an array of numbers,
146  *	   %-EOVERFLOW if the size of the property is not as expected.
147  *	   %-ENXIO if no suitable firmware interface is present.
148  */
149 int device_property_read_u32_array(const struct device *dev, const char *propname,
150 				   u32 *val, size_t nval)
151 {
152 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153 }
154 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155 
156 /**
157  * device_property_read_u64_array - return a u64 array property of a device
158  * @dev: Device to get the property of
159  * @propname: Name of the property
160  * @val: The values are stored here or %NULL to return the number of values
161  * @nval: Size of the @val array
162  *
163  * Function reads an array of u64 properties with @propname from the device
164  * firmware description and stores them to @val if found.
165  *
166  * It's recommended to call device_property_count_u64() instead of calling
167  * this function with @val equals %NULL and @nval equals 0.
168  *
169  * Return: number of values if @val was %NULL,
170  *         %0 if the property was found (success),
171  *	   %-EINVAL if given arguments are not valid,
172  *	   %-ENODATA if the property does not have a value,
173  *	   %-EPROTO if the property is not an array of numbers,
174  *	   %-EOVERFLOW if the size of the property is not as expected.
175  *	   %-ENXIO if no suitable firmware interface is present.
176  */
177 int device_property_read_u64_array(const struct device *dev, const char *propname,
178 				   u64 *val, size_t nval)
179 {
180 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181 }
182 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183 
184 /**
185  * device_property_read_string_array - return a string array property of device
186  * @dev: Device to get the property of
187  * @propname: Name of the property
188  * @val: The values are stored here or %NULL to return the number of values
189  * @nval: Size of the @val array
190  *
191  * Function reads an array of string properties with @propname from the device
192  * firmware description and stores them to @val if found.
193  *
194  * It's recommended to call device_property_string_array_count() instead of calling
195  * this function with @val equals %NULL and @nval equals 0.
196  *
197  * Return: number of values read on success if @val is non-NULL,
198  *	   number of values available on success if @val is NULL,
199  *	   %-EINVAL if given arguments are not valid,
200  *	   %-ENODATA if the property does not have a value,
201  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
202  *	   %-EOVERFLOW if the size of the property is not as expected.
203  *	   %-ENXIO if no suitable firmware interface is present.
204  */
205 int device_property_read_string_array(const struct device *dev, const char *propname,
206 				      const char **val, size_t nval)
207 {
208 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209 }
210 EXPORT_SYMBOL_GPL(device_property_read_string_array);
211 
212 /**
213  * device_property_read_string - return a string property of a device
214  * @dev: Device to get the property of
215  * @propname: Name of the property
216  * @val: The value is stored here
217  *
218  * Function reads property @propname from the device firmware description and
219  * stores the value into @val if found. The value is checked to be a string.
220  *
221  * Return: %0 if the property was found (success),
222  *	   %-EINVAL if given arguments are not valid,
223  *	   %-ENODATA if the property does not have a value,
224  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
225  *	   %-ENXIO if no suitable firmware interface is present.
226  */
227 int device_property_read_string(const struct device *dev, const char *propname,
228 				const char **val)
229 {
230 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231 }
232 EXPORT_SYMBOL_GPL(device_property_read_string);
233 
234 /**
235  * device_property_match_string - find a string in an array and return index
236  * @dev: Device to get the property of
237  * @propname: Name of the property holding the array
238  * @string: String to look for
239  *
240  * Find a given string in a string array and if it is found return the
241  * index back.
242  *
243  * Return: index, starting from %0, if the property was found (success),
244  *	   %-EINVAL if given arguments are not valid,
245  *	   %-ENODATA if the property does not have a value,
246  *	   %-EPROTO if the property is not an array of strings,
247  *	   %-ENXIO if no suitable firmware interface is present.
248  */
249 int device_property_match_string(const struct device *dev, const char *propname,
250 				 const char *string)
251 {
252 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253 }
254 EXPORT_SYMBOL_GPL(device_property_match_string);
255 
256 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 					  const char *propname,
258 					  unsigned int elem_size, void *val,
259 					  size_t nval)
260 {
261 	int ret;
262 
263 	if (IS_ERR_OR_NULL(fwnode))
264 		return -EINVAL;
265 
266 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 				 elem_size, val, nval);
268 	if (ret != -EINVAL)
269 		return ret;
270 
271 	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 				  elem_size, val, nval);
273 }
274 
275 /**
276  * fwnode_property_read_u8_array - return a u8 array property of firmware node
277  * @fwnode: Firmware node to get the property of
278  * @propname: Name of the property
279  * @val: The values are stored here or %NULL to return the number of values
280  * @nval: Size of the @val array
281  *
282  * Read an array of u8 properties with @propname from @fwnode and stores them to
283  * @val if found.
284  *
285  * It's recommended to call fwnode_property_count_u8() instead of calling
286  * this function with @val equals %NULL and @nval equals 0.
