xref: /openbmc/linux/drivers/base/property.c (revision d2c43ff1)
1 /*
2  * property.c - Unified device property interface.
3  *
4  * Copyright (C) 2014, Intel Corporation
5  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6  *          Mika Westerberg <mika.westerberg@linux.intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/acpi.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_graph.h>
19 #include <linux/property.h>
20 #include <linux/etherdevice.h>
21 #include <linux/phy.h>
22 
23 struct property_set {
24 	struct fwnode_handle fwnode;
25 	const struct property_entry *properties;
26 };
27 
28 static inline bool is_pset_node(struct fwnode_handle *fwnode)
29 {
30 	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
31 }
32 
33 static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
34 {
35 	return is_pset_node(fwnode) ?
36 		container_of(fwnode, struct property_set, fwnode) : NULL;
37 }
38 
39 static const struct property_entry *pset_prop_get(struct property_set *pset,
40 						  const char *name)
41 {
42 	const struct property_entry *prop;
43 
44 	if (!pset || !pset->properties)
45 		return NULL;
46 
47 	for (prop = pset->properties; prop->name; prop++)
48 		if (!strcmp(name, prop->name))
49 			return prop;
50 
51 	return NULL;
52 }
53 
54 static const void *pset_prop_find(struct property_set *pset,
55 				  const char *propname, size_t length)
56 {
57 	const struct property_entry *prop;
58 	const void *pointer;
59 
60 	prop = pset_prop_get(pset, propname);
61 	if (!prop)
62 		return ERR_PTR(-EINVAL);
63 	if (prop->is_array)
64 		pointer = prop->pointer.raw_data;
65 	else
66 		pointer = &prop->value.raw_data;
67 	if (!pointer)
68 		return ERR_PTR(-ENODATA);
69 	if (length > prop->length)
70 		return ERR_PTR(-EOVERFLOW);
71 	return pointer;
72 }
73 
74 static int pset_prop_read_u8_array(struct property_set *pset,
75 				   const char *propname,
76 				   u8 *values, size_t nval)
77 {
78 	const void *pointer;
79 	size_t length = nval * sizeof(*values);
80 
81 	pointer = pset_prop_find(pset, propname, length);
82 	if (IS_ERR(pointer))
83 		return PTR_ERR(pointer);
84 
85 	memcpy(values, pointer, length);
86 	return 0;
87 }
88 
89 static int pset_prop_read_u16_array(struct property_set *pset,
90 				    const char *propname,
91 				    u16 *values, size_t nval)
92 {
93 	const void *pointer;
94 	size_t length = nval * sizeof(*values);
95 
96 	pointer = pset_prop_find(pset, propname, length);
97 	if (IS_ERR(pointer))
98 		return PTR_ERR(pointer);
99 
100 	memcpy(values, pointer, length);
101 	return 0;
102 }
103 
104 static int pset_prop_read_u32_array(struct property_set *pset,
105 				    const char *propname,
106 				    u32 *values, size_t nval)
107 {
108 	const void *pointer;
109 	size_t length = nval * sizeof(*values);
110 
111 	pointer = pset_prop_find(pset, propname, length);
112 	if (IS_ERR(pointer))
113 		return PTR_ERR(pointer);
114 
115 	memcpy(values, pointer, length);
116 	return 0;
117 }
118 
119 static int pset_prop_read_u64_array(struct property_set *pset,
120 				    const char *propname,
121 				    u64 *values, size_t nval)
122 {
123 	const void *pointer;
124 	size_t length = nval * sizeof(*values);
125 
126 	pointer = pset_prop_find(pset, propname, length);
127 	if (IS_ERR(pointer))
128 		return PTR_ERR(pointer);
129 
130 	memcpy(values, pointer, length);
