xref: /openbmc/linux/drivers/base/property.c (revision dc3401c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20 
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 		of_fwnode_handle(dev->of_node) : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27 
28 /**
29  * device_property_present - check if a property of a device is present
30  * @dev: Device whose property is being checked
31  * @propname: Name of the property
32  *
33  * Check if property @propname is present in the device firmware description.
34  */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 	return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40 
41 /**
42  * fwnode_property_present - check if a property of a firmware node is present
43  * @fwnode: Firmware node whose property to check
44  * @propname: Name of the property
45  */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 			     const char *propname)
48 {
49 	bool ret;
50 
51 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 	    !IS_ERR_OR_NULL(fwnode->secondary))
54 		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 					 propname);
56 	return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59 
60 /**
61  * device_property_read_u8_array - return a u8 array property of a device
62  * @dev: Device to get the property of
63  * @propname: Name of the property
64  * @val: The values are stored here or %NULL to return the number of values
65  * @nval: Size of the @val array
66  *
67  * Function reads an array of u8 properties with @propname from the device
68  * firmware description and stores them to @val if found.
69  *
70  * Return: number of values if @val was %NULL,
71  *         %0 if the property was found (success),
72  *	   %-EINVAL if given arguments are not valid,
73  *	   %-ENODATA if the property does not have a value,
74  *	   %-EPROTO if the property is not an array of numbers,
75  *	   %-EOVERFLOW if the size of the property is not as expected.
76  *	   %-ENXIO if no suitable firmware interface is present.
77  */
78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 				  u8 *val, size_t nval)
80 {
81 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84 
85 /**
86  * device_property_read_u16_array - return a u16 array property of a device
87  * @dev: Device to get the property of
88  * @propname: Name of the property
89  * @val: The values are stored here or %NULL to return the number of values
90  * @nval: Size of the @val array
91  *
92  * Function reads an array of u16 properties with @propname from the device
93  * firmware description and stores them to @val if found.
94  *
95  * Return: number of values if @val was %NULL,
96  *         %0 if the property was found (success),
97  *	   %-EINVAL if given arguments are not valid,
98  *	   %-ENODATA if the property does not have a value,
99  *	   %-EPROTO if the property is not an array of numbers,
100  *	   %-EOVERFLOW if the size of the property is not as expected.
101  *	   %-ENXIO if no suitable firmware interface is present.
102  */
103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 				   u16 *val, size_t nval)
105 {
106 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109 
110 /**
111  * device_property_read_u32_array - return a u32 array property of a device
112  * @dev: Device to get the property of
113  * @propname: Name of the property
114  * @val: The values are stored here or %NULL to return the number of values
115  * @nval: Size of the @val array
116  *
117  * Function reads an array of u32 properties with @propname from the device
118  * firmware description and stores them to @val if found.
119  *
120  * Return: number of values if @val was %NULL,
121  *         %0 if the property was found (success),
122  *	   %-EINVAL if given arguments are not valid,
123  *	   %-ENODATA if the property does not have a value,
124  *	   %-EPROTO if the property is not an array of numbers,
125  *	   %-EOVERFLOW if the size of the property is not as expected.
126  *	   %-ENXIO if no suitable firmware interface is present.
127  */
128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 				   u32 *val, size_t nval)
130 {
131 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134 
135 /**
136  * device_property_read_u64_array - return a u64 array property of a device
137  * @dev: Device to get the property of
138  * @propname: Name of the property
139  * @val: The values are stored here or %NULL to return the number of values
140  * @nval: Size of the @val array
141  *
142  * Function reads an array of u64 properties with @propname from the device
143  * firmware description and stores them to @val if found.
144  *
145  * Return: number of values if @val was %NULL,
146  *         %0 if the property was found (success),
147  *	   %-EINVAL if given arguments are not valid,
148  *	   %-ENODATA if the property does not have a value,
149  *	   %-EPROTO if the property is not an array of numbers,
150  *	   %-EOVERFLOW if the size of the property is not as expected.
151  *	   %-ENXIO if no suitable firmware interface is present.
152  */
153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 				   u64 *val, size_t nval)
155 {
156 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159 
160 /**
161  * device_property_read_string_array - return a string array property of device
162  * @dev: Device to get the property of
163  * @propname: Name of the property
164  * @val: The values are stored here or %NULL to return the number of values
165  * @nval: Size of the @val array
166  *
167  * Function reads an array of string properties with @propname from the device
168  * firmware description and stores them to @val if found.
169  *
170  * Return: number of values read on success if @val is non-NULL,
171  *	   number of values available on success if @val is NULL,
172  *	   %-EINVAL if given arguments are not valid,
173  *	   %-ENODATA if the property does not have a value,
174  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
175  *	   %-EOVERFLOW if the size of the property is not as expected.
176  *	   %-ENXIO if no suitable firmware interface is present.