287  *
288  * Return: number of values if @val was %NULL,
289  *         %0 if the property was found (success),
290  *	   %-EINVAL if given arguments are not valid,
291  *	   %-ENODATA if the property does not have a value,
292  *	   %-EPROTO if the property is not an array of numbers,
293  *	   %-EOVERFLOW if the size of the property is not as expected,
294  *	   %-ENXIO if no suitable firmware interface is present.
295  */
296 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 				  const char *propname, u8 *val, size_t nval)
298 {
299 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300 					      val, nval);
301 }
302 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303 
304 /**
305  * fwnode_property_read_u16_array - return a u16 array property of firmware node
306  * @fwnode: Firmware node to get the property of
307  * @propname: Name of the property
308  * @val: The values are stored here or %NULL to return the number of values
309  * @nval: Size of the @val array
310  *
311  * Read an array of u16 properties with @propname from @fwnode and store them to
312  * @val if found.
313  *
314  * It's recommended to call fwnode_property_count_u16() instead of calling
315  * this function with @val equals %NULL and @nval equals 0.
316  *
317  * Return: number of values if @val was %NULL,
318  *         %0 if the property was found (success),
319  *	   %-EINVAL if given arguments are not valid,
320  *	   %-ENODATA if the property does not have a value,
321  *	   %-EPROTO if the property is not an array of numbers,
322  *	   %-EOVERFLOW if the size of the property is not as expected,
323  *	   %-ENXIO if no suitable firmware interface is present.
324  */
325 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 				   const char *propname, u16 *val, size_t nval)
327 {
328 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329 					      val, nval);
330 }
331 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332 
333 /**
334  * fwnode_property_read_u32_array - return a u32 array property of firmware node
335  * @fwnode: Firmware node to get the property of
336  * @propname: Name of the property
337  * @val: The values are stored here or %NULL to return the number of values
338  * @nval: Size of the @val array
339  *
340  * Read an array of u32 properties with @propname from @fwnode store them to
341  * @val if found.
342  *
343  * It's recommended to call fwnode_property_count_u32() instead of calling
344  * this function with @val equals %NULL and @nval equals 0.
345  *
346  * Return: number of values if @val was %NULL,
347  *         %0 if the property was found (success),
348  *	   %-EINVAL if given arguments are not valid,
349  *	   %-ENODATA if the property does not have a value,
350  *	   %-EPROTO if the property is not an array of numbers,
351  *	   %-EOVERFLOW if the size of the property is not as expected,
352  *	   %-ENXIO if no suitable firmware interface is present.
353  */
354 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 				   const char *propname, u32 *val, size_t nval)
356 {
357 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358 					      val, nval);
359 }
360 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361 
362 /**
363  * fwnode_property_read_u64_array - return a u64 array property firmware node
364  * @fwnode: Firmware node to get the property of
365  * @propname: Name of the property
366  * @val: The values are stored here or %NULL to return the number of values
367  * @nval: Size of the @val array
368  *
369  * Read an array of u64 properties with @propname from @fwnode and store them to
370  * @val if found.
371  *
372  * It's recommended to call fwnode_property_count_u64() instead of calling
373  * this function with @val equals %NULL and @nval equals 0.
374  *
375  * Return: number of values if @val was %NULL,
376  *         %0 if the property was found (success),
377  *	   %-EINVAL if given arguments are not valid,
378  *	   %-ENODATA if the property does not have a value,
379  *	   %-EPROTO if the property is not an array of numbers,
380  *	   %-EOVERFLOW if the size of the property is not as expected,
381  *	   %-ENXIO if no suitable firmware interface is present.
382  */
383 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 				   const char *propname, u64 *val, size_t nval)
385 {
386 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387 					      val, nval);
388 }
389 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390 
391 /**
392  * fwnode_property_read_string_array - return string array property of a node
393  * @fwnode: Firmware node to get the property of
394  * @propname: Name of the property
395  * @val: The values are stored here or %NULL to return the number of values
396  * @nval: Size of the @val array
397  *
398  * Read an string list property @propname from the given firmware node and store
399  * them to @val if found.
400  *
401  * It's recommended to call fwnode_property_string_array_count() instead of calling
402  * this function with @val equals %NULL and @nval equals 0.
403  *
404  * Return: number of values read on success if @val is non-NULL,
405  *	   number of values available on success if @val is NULL,
406  *	   %-EINVAL if given arguments are not valid,
407  *	   %-ENODATA if the property does not have a value,
408  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
409  *	   %-EOVERFLOW if the size of the property is not as expected,
410  *	   %-ENXIO if no suitable firmware interface is present.