131 	return 0;
132 }
133 
134 static int pset_prop_count_elems_of_size(struct property_set *pset,
135 					 const char *propname, size_t length)
136 {
137 	const struct property_entry *prop;
138 
139 	prop = pset_prop_get(pset, propname);
140 	if (!prop)
141 		return -EINVAL;
142 
143 	return prop->length / length;
144 }
145 
146 static int pset_prop_read_string_array(struct property_set *pset,
147 				       const char *propname,
148 				       const char **strings, size_t nval)
149 {
150 	const struct property_entry *prop;
151 	const void *pointer;
152 	size_t array_len, length;
153 
154 	/* Find out the array length. */
155 	prop = pset_prop_get(pset, propname);
156 	if (!prop)
157 		return -EINVAL;
158 
159 	if (!prop->is_array)
160 		/* The array length for a non-array string property is 1. */
161 		array_len = 1;
162 	else
163 		/* Find the length of an array. */
164 		array_len = pset_prop_count_elems_of_size(pset, propname,
165 							  sizeof(const char *));
166 
167 	/* Return how many there are if strings is NULL. */
168 	if (!strings)
169 		return array_len;
170 
171 	array_len = min(nval, array_len);
172 	length = array_len * sizeof(*strings);
173 
174 	pointer = pset_prop_find(pset, propname, length);
175 	if (IS_ERR(pointer))
176 		return PTR_ERR(pointer);
177 
178 	memcpy(strings, pointer, length);
179 
180 	return array_len;
181 }
182 
183 struct fwnode_handle *dev_fwnode(struct device *dev)
184 {
185 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
186 		&dev->of_node->fwnode : dev->fwnode;
187 }
188 EXPORT_SYMBOL_GPL(dev_fwnode);
189 
190 static bool pset_fwnode_property_present(struct fwnode_handle *fwnode,
191 					 const char *propname)
192 {
193 	return !!pset_prop_get(to_pset_node(fwnode), propname);
194 }
195 
196 static int pset_fwnode_read_int_array(struct fwnode_handle *fwnode,
197 				      const char *propname,
198 				      unsigned int elem_size, void *val,
199 				      size_t nval)
200 {
201 	struct property_set *node = to_pset_node(fwnode);
202 
203 	if (!val)
204 		return pset_prop_count_elems_of_size(node, propname, elem_size);
205 
206 	switch (elem_size) {
207 	case sizeof(u8):
208 		return pset_prop_read_u8_array(node, propname, val, nval);
209 	case sizeof(u16):
210 		return pset_prop_read_u16_array(node, propname, val, nval);
211 	case sizeof(u32):
212 		return pset_prop_read_u32_array(node, propname, val, nval);
213 	case sizeof(u64):
214 		return pset_prop_read_u64_array(node, propname, val, nval);
215 	}
216 
217 	return -ENXIO;
218 }
219 
220 static int pset_fwnode_property_read_string_array(struct fwnode_handle *fwnode,
221 						  const char *propname,
222 						  const char **val, size_t nval)
223 {
224 	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
225 					   val, nval);
226 }
227 
228 static const struct fwnode_operations pset_fwnode_ops = {
229 	.property_present = pset_fwnode_property_present,
230 	.property_read_int_array = pset_fwnode_read_int_array,
231 	.property_read_string_array = pset_fwnode_property_read_string_array,
232 };
233 
234 /**
235  * device_property_present - check if a property of a device is present
236  * @dev: Device whose property is being checked
237  * @propname: Name of the property
238  *
239  * Check if property @propname is present in the device firmware description.