177  */
178 int device_property_read_string_array(struct device *dev, const char *propname,
179 				      const char **val, size_t nval)
180 {
181 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184 
185 /**
186  * device_property_read_string - return a string property of a device
187  * @dev: Device to get the property of
188  * @propname: Name of the property
189  * @val: The value is stored here
190  *
191  * Function reads property @propname from the device firmware description and
192  * stores the value into @val if found. The value is checked to be a string.
193  *
194  * Return: %0 if the property was found (success),
195  *	   %-EINVAL if given arguments are not valid,
196  *	   %-ENODATA if the property does not have a value,
197  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
198  *	   %-ENXIO if no suitable firmware interface is present.
199  */
200 int device_property_read_string(struct device *dev, const char *propname,
201 				const char **val)
202 {
203 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206 
207 /**
208  * device_property_match_string - find a string in an array and return index
209  * @dev: Device to get the property of
210  * @propname: Name of the property holding the array
211  * @string: String to look for
212  *
213  * Find a given string in a string array and if it is found return the
214  * index back.
215  *
216  * Return: %0 if the property was found (success),
217  *	   %-EINVAL if given arguments are not valid,
218  *	   %-ENODATA if the property does not have a value,
219  *	   %-EPROTO if the property is not an array of strings,
220  *	   %-ENXIO if no suitable firmware interface is present.
221  */
222 int device_property_match_string(struct device *dev, const char *propname,
223 				 const char *string)
224 {
225 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228 
229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 					  const char *propname,
231 					  unsigned int elem_size, void *val,
232 					  size_t nval)
233 {
234 	int ret;
235 
236 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 				 elem_size, val, nval);
238 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 	    !IS_ERR_OR_NULL(fwnode->secondary))
240 		ret = fwnode_call_int_op(
241 			fwnode->secondary, property_read_int_array, propname,
242 			elem_size, val, nval);
243 
244 	return ret;
245 }
246 
247 /**
248  * fwnode_property_read_u8_array - return a u8 array property of firmware node
249  * @fwnode: Firmware node to get the property of
250  * @propname: Name of the property
251  * @val: The values are stored here or %NULL to return the number of values
252  * @nval: Size of the @val array
253  *
254  * Read an array of u8 properties with @propname from @fwnode and stores them to
255  * @val if found.
256  *
257  * Return: number of values if @val was %NULL,
258  *         %0 if the property was found (success),
259  *	   %-EINVAL if given arguments are not valid,
260  *	   %-ENODATA if the property does not have a value,
261  *	   %-EPROTO if the property is not an array of numbers,
262  *	   %-EOVERFLOW if the size of the property is not as expected,
263  *	   %-ENXIO if no suitable firmware interface is present.
264  */
265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 				  const char *propname, u8 *val, size_t nval)
267 {
268 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 					      val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272 
273 /**
274  * fwnode_property_read_u16_array - return a u16 array property of firmware node
275  * @fwnode: Firmware node to get the property of
276  * @propname: Name of the property
277  * @val: The values are stored here or %NULL to return the number of values
278  * @nval: Size of the @val array
279  *
280  * Read an array of u16 properties with @propname from @fwnode and store them to
281  * @val if found.
282  *
283  * Return: number of values if @val was %NULL,
284  *         %0 if the property was found (success),
285  *	   %-EINVAL if given arguments are not valid,
286  *	   %-ENODATA if the property does not have a value,
287  *	   %-EPROTO if the property is not an array of numbers,
288  *	   %-EOVERFLOW if the size of the property is not as expected,
289  *	   %-ENXIO if no suitable firmware interface is present.
290  */
291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 				   const char *propname, u16 *val, size_t nval)
293 {
294 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 					      val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298 
299 /**
300  * fwnode_property_read_u32_array - return a u32 array property of firmware node
301  * @fwnode: Firmware node to get the property of
302  * @propname: Name of the property
303  * @val: The values are stored here or %NULL to return the number of values
304  * @nval: Size of the @val array
305  *
306  * Read an array of u32 properties with @propname from @fwnode store them to
307  * @val if found.
308  *
309  * Return: number of values if @val was %NULL,
310  *         %0 if the property was found (success),
311  *	   %-EINVAL if given arguments are not valid,
312  *	   %-ENODATA if the property does not have a value,
313  *	   %-EPROTO if the property is not an array of numbers,
314  *	   %-EOVERFLOW if the size of the property is not as expected,
315  *	   %-ENXIO if no suitable firmware interface is present.
316  */
317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 				   const char *propname, u32 *val, size_t nval)
319 {
320 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 					      val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324 
325 /**
326  * fwnode_property_read_u64_array - return a u64 array property firmware node
327  * @fwnode: Firmware node to get the property of
328  * @propname: Name of the property
329  * @val: The values are stored here or %NULL to return the number of values
330  * @nval: Size of the @val array
331  *
332  * Read an array of u64 properties with @propname from @fwnode and store them to
333  * @val if found.