411  */
412 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 				      const char *propname, const char **val,
414 				      size_t nval)
415 {
416 	int ret;
417 
418 	if (IS_ERR_OR_NULL(fwnode))
419 		return -EINVAL;
420 
421 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 				 val, nval);
423 	if (ret != -EINVAL)
424 		return ret;
425 
426 	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 				  val, nval);
428 }
429 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430 
431 /**
432  * fwnode_property_read_string - return a string property of a firmware node
433  * @fwnode: Firmware node to get the property of
434  * @propname: Name of the property
435  * @val: The value is stored here
436  *
437  * Read property @propname from the given firmware node and store the value into
438  * @val if found.  The value is checked to be a string.
439  *
440  * Return: %0 if the property was found (success),
441  *	   %-EINVAL if given arguments are not valid,
442  *	   %-ENODATA if the property does not have a value,
443  *	   %-EPROTO or %-EILSEQ if the property is not a string,
444  *	   %-ENXIO if no suitable firmware interface is present.
445  */
446 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 				const char *propname, const char **val)
448 {
449 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450 
451 	return ret < 0 ? ret : 0;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454 
455 /**
456  * fwnode_property_match_string - find a string in an array and return index
457  * @fwnode: Firmware node to get the property of
458  * @propname: Name of the property holding the array
459  * @string: String to look for
460  *
461  * Find a given string in a string array and if it is found return the
462  * index back.
463  *
464  * Return: index, starting from %0, if the property was found (success),
465  *	   %-EINVAL if given arguments are not valid,
466  *	   %-ENODATA if the property does not have a value,
467  *	   %-EPROTO if the property is not an array of strings,
468  *	   %-ENXIO if no suitable firmware interface is present.
469  */
470 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 	const char *propname, const char *string)
472 {
473 	const char **values;
474 	int nval, ret;
475 
476 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
477 	if (nval < 0)
478 		return nval;
479 
480 	if (nval == 0)
481 		return -ENODATA;
482 
483 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484 	if (!values)
485 		return -ENOMEM;
486 
487 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 	if (ret < 0)
489 		goto out_free;
490 
491 	ret = match_string(values, nval, string);
492 	if (ret < 0)
493 		ret = -ENODATA;
494 
495 out_free:
496 	kfree(values);
497 	return ret;
498 }
499 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500 
501 /**
502  * fwnode_property_get_reference_args() - Find a reference with arguments
503  * @fwnode:	Firmware node where to look for the reference
504  * @prop:	The name of the property
505  * @nargs_prop:	The name of the property telling the number of
506  *		arguments in the referred node. NULL if @nargs is known,
507  *		otherwise @nargs is ignored. Only relevant on OF.
508  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
509  * @index:	Index of the reference, from zero onwards.
510  * @args:	Result structure with reference and integer arguments.
511  *
512  * Obtain a reference based on a named property in an fwnode, with
513  * integer arguments.
514  *
515  * The caller is responsible for calling fwnode_handle_put() on the returned
516  * @args->fwnode pointer.
517  *
518  * Return: %0 on success
519  *	    %-ENOENT when the index is out of bounds, the index has an empty
520  *		     reference or the property was not found
521  *	    %-EINVAL on parse error
522  */
523 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
524 				       const char *prop, const char *nargs_prop,
525 				       unsigned int nargs, unsigned int index,
526 				       struct fwnode_reference_args *args)
527 {
528 	int ret;
529 
530 	if (IS_ERR_OR_NULL(fwnode))
531 		return -ENOENT;
532 
533 	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
534 				 nargs, index, args);
535 	if (ret == 0)
536 		return ret;
537 
538 	if (IS_ERR_OR_NULL(fwnode->secondary))
539 		return ret;
540 
541 	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
542 				  nargs, index, args);
543 }
544 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
545 
546 /**
547  * fwnode_find_reference - Find named reference to a fwnode_handle
548  * @fwnode: Firmware node where to look for the reference
549  * @name: The name of the reference
550  * @index: Index of the reference
551  *
552  * @index can be used when the named reference holds a table of references.
553  *
554  * The caller is responsible for calling fwnode_handle_put() on the returned
555  * fwnode pointer.
556  *
557  * Return: a pointer to the reference fwnode, when found. Otherwise,
558  * returns an error pointer.
559  */
560 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
561 					    const char *name,
562 					    unsigned int index)
563 {
564 	struct fwnode_reference_args args;
565 	int ret;
566 
567 	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
568 						 &args);
569 	return ret ? ERR_PTR(ret) : args.fwnode;
570 }
571 EXPORT_SYMBOL_GPL(fwnode_find_reference);
572 
573 /**
574  * fwnode_get_name - Return the name of a node
575  * @fwnode: The firmware node
576  *
577  * Return: a pointer to the node name, or %NULL.
578  */
579 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
580 {
581 	return fwnode_call_ptr_op(fwnode, get_name);
582 }
583 EXPORT_SYMBOL_GPL(fwnode_get_name);
584 
585 /**
586  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
587  * @fwnode: The firmware node
588  *
589  * Return: the prefix of a node, intended to be printed right before the node.