240  */
241 bool device_property_present(struct device *dev, const char *propname)
242 {
243 	return fwnode_property_present(dev_fwnode(dev), propname);
244 }
245 EXPORT_SYMBOL_GPL(device_property_present);
246 
247 /**
248  * fwnode_property_present - check if a property of a firmware node is present
249  * @fwnode: Firmware node whose property to check
250  * @propname: Name of the property
251  */
252 bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
253 {
254 	bool ret;
255 
256 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
257 	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
258 	    !IS_ERR_OR_NULL(fwnode->secondary))
259 		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
260 					 propname);
261 	return ret;
262 }
263 EXPORT_SYMBOL_GPL(fwnode_property_present);
264 
265 /**
266  * device_property_read_u8_array - return a u8 array property of a device
267  * @dev: Device to get the property of
268  * @propname: Name of the property
269  * @val: The values are stored here or %NULL to return the number of values
270  * @nval: Size of the @val array
271  *
272  * Function reads an array of u8 properties with @propname from the device
273  * firmware description and stores them to @val if found.
274  *
275  * Return: number of values if @val was %NULL,
276  *         %0 if the property was found (success),
277  *	   %-EINVAL if given arguments are not valid,
278  *	   %-ENODATA if the property does not have a value,
279  *	   %-EPROTO if the property is not an array of numbers,
280  *	   %-EOVERFLOW if the size of the property is not as expected.
281  *	   %-ENXIO if no suitable firmware interface is present.
282  */
283 int device_property_read_u8_array(struct device *dev, const char *propname,
284 				  u8 *val, size_t nval)
285 {
286 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
287 }
288 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
289 
290 /**
291  * device_property_read_u16_array - return a u16 array property of a device
292  * @dev: Device to get the property of
293  * @propname: Name of the property
294  * @val: The values are stored here or %NULL to return the number of values
295  * @nval: Size of the @val array
296  *
297  * Function reads an array of u16 properties with @propname from the device
298  * firmware description and stores them to @val if found.
299  *
300  * Return: number of values if @val was %NULL,
301  *         %0 if the property was found (success),
302  *	   %-EINVAL if given arguments are not valid,
303  *	   %-ENODATA if the property does not have a value,
304  *	   %-EPROTO if the property is not an array of numbers,
305  *	   %-EOVERFLOW if the size of the property is not as expected.
306  *	   %-ENXIO if no suitable firmware interface is present.
307  */
308 int device_property_read_u16_array(struct device *dev, const char *propname,
309 				   u16 *val, size_t nval)
310 {
311 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
312 }
313 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
314 
315 /**
316  * device_property_read_u32_array - return a u32 array property of a device
317  * @dev: Device to get the property of
318  * @propname: Name of the property
319  * @val: The values are stored here or %NULL to return the number of values
320  * @nval: Size of the @val array
321  *
322  * Function reads an array of u32 properties with @propname from the device
323  * firmware description and stores them to @val if found.
324  *
325  * Return: number of values if @val was %NULL,
326  *         %0 if the property was found (success),
327  *	   %-EINVAL if given arguments are not valid,
328  *	   %-ENODATA if the property does not have a value,
329  *	   %-EPROTO if the property is not an array of numbers,
330  *	   %-EOVERFLOW if the size of the property is not as expected.
331  *	   %-ENXIO if no suitable firmware interface is present.
332  */
333 int device_property_read_u32_array(struct device *dev, const char *propname,
334 				   u32 *val, size_t nval)
335 {
336 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
337 }
338 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
339 
340 /**
341  * device_property_read_u64_array - return a u64 array property of a device
342  * @dev: Device to get the property of
343  * @propname: Name of the property
344  * @val: The values are stored here or %NULL to return the number of values
345  * @nval: Size of the @val array
346  *
347  * Function reads an array of u64 properties with @propname from the device
348  * firmware description and stores them to @val if found.
349  *
350  * Return: number of values if @val was %NULL,
351  *         %0 if the property was found (success),
352  *	   %-EINVAL if given arguments are not valid,
353  *	   %-ENODATA if the property does not have a value,
354  *	   %-EPROTO if the property is not an array of numbers,
355  *	   %-EOVERFLOW if the size of the property is not as expected.
356  *	   %-ENXIO if no suitable firmware interface is present.