334  *
335  * Return: number of values if @val was %NULL,
336  *         %0 if the property was found (success),
337  *	   %-EINVAL if given arguments are not valid,
338  *	   %-ENODATA if the property does not have a value,
339  *	   %-EPROTO if the property is not an array of numbers,
340  *	   %-EOVERFLOW if the size of the property is not as expected,
341  *	   %-ENXIO if no suitable firmware interface is present.
342  */
343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 				   const char *propname, u64 *val, size_t nval)
345 {
346 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 					      val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350 
351 /**
352  * fwnode_property_read_string_array - return string array property of a node
353  * @fwnode: Firmware node to get the property of
354  * @propname: Name of the property
355  * @val: The values are stored here or %NULL to return the number of values
356  * @nval: Size of the @val array
357  *
358  * Read an string list property @propname from the given firmware node and store
359  * them to @val if found.
360  *
361  * Return: number of values read on success if @val is non-NULL,
362  *	   number of values available on success if @val is NULL,
363  *	   %-EINVAL if given arguments are not valid,
364  *	   %-ENODATA if the property does not have a value,
365  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
366  *	   %-EOVERFLOW if the size of the property is not as expected,
367  *	   %-ENXIO if no suitable firmware interface is present.
368  */
369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 				      const char *propname, const char **val,
371 				      size_t nval)
372 {
373 	int ret;
374 
375 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 				 val, nval);
377 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 	    !IS_ERR_OR_NULL(fwnode->secondary))
379 		ret = fwnode_call_int_op(fwnode->secondary,
380 					 property_read_string_array, propname,
381 					 val, nval);
382 	return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385 
386 /**
387  * fwnode_property_read_string - return a string property of a firmware node
388  * @fwnode: Firmware node to get the property of
389  * @propname: Name of the property
390  * @val: The value is stored here
391  *
392  * Read property @propname from the given firmware node and store the value into
393  * @val if found.  The value is checked to be a string.
394  *
395  * Return: %0 if the property was found (success),
396  *	   %-EINVAL if given arguments are not valid,
397  *	   %-ENODATA if the property does not have a value,
398  *	   %-EPROTO or %-EILSEQ if the property is not a string,
399  *	   %-ENXIO if no suitable firmware interface is present.
400  */
401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 				const char *propname, const char **val)
403 {
404 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405 
406 	return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409 
410 /**
411  * fwnode_property_match_string - find a string in an array and return index
412  * @fwnode: Firmware node to get the property of
413  * @propname: Name of the property holding the array
414  * @string: String to look for
415  *
416  * Find a given string in a string array and if it is found return the
417  * index back.
418  *
419  * Return: %0 if the property was found (success),
420  *	   %-EINVAL if given arguments are not valid,
421  *	   %-ENODATA if the property does not have a value,
422  *	   %-EPROTO if the property is not an array of strings,
423  *	   %-ENXIO if no suitable firmware interface is present.
424  */
425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 	const char *propname, const char *string)
427 {
428 	const char **values;
429 	int nval, ret;
430 
431 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 	if (nval < 0)
433 		return nval;
434 
435 	if (nval == 0)
436 		return -ENODATA;
437 
438 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 	if (!values)
440 		return -ENOMEM;
441 
442 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 	if (ret < 0)
444 		goto out;
445 
446 	ret = match_string(values, nval, string);
447 	if (ret < 0)
448 		ret = -ENODATA;
449 out:
450 	kfree(values);
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454 
455 /**
456  * fwnode_property_get_reference_args() - Find a reference with arguments
457  * @fwnode:	Firmware node where to look for the reference
458  * @prop:	The name of the property
459  * @nargs_prop:	The name of the property telling the number of
460  *		arguments in the referred node. NULL if @nargs is known,
461  *		otherwise @nargs is ignored. Only relevant on OF.
462  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
463  * @index:	Index of the reference, from zero onwards.
464  * @args:	Result structure with reference and integer arguments.
465  *
466  * Obtain a reference based on a named property in an fwnode, with
467  * integer arguments.
468  *
469  * Caller is responsible to call fwnode_handle_put() on the returned
470  * args->fwnode pointer.
471  *
472  * Returns: %0 on success
473  *	    %-ENOENT when the index is out of bounds, the index has an empty
474  *		     reference or the property was not found
475  *	    %-EINVAL on parse error
476  */
477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 				       const char *prop, const char *nargs_prop,
479 				       unsigned int nargs, unsigned int index,
480 				       struct fwnode_reference_args *args)
481 {
482 	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 				  nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486 
487 /**
488  * fwnode_find_reference - Find named reference to a fwnode_handle
489  * @fwnode: Firmware node where to look for the reference
490  * @name: The name of the reference
491  * @index: Index of the reference
492  *
493  * @index can be used when the named reference holds a table of references.
494  *
495  * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496  * call fwnode_handle_put() on the returned fwnode pointer.