590  * The prefix works also as a separator between the nodes.
591  */
592 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
593 {
594 	return fwnode_call_ptr_op(fwnode, get_name_prefix);
595 }
596 
597 /**
598  * fwnode_get_parent - Return parent firwmare node
599  * @fwnode: Firmware whose parent is retrieved
600  *
601  * The caller is responsible for calling fwnode_handle_put() on the returned
602  * fwnode pointer.
603  *
604  * Return: parent firmware node of the given node if possible or %NULL if no
605  * parent was available.
606  */
607 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
608 {
609 	return fwnode_call_ptr_op(fwnode, get_parent);
610 }
611 EXPORT_SYMBOL_GPL(fwnode_get_parent);
612 
613 /**
614  * fwnode_get_next_parent - Iterate to the node's parent
615  * @fwnode: Firmware whose parent is retrieved
616  *
617  * This is like fwnode_get_parent() except that it drops the refcount
618  * on the passed node, making it suitable for iterating through a
619  * node's parents.
620  *
621  * The caller is responsible for calling fwnode_handle_put() on the returned
622  * fwnode pointer. Note that this function also puts a reference to @fwnode
623  * unconditionally.
624  *
625  * Return: parent firmware node of the given node if possible or %NULL if no
626  * parent was available.
627  */
628 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
629 {
630 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
631 
632 	fwnode_handle_put(fwnode);
633 
634 	return parent;
635 }
636 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
637 
638 /**
639  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
640  * @fwnode: firmware node
641  *
642  * Given a firmware node (@fwnode), this function finds its closest ancestor
643  * firmware node that has a corresponding struct device and returns that struct
644  * device.
645  *
646  * The caller is responsible for calling put_device() on the returned device
647  * pointer.
648  *
649  * Return: a pointer to the device of the @fwnode's closest ancestor.
650  */
651 struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
652 {
653 	struct fwnode_handle *parent;
654 	struct device *dev;
655 
656 	fwnode_for_each_parent_node(fwnode, parent) {
657 		dev = get_dev_from_fwnode(parent);
658 		if (dev) {
659 			fwnode_handle_put(parent);
660 			return dev;
661 		}
662 	}
663 	return NULL;
664 }
665 
666 /**
667  * fwnode_count_parents - Return the number of parents a node has
668  * @fwnode: The node the parents of which are to be counted
669  *
670  * Return: the number of parents a node has.
671  */
672 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
673 {
674 	struct fwnode_handle *parent;
675 	unsigned int count = 0;
676 
677 	fwnode_for_each_parent_node(fwnode, parent)
678 		count++;
679 
680 	return count;
681 }
682 EXPORT_SYMBOL_GPL(fwnode_count_parents);
683 
684 /**
685  * fwnode_get_nth_parent - Return an nth parent of a node
686  * @fwnode: The node the parent of which is requested
687  * @depth: Distance of the parent from the node
688  *
689  * The caller is responsible for calling fwnode_handle_put() on the returned
690  * fwnode pointer.
691  *
692  * Return: the nth parent of a node. If there is no parent at the requested
693  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
694  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
695  */
696 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
697 					    unsigned int depth)
698 {
699 	struct fwnode_handle *parent;
700 
701 	if (depth == 0)
702 		return fwnode_handle_get(fwnode);
703 
704 	fwnode_for_each_parent_node(fwnode, parent) {
705 		if (--depth == 0)
706 			return parent;
707 	}
708 	return NULL;
709 }
710 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
711 
712 /**
713  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
714  * @ancestor: Firmware which is tested for being an ancestor
715  * @child: Firmware which is tested for being the child
716  *
717  * A node is considered an ancestor of itself too.
718  *
719  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
720  */
721 bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
722 {
723 	struct fwnode_handle *parent;
724 
725 	if (IS_ERR_OR_NULL(ancestor))
726 		return false;
727 
728 	if (child == ancestor)
729 		return true;
730 
731 	fwnode_for_each_parent_node(child, parent) {
732 		if (parent == ancestor) {
733 			fwnode_handle_put(parent);
734 			return true;
735 		}
736 	}
737 	return false;
738 }
739 
740 /**
741  * fwnode_get_next_child_node - Return the next child node handle for a node
742  * @fwnode: Firmware node to find the next child node for.
743  * @child: Handle to one of the node's child nodes or a %NULL handle.
744  *
745  * The caller is responsible for calling fwnode_handle_put() on the returned
746  * fwnode pointer. Note that this function also puts a reference to @child
747  * unconditionally.
748  */
749 struct fwnode_handle *
750 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
751 			   struct fwnode_handle *child)
752 {
753 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
754 }
755 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
756 
757 /**
758  * fwnode_get_next_available_child_node - Return the next available child node handle for a node
759  * @fwnode: Firmware node to find the next child node for.
760  * @child: Handle to one of the node's child nodes or a %NULL handle.