357  */
358 int device_property_read_u64_array(struct device *dev, const char *propname,
359 				   u64 *val, size_t nval)
360 {
361 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
362 }
363 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
364 
365 /**
366  * device_property_read_string_array - return a string array property of device
367  * @dev: Device to get the property of
368  * @propname: Name of the property
369  * @val: The values are stored here or %NULL to return the number of values
370  * @nval: Size of the @val array
371  *
372  * Function reads an array of string properties with @propname from the device
373  * firmware description and stores them to @val if found.
374  *
375  * Return: number of values read on success if @val is non-NULL,
376  *	   number of values available on success if @val is NULL,
377  *	   %-EINVAL if given arguments are not valid,
378  *	   %-ENODATA if the property does not have a value,
379  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
380  *	   %-EOVERFLOW if the size of the property is not as expected.
381  *	   %-ENXIO if no suitable firmware interface is present.
382  */
383 int device_property_read_string_array(struct device *dev, const char *propname,
384 				      const char **val, size_t nval)
385 {
386 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
387 }
388 EXPORT_SYMBOL_GPL(device_property_read_string_array);
389 
390 /**
391  * device_property_read_string - return a string property of a device
392  * @dev: Device to get the property of
393  * @propname: Name of the property
394  * @val: The value is stored here
395  *
396  * Function reads property @propname from the device firmware description and
397  * stores the value into @val if found. The value is checked to be a string.
398  *
399  * Return: %0 if the property was found (success),
400  *	   %-EINVAL if given arguments are not valid,
401  *	   %-ENODATA if the property does not have a value,
402  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
403  *	   %-ENXIO if no suitable firmware interface is present.
404  */
405 int device_property_read_string(struct device *dev, const char *propname,
406 				const char **val)
407 {
408 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
409 }
410 EXPORT_SYMBOL_GPL(device_property_read_string);
411 
412 /**
413  * device_property_match_string - find a string in an array and return index
414  * @dev: Device to get the property of
415  * @propname: Name of the property holding the array
416  * @string: String to look for
417  *
418  * Find a given string in a string array and if it is found return the
419  * index back.
420  *
421  * Return: %0 if the property was found (success),
422  *	   %-EINVAL if given arguments are not valid,
423  *	   %-ENODATA if the property does not have a value,
424  *	   %-EPROTO if the property is not an array of strings,
425  *	   %-ENXIO if no suitable firmware interface is present.
426  */
427 int device_property_match_string(struct device *dev, const char *propname,
428 				 const char *string)
429 {
430 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
431 }
432 EXPORT_SYMBOL_GPL(device_property_match_string);
433 
434 static int fwnode_property_read_int_array(struct fwnode_handle *fwnode,
435 					  const char *propname,
436 					  unsigned int elem_size, void *val,
437 					  size_t nval)
438 {
439 	int ret;
440 
441 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
442 				 elem_size, val, nval);
443 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
444 	    !IS_ERR_OR_NULL(fwnode->secondary))
445 		ret = fwnode_call_int_op(
446 			fwnode->secondary, property_read_int_array, propname,
447 			elem_size, val, nval);
448 
449 	return ret;
450 }
451 
452 /**
453  * fwnode_property_read_u8_array - return a u8 array property of firmware node
454  * @fwnode: Firmware node to get the property of
455  * @propname: Name of the property
456  * @val: The values are stored here or %NULL to return the number of values
457  * @nval: Size of the @val array
458  *
459  * Read an array of u8 properties with @propname from @fwnode and stores them to
460  * @val if found.
461  *
462  * Return: number of values if @val was %NULL,
463  *         %0 if the property was found (success),
464  *	   %-EINVAL if given arguments are not valid,
465  *	   %-ENODATA if the property does not have a value,
466  *	   %-EPROTO if the property is not an array of numbers,
467  *	   %-EOVERFLOW if the size of the property is not as expected,
468  *	   %-ENXIO if no suitable firmware interface is present.