497  */
498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 					    const char *name,
500 					    unsigned int index)
501 {
502 	struct fwnode_reference_args args;
503 	int ret;
504 
505 	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 						 &args);
507 	return ret ? ERR_PTR(ret) : args.fwnode;
508 }
509 EXPORT_SYMBOL_GPL(fwnode_find_reference);
510 
511 /**
512  * device_remove_properties - Remove properties from a device object.
513  * @dev: Device whose properties to remove.
514  *
515  * The function removes properties previously associated to the device
516  * firmware node with device_add_properties(). Memory allocated to the
517  * properties will also be released.
518  */
519 void device_remove_properties(struct device *dev)
520 {
521 	struct fwnode_handle *fwnode = dev_fwnode(dev);
522 
523 	if (!fwnode)
524 		return;
525 
526 	if (is_software_node(fwnode->secondary)) {
527 		fwnode_remove_software_node(fwnode->secondary);
528 		set_secondary_fwnode(dev, NULL);
529 	}
530 }
531 EXPORT_SYMBOL_GPL(device_remove_properties);
532 
533 /**
534  * device_add_properties - Add a collection of properties to a device object.
535  * @dev: Device to add properties to.
536  * @properties: Collection of properties to add.
537  *
538  * Associate a collection of device properties represented by @properties with
539  * @dev. The function takes a copy of @properties.
540  *
541  * WARNING: The callers should not use this function if it is known that there
542  * is no real firmware node associated with @dev! In that case the callers
543  * should create a software node and assign it to @dev directly.
544  */
545 int device_add_properties(struct device *dev,
546 			  const struct property_entry *properties)
547 {
548 	struct fwnode_handle *fwnode;
549 
550 	fwnode = fwnode_create_software_node(properties, NULL);
551 	if (IS_ERR(fwnode))
552 		return PTR_ERR(fwnode);
553 
554 	set_secondary_fwnode(dev, fwnode);
555 	return 0;
556 }
557 EXPORT_SYMBOL_GPL(device_add_properties);
558 
559 /**
560  * fwnode_get_name - Return the name of a node
561  * @fwnode: The firmware node
562  *
563  * Returns a pointer to the node name.
564  */
565 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566 {
567 	return fwnode_call_ptr_op(fwnode, get_name);
568 }
569 EXPORT_SYMBOL_GPL(fwnode_get_name);
570 
571 /**
572  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573  * @fwnode: The firmware node
574  *
575  * Returns the prefix of a node, intended to be printed right before the node.
576  * The prefix works also as a separator between the nodes.
577  */
578 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579 {
580 	return fwnode_call_ptr_op(fwnode, get_name_prefix);
581 }
582 
583 /**
584  * fwnode_get_parent - Return parent firwmare node
585  * @fwnode: Firmware whose parent is retrieved
586  *
587  * Return parent firmware node of the given node if possible or %NULL if no
588  * parent was available.
589  */
590 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591 {
592 	return fwnode_call_ptr_op(fwnode, get_parent);
593 }
594 EXPORT_SYMBOL_GPL(fwnode_get_parent);
595 
596 /**
597  * fwnode_get_next_parent - Iterate to the node's parent
598  * @fwnode: Firmware whose parent is retrieved
599  *
600  * This is like fwnode_get_parent() except that it drops the refcount
601  * on the passed node, making it suitable for iterating through a
602  * node's parents.
603  *
604  * Returns a node pointer with refcount incremented, use
605  * fwnode_handle_node() on it when done.
606  */
607 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608 {
609 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610 
611 	fwnode_handle_put(fwnode);
612 
613 	return parent;
614 }
615 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616 
617 /**
618  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
619  * @fwnode: firmware node
620  *
621  * Given a firmware node (@fwnode), this function finds its closest ancestor
622  * firmware node that has a corresponding struct device and returns that struct
623  * device.
624  *
625  * The caller of this function is expected to call put_device() on the returned
626  * device when they are done.
627  */
628 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
629 {
630 	struct device *dev;
631 
632 	fwnode_handle_get(fwnode);
633 	do {
634 		fwnode = fwnode_get_next_parent(fwnode);
635 		if (!fwnode)
636 			return NULL;
637 		dev = get_dev_from_fwnode(fwnode);
638 	} while (!dev);
639 	fwnode_handle_put(fwnode);
640 	return dev;
641 }
642 
643 /**
644  * fwnode_count_parents - Return the number of parents a node has
645  * @fwnode: The node the parents of which are to be counted
646  *
647  * Returns the number of parents a node has.
648  */
649 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
650 {
651 	struct fwnode_handle *__fwnode;
652 	unsigned int count;
653 
654 	__fwnode = fwnode_get_parent(fwnode);
655 
656 	for (count = 0; __fwnode; count++)
657 		__fwnode = fwnode_get_next_parent(__fwnode);
658 
659 	return count;
660 }
661 EXPORT_SYMBOL_GPL(fwnode_count_parents);
662 
663 /**
664  * fwnode_get_nth_parent - Return an nth parent of a node
665  * @fwnode: The node the parent of which is requested
666  * @depth: Distance of the parent from the node
667  *
668  * Returns the nth parent of a node. If there is no parent at the requested
669  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
670  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
671  *
672  * The caller is responsible for calling fwnode_handle_put() for the returned
673  * node.