761  *
762  * The caller is responsible for calling fwnode_handle_put() on the returned
763  * fwnode pointer. Note that this function also puts a reference to @child
764  * unconditionally.
765  */
766 struct fwnode_handle *
767 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
768 				     struct fwnode_handle *child)
769 {
770 	struct fwnode_handle *next_child = child;
771 
772 	if (IS_ERR_OR_NULL(fwnode))
773 		return NULL;
774 
775 	do {
776 		next_child = fwnode_get_next_child_node(fwnode, next_child);
777 		if (!next_child)
778 			return NULL;
779 	} while (!fwnode_device_is_available(next_child));
780 
781 	return next_child;
782 }
783 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
784 
785 /**
786  * device_get_next_child_node - Return the next child node handle for a device
787  * @dev: Device to find the next child node for.
788  * @child: Handle to one of the device's child nodes or a %NULL handle.
789  *
790  * The caller is responsible for calling fwnode_handle_put() on the returned
791  * fwnode pointer. Note that this function also puts a reference to @child
792  * unconditionally.
793  */
794 struct fwnode_handle *device_get_next_child_node(const struct device *dev,
795 						 struct fwnode_handle *child)
796 {
797 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
798 	struct fwnode_handle *next;
799 
800 	if (IS_ERR_OR_NULL(fwnode))
801 		return NULL;
802 
803 	/* Try to find a child in primary fwnode */
804 	next = fwnode_get_next_child_node(fwnode, child);
805 	if (next)
806 		return next;
807 
808 	/* When no more children in primary, continue with secondary */
809 	return fwnode_get_next_child_node(fwnode->secondary, child);
810 }
811 EXPORT_SYMBOL_GPL(device_get_next_child_node);
812 
813 /**
814  * fwnode_get_named_child_node - Return first matching named child node handle
815  * @fwnode: Firmware node to find the named child node for.
816  * @childname: String to match child node name against.
817  *
818  * The caller is responsible for calling fwnode_handle_put() on the returned
819  * fwnode pointer.
820  */
821 struct fwnode_handle *
822 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
823 			    const char *childname)
824 {
825 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
826 }
827 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
828 
829 /**
830  * device_get_named_child_node - Return first matching named child node handle
831  * @dev: Device to find the named child node for.
832  * @childname: String to match child node name against.
833  *
834  * The caller is responsible for calling fwnode_handle_put() on the returned
835  * fwnode pointer.
836  */
837 struct fwnode_handle *device_get_named_child_node(const struct device *dev,
838 						  const char *childname)
839 {
840 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
841 }
842 EXPORT_SYMBOL_GPL(device_get_named_child_node);
843 
844 /**
845  * fwnode_handle_get - Obtain a reference to a device node
846  * @fwnode: Pointer to the device node to obtain the reference to.
847  *
848  * The caller is responsible for calling fwnode_handle_put() on the returned
849  * fwnode pointer.
850  *
851  * Return: the fwnode handle.
852  */
853 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
854 {
855 	if (!fwnode_has_op(fwnode, get))
856 		return fwnode;
857 
858 	return fwnode_call_ptr_op(fwnode, get);
859 }
860 EXPORT_SYMBOL_GPL(fwnode_handle_get);
861 
862 /**
863  * fwnode_handle_put - Drop reference to a device node
864  * @fwnode: Pointer to the device node to drop the reference to.
865  *
866  * This has to be used when terminating device_for_each_child_node() iteration
867  * with break or return to prevent stale device node references from being left
868  * behind.
869  */
870 void fwnode_handle_put(struct fwnode_handle *fwnode)
871 {
872 	fwnode_call_void_op(fwnode, put);
873 }
874 EXPORT_SYMBOL_GPL(fwnode_handle_put);
875 
876 /**
877  * fwnode_device_is_available - check if a device is available for use
878  * @fwnode: Pointer to the fwnode of the device.
879  *
880  * Return: true if device is available for use. Otherwise, returns false.
881  *
882  * For fwnode node types that don't implement the .device_is_available()
883  * operation, this function returns true.
884  */
885 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
886 {
887 	if (IS_ERR_OR_NULL(fwnode))
888 		return false;
889 
890 	if (!fwnode_has_op(fwnode, device_is_available))
891 		return true;
892 
893 	return fwnode_call_bool_op(fwnode, device_is_available);
894 }
895 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
896 
897 /**
898  * device_get_child_node_count - return the number of child nodes for device
899  * @dev: Device to cound the child nodes for
900  *
901  * Return: the number of child nodes for a given device.