469  */
470 int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
471 				  const char *propname, u8 *val, size_t nval)
472 {
473 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
474 					      val, nval);
475 }
476 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
477 
478 /**
479  * fwnode_property_read_u16_array - return a u16 array property of firmware node
480  * @fwnode: Firmware node to get the property of
481  * @propname: Name of the property
482  * @val: The values are stored here or %NULL to return the number of values
483  * @nval: Size of the @val array
484  *
485  * Read an array of u16 properties with @propname from @fwnode and store them to
486  * @val if found.
487  *
488  * Return: number of values if @val was %NULL,
489  *         %0 if the property was found (success),
490  *	   %-EINVAL if given arguments are not valid,
491  *	   %-ENODATA if the property does not have a value,
492  *	   %-EPROTO if the property is not an array of numbers,
493  *	   %-EOVERFLOW if the size of the property is not as expected,
494  *	   %-ENXIO if no suitable firmware interface is present.
495  */
496 int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
497 				   const char *propname, u16 *val, size_t nval)
498 {
499 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
500 					      val, nval);
501 }
502 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
503 
504 /**
505  * fwnode_property_read_u32_array - return a u32 array property of firmware node
506  * @fwnode: Firmware node to get the property of
507  * @propname: Name of the property
508  * @val: The values are stored here or %NULL to return the number of values
509  * @nval: Size of the @val array
510  *
511  * Read an array of u32 properties with @propname from @fwnode store them to
512  * @val if found.
513  *
514  * Return: number of values if @val was %NULL,
515  *         %0 if the property was found (success),
516  *	   %-EINVAL if given arguments are not valid,
517  *	   %-ENODATA if the property does not have a value,
518  *	   %-EPROTO if the property is not an array of numbers,
519  *	   %-EOVERFLOW if the size of the property is not as expected,
520  *	   %-ENXIO if no suitable firmware interface is present.
521  */
522 int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
523 				   const char *propname, u32 *val, size_t nval)
524 {
525 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
526 					      val, nval);
527 }
528 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
529 
530 /**
531  * fwnode_property_read_u64_array - return a u64 array property firmware node
532  * @fwnode: Firmware node to get the property of
533  * @propname: Name of the property
534  * @val: The values are stored here or %NULL to return the number of values
535  * @nval: Size of the @val array
536  *
537  * Read an array of u64 properties with @propname from @fwnode and store them to
538  * @val if found.
539  *
540  * Return: number of values if @val was %NULL,
541  *         %0 if the property was found (success),
542  *	   %-EINVAL if given arguments are not valid,
543  *	   %-ENODATA if the property does not have a value,
544  *	   %-EPROTO if the property is not an array of numbers,
545  *	   %-EOVERFLOW if the size of the property is not as expected,
546  *	   %-ENXIO if no suitable firmware interface is present.
547  */
548 int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
549 				   const char *propname, u64 *val, size_t nval)
550 {
551 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
552 					      val, nval);
553 }
554 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
555 
556 /**
557  * fwnode_property_read_string_array - return string array property of a node
558  * @fwnode: Firmware node to get the property of
559  * @propname: Name of the property
560  * @val: The values are stored here or %NULL to return the number of values
561  * @nval: Size of the @val array
562  *
563  * Read an string list property @propname from the given firmware node and store
564  * them to @val if found.
565  *
566  * Return: number of values read on success if @val is non-NULL,
567  *	   number of values available on success if @val is NULL,
568  *	   %-EINVAL if given arguments are not valid,
569  *	   %-ENODATA if the property does not have a value,
570  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
571  *	   %-EOVERFLOW if the size of the property is not as expected,
572  *	   %-ENXIO if no suitable firmware interface is present.