674  */
675 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
676 					    unsigned int depth)
677 {
678 	unsigned int i;
679 
680 	fwnode_handle_get(fwnode);
681 
682 	for (i = 0; i < depth && fwnode; i++)
683 		fwnode = fwnode_get_next_parent(fwnode);
684 
685 	return fwnode;
686 }
687 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
688 
689 /**
690  * fwnode_is_ancestor_of - Test if @test_ancestor is ancestor of @test_child
691  * @test_ancestor: Firmware which is tested for being an ancestor
692  * @test_child: Firmware which is tested for being the child
693  *
694  * A node is considered an ancestor of itself too.
695  *
696  * Returns true if @test_ancestor is an ancestor of @test_child.
697  * Otherwise, returns false.
698  */
699 bool fwnode_is_ancestor_of(struct fwnode_handle *test_ancestor,
700 				  struct fwnode_handle *test_child)
701 {
702 	if (!test_ancestor)
703 		return false;
704 
705 	fwnode_handle_get(test_child);
706 	while (test_child) {
707 		if (test_child == test_ancestor) {
708 			fwnode_handle_put(test_child);
709 			return true;
710 		}
711 		test_child = fwnode_get_next_parent(test_child);
712 	}
713 	return false;
714 }
715 
716 /**
717  * fwnode_get_next_child_node - Return the next child node handle for a node
718  * @fwnode: Firmware node to find the next child node for.
719  * @child: Handle to one of the node's child nodes or a %NULL handle.
720  */
721 struct fwnode_handle *
722 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
723 			   struct fwnode_handle *child)
724 {
725 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
726 }
727 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
728 
729 /**
730  * fwnode_get_next_available_child_node - Return the next
731  * available child node handle for a node
732  * @fwnode: Firmware node to find the next child node for.
733  * @child: Handle to one of the node's child nodes or a %NULL handle.
734  */
735 struct fwnode_handle *
736 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
737 				     struct fwnode_handle *child)
738 {
739 	struct fwnode_handle *next_child = child;
740 
741 	if (!fwnode)
742 		return NULL;
743 
744 	do {
745 		next_child = fwnode_get_next_child_node(fwnode, next_child);
746 		if (!next_child)
747 			return NULL;
748 	} while (!fwnode_device_is_available(next_child));
749 
750 	return next_child;
751 }
752 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
753 
754 /**
755  * device_get_next_child_node - Return the next child node handle for a device
756  * @dev: Device to find the next child node for.
757  * @child: Handle to one of the device's child nodes or a null handle.
758  */
759 struct fwnode_handle *device_get_next_child_node(struct device *dev,
760 						 struct fwnode_handle *child)
761 {
762 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
763 	struct fwnode_handle *next;
764 
765 	/* Try to find a child in primary fwnode */
766 	next = fwnode_get_next_child_node(fwnode, child);
767 	if (next)
768 		return next;
769 
770 	/* When no more children in primary, continue with secondary */
771 	if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
772 		next = fwnode_get_next_child_node(fwnode->secondary, child);
773 
774 	return next;
775 }
776 EXPORT_SYMBOL_GPL(device_get_next_child_node);
777 
778 /**
779  * fwnode_get_named_child_node - Return first matching named child node handle
780  * @fwnode: Firmware node to find the named child node for.
781  * @childname: String to match child node name against.
782  */
783 struct fwnode_handle *
784 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
785 			    const char *childname)
786 {
787 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
788 }
789 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
790 
791 /**
792  * device_get_named_child_node - Return first matching named child node handle
793  * @dev: Device to find the named child node for.
794  * @childname: String to match child node name against.
795  */
796 struct fwnode_handle *device_get_named_child_node(struct device *dev,
797 						  const char *childname)
798 {
799 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
800 }
801 EXPORT_SYMBOL_GPL(device_get_named_child_node);
802 
803 /**
804  * fwnode_handle_get - Obtain a reference to a device node
805  * @fwnode: Pointer to the device node to obtain the reference to.
806  *
807  * Returns the fwnode handle.
808  */
809 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
810 {
811 	if (!fwnode_has_op(fwnode, get))
812 		return fwnode;
813 
814 	return fwnode_call_ptr_op(fwnode, get);
815 }
816 EXPORT_SYMBOL_GPL(fwnode_handle_get);
817 
818 /**
819  * fwnode_handle_put - Drop reference to a device node
820  * @fwnode: Pointer to the device node to drop the reference to.
821  *
822  * This has to be used when terminating device_for_each_child_node() iteration
823  * with break or return to prevent stale device node references from being left
824  * behind.