902  */
903 unsigned int device_get_child_node_count(const struct device *dev)
904 {
905 	struct fwnode_handle *child;
906 	unsigned int count = 0;
907 
908 	device_for_each_child_node(dev, child)
909 		count++;
910 
911 	return count;
912 }
913 EXPORT_SYMBOL_GPL(device_get_child_node_count);
914 
915 bool device_dma_supported(const struct device *dev)
916 {
917 	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
918 }
919 EXPORT_SYMBOL_GPL(device_dma_supported);
920 
921 enum dev_dma_attr device_get_dma_attr(const struct device *dev)
922 {
923 	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
924 		return DEV_DMA_NOT_SUPPORTED;
925 
926 	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
927 }
928 EXPORT_SYMBOL_GPL(device_get_dma_attr);
929 
930 /**
931  * fwnode_get_phy_mode - Get phy mode for given firmware node
932  * @fwnode:	Pointer to the given node
933  *
934  * The function gets phy interface string from property 'phy-mode' or
935  * 'phy-connection-type', and return its index in phy_modes table, or errno in
936  * error case.
937  */
938 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
939 {
940 	const char *pm;
941 	int err, i;
942 
943 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
944 	if (err < 0)
945 		err = fwnode_property_read_string(fwnode,
946 						  "phy-connection-type", &pm);
947 	if (err < 0)
948 		return err;
949 
950 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
951 		if (!strcasecmp(pm, phy_modes(i)))
952 			return i;
953 
954 	return -ENODEV;
955 }
956 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
957 
958 /**
959  * device_get_phy_mode - Get phy mode for given device
960  * @dev:	Pointer to the given device
961  *
962  * The function gets phy interface string from property 'phy-mode' or
963  * 'phy-connection-type', and return its index in phy_modes table, or errno in
964  * error case.
965  */
966 int device_get_phy_mode(struct device *dev)
967 {
968 	return fwnode_get_phy_mode(dev_fwnode(dev));
969 }
970 EXPORT_SYMBOL_GPL(device_get_phy_mode);
971 
972 /**
973  * fwnode_iomap - Maps the memory mapped IO for a given fwnode
974  * @fwnode:	Pointer to the firmware node
975  * @index:	Index of the IO range
976  *
977  * Return: a pointer to the mapped memory.
978  */
979 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
980 {
981 	return fwnode_call_ptr_op(fwnode, iomap, index);
982 }
983 EXPORT_SYMBOL(fwnode_iomap);
984 
985 /**
986  * fwnode_irq_get - Get IRQ directly from a fwnode
987  * @fwnode:	Pointer to the firmware node
988  * @index:	Zero-based index of the IRQ
989  *
990  * Return: Linux IRQ number on success. Negative errno on failure.
991  */
992 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
993 {
994 	int ret;
995 
996 	ret = fwnode_call_int_op(fwnode, irq_get, index);
997 	/* We treat mapping errors as invalid case */
998 	if (ret == 0)
999 		return -EINVAL;
1000 
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL(fwnode_irq_get);
1004 
1005 /**
1006  * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1007  * @fwnode:	Pointer to the firmware node
1008  * @name:	IRQ name
1009  *
1010  * Description:
1011  * Find a match to the string @name in the 'interrupt-names' string array
1012  * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1013  * number of the IRQ resource corresponding to the index of the matched
1014  * string.
1015  *
1016  * Return: Linux IRQ number on success, or negative errno otherwise.
1017  */
1018 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1019 {
1020 	int index;
1021 
1022 	if (!name)
1023 		return -EINVAL;
1024 
1025 	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1026 	if (index < 0)
1027 		return index;
1028 
1029 	return fwnode_irq_get(fwnode, index);
1030 }
1031 EXPORT_SYMBOL(fwnode_irq_get_byname);
1032 
1033 /**
1034  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1035  * @fwnode: Pointer to the parent firmware node
1036  * @prev: Previous endpoint node or %NULL to get the first
1037  *
1038  * The caller is responsible for calling fwnode_handle_put() on the returned
1039  * fwnode pointer. Note that this function also puts a reference to @prev
1040  * unconditionally.
1041  *
1042  * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1043  * are available.
1044  */
1045 struct fwnode_handle *
1046 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1047 			       struct fwnode_handle *prev)
1048 {
1049 	struct fwnode_handle *ep, *port_parent = NULL;
1050 	const struct fwnode_handle *parent;
1051 
1052 	/*
1053 	 * If this function is in a loop and the previous iteration returned
1054 	 * an endpoint from fwnode->secondary, then we need to use the secondary
1055 	 * as parent rather than @fwnode.
1056 	 */
1057 	if (prev) {
1058 		port_parent = fwnode_graph_get_port_parent(prev);
1059 		parent = port_parent;
1060 	} else {
1061 		parent = fwnode;
1062 	}
1063 	if (IS_ERR_OR_NULL(parent))
1064 		return NULL;
1065 
1066 	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1067 	if (ep)
1068 		goto out_put_port_parent;
1069 
1070 	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1071 
1072 out_put_port_parent:
1073 	fwnode_handle_put(port_parent);
1074 	return ep;
1075 }
1076 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1077 
1078 /**
1079  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1080  * @endpoint: Endpoint firmware node of the port
1081  *
1082  * The caller is responsible for calling fwnode_handle_put() on the returned
1083  * fwnode pointer.