825  */
826 void fwnode_handle_put(struct fwnode_handle *fwnode)
827 {
828 	fwnode_call_void_op(fwnode, put);
829 }
830 EXPORT_SYMBOL_GPL(fwnode_handle_put);
831 
832 /**
833  * fwnode_device_is_available - check if a device is available for use
834  * @fwnode: Pointer to the fwnode of the device.
835  *
836  * For fwnode node types that don't implement the .device_is_available()
837  * operation, this function returns true.
838  */
839 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
840 {
841 	if (!fwnode_has_op(fwnode, device_is_available))
842 		return true;
843 
844 	return fwnode_call_bool_op(fwnode, device_is_available);
845 }
846 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
847 
848 /**
849  * device_get_child_node_count - return the number of child nodes for device
850  * @dev: Device to cound the child nodes for
851  */
852 unsigned int device_get_child_node_count(struct device *dev)
853 {
854 	struct fwnode_handle *child;
855 	unsigned int count = 0;
856 
857 	device_for_each_child_node(dev, child)
858 		count++;
859 
860 	return count;
861 }
862 EXPORT_SYMBOL_GPL(device_get_child_node_count);
863 
864 bool device_dma_supported(struct device *dev)
865 {
866 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
867 
868 	/* For DT, this is always supported.
869 	 * For ACPI, this depends on CCA, which
870 	 * is determined by the acpi_dma_supported().
871 	 */
872 	if (is_of_node(fwnode))
873 		return true;
874 
875 	return acpi_dma_supported(to_acpi_device_node(fwnode));
876 }
877 EXPORT_SYMBOL_GPL(device_dma_supported);
878 
879 enum dev_dma_attr device_get_dma_attr(struct device *dev)
880 {
881 	const struct fwnode_handle *fwnode = dev_fwnode(dev);
882 	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
883 
884 	if (is_of_node(fwnode)) {
885 		if (of_dma_is_coherent(to_of_node(fwnode)))
886 			attr = DEV_DMA_COHERENT;
887 		else
888 			attr = DEV_DMA_NON_COHERENT;
889 	} else
890 		attr = acpi_get_dma_attr(to_acpi_device_node(fwnode));
891 
892 	return attr;
893 }
894 EXPORT_SYMBOL_GPL(device_get_dma_attr);
895 
896 /**
897  * fwnode_get_phy_mode - Get phy mode for given firmware node
898  * @fwnode:	Pointer to the given node
899  *
900  * The function gets phy interface string from property 'phy-mode' or
901  * 'phy-connection-type', and return its index in phy_modes table, or errno in
902  * error case.
903  */
904 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
905 {
906 	const char *pm;
907 	int err, i;
908 
909 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
910 	if (err < 0)
911 		err = fwnode_property_read_string(fwnode,
912 						  "phy-connection-type", &pm);
913 	if (err < 0)
914 		return err;
915 
916 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
917 		if (!strcasecmp(pm, phy_modes(i)))
918 			return i;
919 
920 	return -ENODEV;
921 }
922 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
923 
924 /**
925  * device_get_phy_mode - Get phy mode for given device
926  * @dev:	Pointer to the given device
927  *
928  * The function gets phy interface string from property 'phy-mode' or
929  * 'phy-connection-type', and return its index in phy_modes table, or errno in
930  * error case.
931  */
932 int device_get_phy_mode(struct device *dev)
933 {
934 	return fwnode_get_phy_mode(dev_fwnode(dev));
935 }
936 EXPORT_SYMBOL_GPL(device_get_phy_mode);
937 
938 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
939 				 const char *name, char *addr,
940 				 int alen)
941 {
942 	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
943 
944 	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
945 		return addr;
946 	return NULL;
947 }
948 
949 /**
950  * fwnode_get_mac_address - Get the MAC from the firmware node
951  * @fwnode:	Pointer to the firmware node
952  * @addr:	Address of buffer to store the MAC in
953  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
954  *
955  * Search the firmware node for the best MAC address to use.  'mac-address' is
956  * checked first, because that is supposed to contain to "most recent" MAC
957  * address. If that isn't set, then 'local-mac-address' is checked next,
958  * because that is the default address.  If that isn't set, then the obsolete
959  * 'address' is checked, just in case we're using an old device tree.
960  *
961  * Note that the 'address' property is supposed to contain a virtual address of
962  * the register set, but some DTS files have redefined that property to be the
963  * MAC address.
964  *
965  * All-zero MAC addresses are rejected, because those could be properties that
966  * exist in the firmware tables, but were not updated by the firmware.  For
967  * example, the DTS could define 'mac-address' and 'local-mac-address', with
968  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
969  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
970  * exists but is all zeros.