1084  *
1085  * Return: the firmware node of the device the @endpoint belongs to.
1086  */
1087 struct fwnode_handle *
1088 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1089 {
1090 	struct fwnode_handle *port, *parent;
1091 
1092 	port = fwnode_get_parent(endpoint);
1093 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1094 
1095 	fwnode_handle_put(port);
1096 
1097 	return parent;
1098 }
1099 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1100 
1101 /**
1102  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1103  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1104  *
1105  * Extracts firmware node of a remote device the @fwnode points to.
1106  *
1107  * The caller is responsible for calling fwnode_handle_put() on the returned
1108  * fwnode pointer.
1109  */
1110 struct fwnode_handle *
1111 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1112 {
1113 	struct fwnode_handle *endpoint, *parent;
1114 
1115 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1116 	parent = fwnode_graph_get_port_parent(endpoint);
1117 
1118 	fwnode_handle_put(endpoint);
1119 
1120 	return parent;
1121 }
1122 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1123 
1124 /**
1125  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1126  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1127  *
1128  * Extracts firmware node of a remote port the @fwnode points to.
1129  *
1130  * The caller is responsible for calling fwnode_handle_put() on the returned
1131  * fwnode pointer.
1132  */
1133 struct fwnode_handle *
1134 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1135 {
1136 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1137 }
1138 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1139 
1140 /**
1141  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1142  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1143  *
1144  * Extracts firmware node of a remote endpoint the @fwnode points to.
1145  *
1146  * The caller is responsible for calling fwnode_handle_put() on the returned
1147  * fwnode pointer.
1148  */
1149 struct fwnode_handle *
1150 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1151 {
1152 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1153 }
1154 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1155 
1156 static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1157 {
1158 	struct fwnode_handle *dev_node;
1159 	bool available;
1160 
1161 	dev_node = fwnode_graph_get_remote_port_parent(ep);
1162 	available = fwnode_device_is_available(dev_node);
1163 	fwnode_handle_put(dev_node);
1164 
1165 	return available;
1166 }
1167 
1168 /**
1169  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1170  * @fwnode: parent fwnode_handle containing the graph
1171  * @port: identifier of the port node
1172  * @endpoint: identifier of the endpoint node under the port node
1173  * @flags: fwnode lookup flags
1174  *
1175  * The caller is responsible for calling fwnode_handle_put() on the returned
1176  * fwnode pointer.
1177  *
1178  * Return: the fwnode handle of the local endpoint corresponding the port and
1179  * endpoint IDs or %NULL if not found.
1180  *
1181  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1182  * has not been found, look for the closest endpoint ID greater than the
1183  * specified one and return the endpoint that corresponds to it, if present.
1184  *
1185  * Does not return endpoints that belong to disabled devices or endpoints that
1186  * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1187  */
1188 struct fwnode_handle *
1189 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1190 				u32 port, u32 endpoint, unsigned long flags)
1191 {
1192 	struct fwnode_handle *ep, *best_ep = NULL;
1193 	unsigned int best_ep_id = 0;
1194 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1195 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1196 
1197 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1198 		struct fwnode_endpoint fwnode_ep = { 0 };
1199 		int ret;
1200 
1201 		if (enabled_only && !fwnode_graph_remote_available(ep))
1202 			continue;
1203 
1204 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1205 		if (ret < 0)
1206 			continue;
1207 
1208 		if (fwnode_ep.port != port)
1209 			continue;
1210 
1211 		if (fwnode_ep.id == endpoint)
1212 			return ep;
1213 
1214 		if (!endpoint_next)
1215 			continue;
1216 
1217 		/*
1218 		 * If the endpoint that has just been found is not the first
1219 		 * matching one and the ID of the one found previously is closer
1220 		 * to the requested endpoint ID, skip it.
1221 		 */
1222 		if (fwnode_ep.id < endpoint ||
1223 		    (best_ep && best_ep_id < fwnode_ep.id))
1224 			continue;
1225 
1226 		fwnode_handle_put(best_ep);
1227 		best_ep = fwnode_handle_get(ep);
1228 		best_ep_id = fwnode_ep.id;
1229 	}
1230 
1231 	return best_ep;
1232 }
1233 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1234 
1235 /**
1236  * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1237  * @fwnode: The node related to a device
1238  * @flags: fwnode lookup flags
1239  * Count endpoints in a device node.
1240  *
1241  * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1242  * and endpoints connected to disabled devices are counted.
1243  */
1244 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1245 					     unsigned long flags)
1246 {
1247 	struct fwnode_handle *ep;
1248 	unsigned int count = 0;
1249 
1250 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1251 		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1252 		    fwnode_graph_remote_available(ep))
1253 			count++;
1254 	}
1255 
1256 	return count;
1257 }
1258 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1259 
1260 /**
1261  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1262  * @fwnode: pointer to endpoint fwnode_handle
1263  * @endpoint: pointer to the fwnode endpoint data structure
1264  *
1265  * Parse @fwnode representing a graph endpoint node and store the
1266  * information in @endpoint. The caller must hold a reference to
1267  * @fwnode.
1268  */
1269 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1270 				struct fwnode_endpoint *endpoint)
1271 {
1272 	memset(endpoint, 0, sizeof(*endpoint));
1273 
1274 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1275 }
1276 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1277 
1278 const void *device_get_match_data(const struct device *dev)
1279 {
1280 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1281 }
1282 EXPORT_SYMBOL_GPL(device_get_match_data);
1283 
1284 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1285 						const char *con_id, void *data,
1286 						devcon_match_fn_t match,
1287 						void **matches,
1288 						unsigned int matches_len)
1289 {
1290 	struct fwnode_handle *node;
1291 	struct fwnode_handle *ep;
1292 	unsigned int count = 0;
1293 	void *ret;
1294 
1295 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1296 		if (matches && count >= matches_len) {
1297 			fwnode_handle_put(ep);
1298 			break;
1299 		}
1300 
1301 		node = fwnode_graph_get_remote_port_parent(ep);
1302 		if (!fwnode_device_is_available(node)) {
1303 			fwnode_handle_put(node);
1304 			continue;
1305 		}
1306 
1307 		ret = match(node, con_id, data);
1308 		fwnode_handle_put(node);
1309 		if (ret) {
1310 			if (matches)
1311 				matches[count] = ret;
1312 			count++;
1313 		}
1314 	}
1315 	return count;
1316 }
1317 
1318 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1319 					  const char *con_id, void *data,
1320 					  devcon_match_fn_t match,
1321 					  void **matches,
1322 					  unsigned int matches_len)
1323 {
1324 	struct fwnode_handle *node;
1325 	unsigned int count = 0;
1326 	unsigned int i;
1327 	void *ret;
1328 
1329 	for (i = 0; ; i++) {
1330 		if (matches && count >= matches_len)
1331 			break;
1332 
1333 		node = fwnode_find_reference(fwnode, con_id, i);
1334 		if (IS_ERR(node))
1335 			break;
1336 
1337 		ret = match(node, NULL, data);
1338 		fwnode_handle_put(node);
1339 		if (ret) {
1340 			if (matches)
1341 				matches[count] = ret;
1342 			count++;
1343 		}
1344 	}
1345 
1346 	return count;
1347 }
1348 
1349 /**
1350  * fwnode_connection_find_match - Find connection from a device node
1351  * @fwnode: Device node with the connection
1352  * @con_id: Identifier for the connection
1353  * @data: Data for the match function
1354  * @match: Function to check and convert the connection description
1355  *
1356  * Find a connection with unique identifier @con_id between @fwnode and another
1357  * device node. @match will be used to convert the connection description to
1358  * data the caller is expecting to be returned.
1359  */
1360 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1361 				   const char *con_id, void *data,
1362 				   devcon_match_fn_t match)
1363 {
1364 	unsigned int count;
1365 	void *ret;
1366 
1367 	if (!fwnode || !match)
1368 		return NULL;
1369 
1370 	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1371 	if (count)
1372 		return ret;
1373 
1374 	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1375 	return count ? ret : NULL;
1376 }
1377 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1378 
1379 /**
1380  * fwnode_connection_find_matches - Find connections from a device node
1381  * @fwnode: Device node with the connection
1382  * @con_id: Identifier for the connection
1383  * @data: Data for the match function
1384  * @match: Function to check and convert the connection description
1385  * @matches: (Optional) array of pointers to fill with matches
1386  * @matches_len: Length of @matches
1387  *
1388  * Find up to @matches_len connections with unique identifier @con_id between
1389  * @fwnode and other device nodes. @match will be used to convert the
1390  * connection description to data the caller is expecting to be returned
1391  * through the @matches array.
1392  *
1393  * If @matches is %NULL @matches_len is ignored and the total number of resolved
1394  * matches is returned.
1395  *
1396  * Return: Number of matches resolved, or negative errno.
1397  */
1398 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1399 				   const char *con_id, void *data,
1400 				   devcon_match_fn_t match,
1401 				   void **matches, unsigned int matches_len)
1402 {
1403 	unsigned int count_graph;
1404 	unsigned int count_ref;
1405 
1406 	if (!fwnode || !match)
1407 		return -EINVAL;
1408 
1409 	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1410 						  matches, matches_len);
1411 
1412 	if (matches) {
1413 		matches += count_graph;
1414 		matches_len -= count_graph;
1415 	}
1416 
1417 	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1418 					  matches, matches_len);
1419 
1420 	return count_graph + count_ref;
1421 }
1422 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1423