971 */
972 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
973 {
974 	char *res;
975 
976 	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
977 	if (res)
978 		return res;
979 
980 	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
981 	if (res)
982 		return res;
983 
984 	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
985 }
986 EXPORT_SYMBOL(fwnode_get_mac_address);
987 
988 /**
989  * device_get_mac_address - Get the MAC for a given device
990  * @dev:	Pointer to the device
991  * @addr:	Address of buffer to store the MAC in
992  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
993  */
994 void *device_get_mac_address(struct device *dev, char *addr, int alen)
995 {
996 	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
997 }
998 EXPORT_SYMBOL(device_get_mac_address);
999 
1000 /**
1001  * fwnode_irq_get - Get IRQ directly from a fwnode
1002  * @fwnode:	Pointer to the firmware node
1003  * @index:	Zero-based index of the IRQ
1004  *
1005  * Returns Linux IRQ number on success. Other values are determined
1006  * accordingly to acpi_/of_ irq_get() operation.
1007  */
1008 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1009 {
1010 	struct resource res;
1011 	int ret;
1012 
1013 	if (is_of_node(fwnode))
1014 		return of_irq_get(to_of_node(fwnode), index);
1015 
1016 	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1017 	if (ret)
1018 		return ret;
1019 
1020 	return res.start;
1021 }
1022 EXPORT_SYMBOL(fwnode_irq_get);
1023 
1024 /**
1025  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1026  * @fwnode: Pointer to the parent firmware node
1027  * @prev: Previous endpoint node or %NULL to get the first
1028  *
1029  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1030  * are available.
1031  */
1032 struct fwnode_handle *
1033 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1034 			       struct fwnode_handle *prev)
1035 {
1036 	const struct fwnode_handle *parent;
1037 	struct fwnode_handle *ep;
1038 
1039 	/*
1040 	 * If this function is in a loop and the previous iteration returned
1041 	 * an endpoint from fwnode->secondary, then we need to use the secondary
1042 	 * as parent rather than @fwnode.
1043 	 */
1044 	if (prev)
1045 		parent = fwnode_graph_get_port_parent(prev);
1046 	else
1047 		parent = fwnode;
1048 
1049 	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1050 
1051 	if (IS_ERR_OR_NULL(ep) &&
1052 	    !IS_ERR_OR_NULL(parent) && !IS_ERR_OR_NULL(parent->secondary))
1053 		ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1054 
1055 	return ep;
1056 }
1057 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1058 
1059 /**
1060  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1061  * @endpoint: Endpoint firmware node of the port
1062  *
1063  * Return: the firmware node of the device the @endpoint belongs to.
1064  */
1065 struct fwnode_handle *
1066 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1067 {
1068 	struct fwnode_handle *port, *parent;
1069 
1070 	port = fwnode_get_parent(endpoint);
1071 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1072 
1073 	fwnode_handle_put(port);
1074 
1075 	return parent;
1076 }
1077 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1078 
1079 /**
1080  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1081  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1082  *
1083  * Extracts firmware node of a remote device the @fwnode points to.
1084  */
1085 struct fwnode_handle *
1086 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1087 {
1088 	struct fwnode_handle *endpoint, *parent;
1089 
1090 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1091 	parent = fwnode_graph_get_port_parent(endpoint);
1092 
1093 	fwnode_handle_put(endpoint);
1094 
1095 	return parent;
1096 }
1097 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1098 
1099 /**
1100  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1101  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1102  *
1103  * Extracts firmware node of a remote port the @fwnode points to.
1104  */
1105 struct fwnode_handle *
1106 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1107 {
1108 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1109 }
1110 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1111 
1112 /**
1113  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1114  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1115  *
1116  * Extracts firmware node of a remote endpoint the @fwnode points to.
1117  */
1118 struct fwnode_handle *
1119 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1120 {
1121 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1122 }
1123 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1124 
1125 /**
1126  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1127  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1128  * @port_id: identifier of the parent port node
1129  * @endpoint_id: identifier of the endpoint node
1130  *
1131  * Return: Remote fwnode handle associated with remote endpoint node linked
1132  *	   to @node. Use fwnode_node_put() on it when done.
1133  */
1134 struct fwnode_handle *
1135 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1136 			     u32 endpoint_id)
1137 {
1138 	struct fwnode_handle *endpoint = NULL;
1139 
1140 	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1141 		struct fwnode_endpoint fwnode_ep;
1142 		struct fwnode_handle *remote;
1143 		int ret;
1144 
1145 		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1146 		if (ret < 0)
1147 			continue;
1148 
1149 		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1150 			continue;
1151 
1152 		remote = fwnode_graph_get_remote_port_parent(endpoint);
1153 		if (!remote)
1154 			return NULL;
1155 
1156 		return fwnode_device_is_available(remote) ? remote : NULL;
1157 	}
1158 
1159 	return NULL;
1160 }
1161 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1162 
1163 /**
1164  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165  * @fwnode: parent fwnode_handle containing the graph
1166  * @port: identifier of the port node
1167  * @endpoint: identifier of the endpoint node under the port node
1168  * @flags: fwnode lookup flags
1169  *
1170  * Return the fwnode handle of the local endpoint corresponding the port and
1171  * endpoint IDs or NULL if not found.
1172  *
1173  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1174  * has not been found, look for the closest endpoint ID greater than the
1175  * specified one and return the endpoint that corresponds to it, if present.
1176  *
1177  * Do not return endpoints that belong to disabled devices, unless
1178  * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1179  *
1180  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1181  * it when it is not needed any more.
1182  */
1183 struct fwnode_handle *
1184 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185 				u32 port, u32 endpoint, unsigned long flags)
1186 {
1187 	struct fwnode_handle *ep = NULL, *best_ep = NULL;
1188 	unsigned int best_ep_id = 0;
1189 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191 
1192 	while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1193 		struct fwnode_endpoint fwnode_ep = { 0 };
1194 		int ret;
1195 
1196 		if (enabled_only) {
1197 			struct fwnode_handle *dev_node;
1198 			bool available;
1199 
1200 			dev_node = fwnode_graph_get_remote_port_parent(ep);
1201 			available = fwnode_device_is_available(dev_node);
1202 			fwnode_handle_put(dev_node);
1203 			if (!available)
1204 				continue;
1205 		}
1206 
1207 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1208 		if (ret < 0)
1209 			continue;
1210 
1211 		if (fwnode_ep.port != port)
1212 			continue;
1213 
1214 		if (fwnode_ep.id == endpoint)
1215 			return ep;
1216 
1217 		if (!endpoint_next)
1218 			continue;
1219 
1220 		/*
1221 		 * If the endpoint that has just been found is not the first
1222 		 * matching one and the ID of the one found previously is closer
1223 		 * to the requested endpoint ID, skip it.
1224 		 */
1225 		if (fwnode_ep.id < endpoint ||
1226 		    (best_ep && best_ep_id < fwnode_ep.id))
1227 			continue;
1228 
1229 		fwnode_handle_put(best_ep);
1230 		best_ep = fwnode_handle_get(ep);
1231 		best_ep_id = fwnode_ep.id;
1232 	}
1233 
1234 	return best_ep;
1235 }
1236 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1237 
1238 /**
1239  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1240  * @fwnode: pointer to endpoint fwnode_handle
1241  * @endpoint: pointer to the fwnode endpoint data structure
1242  *
1243  * Parse @fwnode representing a graph endpoint node and store the
1244  * information in @endpoint. The caller must hold a reference to
1245  * @fwnode.
1246  */
1247 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1248 				struct fwnode_endpoint *endpoint)
1249 {
1250 	memset(endpoint, 0, sizeof(*endpoint));
1251 
1252 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1253 }
1254 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1255 
1256 const void *device_get_match_data(struct device *dev)
1257 {
1258 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1259 }
1260 EXPORT_SYMBOL_GPL(device_get_match_data);
1261 
1262 static void *
1263 fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1264 			  void *data, devcon_match_fn_t match)
1265 {
1266 	struct fwnode_handle *node;
1267 	struct fwnode_handle *ep;
1268 	void *ret;
1269 
1270 	fwnode_graph_for_each_endpoint(fwnode, ep) {
1271 		node = fwnode_graph_get_remote_port_parent(ep);
1272 		if (!fwnode_device_is_available(node))
1273 			continue;
1274 
1275 		ret = match(node, con_id, data);
1276 		fwnode_handle_put(node);
1277 		if (ret) {
1278 			fwnode_handle_put(ep);
1279 			return ret;
1280 		}
1281 	}
1282 	return NULL;
1283 }
1284 
1285 static void *
1286 fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1287 		    void *data, devcon_match_fn_t match)
1288 {
1289 	struct fwnode_handle *node;
1290 	void *ret;
1291 	int i;
1292 
1293 	for (i = 0; ; i++) {
1294 		node = fwnode_find_reference(fwnode, con_id, i);
1295 		if (IS_ERR(node))
1296 			break;
1297 
1298 		ret = match(node, NULL, data);
1299 		fwnode_handle_put(node);
1300 		if (ret)
1301 			return ret;
1302 	}
1303 
1304 	return NULL;
1305 }
1306 
1307 /**
1308  * fwnode_connection_find_match - Find connection from a device node
1309  * @fwnode: Device node with the connection
1310  * @con_id: Identifier for the connection
1311  * @data: Data for the match function
1312  * @match: Function to check and convert the connection description
1313  *
1314  * Find a connection with unique identifier @con_id between @fwnode and another
1315  * device node. @match will be used to convert the connection description to
1316  * data the caller is expecting to be returned.
1317  */
1318 void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1319 				   const char *con_id, void *data,
1320 				   devcon_match_fn_t match)
1321 {
1322 	void *ret;
1323 
1324 	if (!fwnode || !match)
1325 		return NULL;
1326 
1327 	ret = fwnode_graph_devcon_match(fwnode, con_id, data, match);
1328 	if (ret)
1329 		return ret;
1330 
1331 	return fwnode_devcon_match(fwnode, con_id, data, match);
1332 }
1333 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1334