573  */
574 int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
575 				      const char *propname, const char **val,
576 				      size_t nval)
577 {
578 	int ret;
579 
580 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
581 				 val, nval);
582 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
583 	    !IS_ERR_OR_NULL(fwnode->secondary))
584 		ret = fwnode_call_int_op(fwnode->secondary,
585 					 property_read_string_array, propname,
586 					 val, nval);
587 	return ret;
588 }
589 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
590 
591 /**
592  * fwnode_property_read_string - return a string property of a firmware node
593  * @fwnode: Firmware node to get the property of
594  * @propname: Name of the property
595  * @val: The value is stored here
596  *
597  * Read property @propname from the given firmware node and store the value into
598  * @val if found.  The value is checked to be a string.
599  *
600  * Return: %0 if the property was found (success),
601  *	   %-EINVAL if given arguments are not valid,
602  *	   %-ENODATA if the property does not have a value,
603  *	   %-EPROTO or %-EILSEQ if the property is not a string,
604  *	   %-ENXIO if no suitable firmware interface is present.
605  */
606 int fwnode_property_read_string(struct fwnode_handle *fwnode,
607 				const char *propname, const char **val)
608 {
609 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
610 
611 	return ret < 0 ? ret : 0;
612 }
613 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
614 
615 /**
616  * fwnode_property_match_string - find a string in an array and return index
617  * @fwnode: Firmware node to get the property of
618  * @propname: Name of the property holding the array
619  * @string: String to look for
620  *
621  * Find a given string in a string array and if it is found return the
622  * index back.
623  *
624  * Return: %0 if the property was found (success),
625  *	   %-EINVAL if given arguments are not valid,
626  *	   %-ENODATA if the property does not have a value,
627  *	   %-EPROTO if the property is not an array of strings,
628  *	   %-ENXIO if no suitable firmware interface is present.
629  */
630 int fwnode_property_match_string(struct fwnode_handle *fwnode,
631 	const char *propname, const char *string)
632 {
633 	const char **values;
634 	int nval, ret;
635 
636 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
637 	if (nval < 0)
638 		return nval;
639 
640 	if (nval == 0)
641 		return -ENODATA;
642 
643 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
644 	if (!values)
645 		return -ENOMEM;
646 
647 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
648 	if (ret < 0)
649 		goto out;
650 
651 	ret = match_string(values, nval, string);
652 	if (ret < 0)
653 		ret = -ENODATA;
654 out:
655 	kfree(values);
656 	return ret;
657 }
658 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
659 
660 static int property_copy_string_array(struct property_entry *dst,
661 				      const struct property_entry *src)
662 {
663 	char **d;
664 	size_t nval = src->length / sizeof(*d);
665 	int i;
666 
667 	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
668 	if (!d)
669 		return -ENOMEM;
670 
671 	for (i = 0; i < nval; i++) {
672 		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
673 		if (!d[i] && src->pointer.str[i]) {
674 			while (--i >= 0)
675 				kfree(d[i]);
676 			kfree(d);
677 			return -ENOMEM;
678 		}
679 	}
680 
681 	dst->pointer.raw_data = d;
682 	return 0;
683 }
684 
685 static int property_entry_copy_data(struct property_entry *dst,
686 				    const struct property_entry *src)
687 {
688 	int error;
689 
690 	dst->name = kstrdup(src->name, GFP_KERNEL);
691 	if (!dst->name)
692 		return -ENOMEM;
693 
694 	if (src->is_array) {
695 		if (!src->length) {
696 			error = -ENODATA;
697 			goto out_free_name;
698 		}
699 
700 		if (src->is_string) {
701 			error = property_copy_string_array(dst, src);
702 			if (error)
703 				goto out_free_name;
704 		} else {
705 			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
706 							src->length, GFP_KERNEL);
707 			if (!dst->pointer.raw_data) {
708 				error = -ENOMEM;
709 				goto out_free_name;
710 			}
711 		}
712 	} else if (src->is_string) {
713 		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
714 		if (!dst->value.str && src->value.str) {
715 			error = -ENOMEM;
716 			goto out_free_name;
717 		}
718 	} else {
719 		dst->value.raw_data = src->value.raw_data;
720 	}
721 
722 	dst->length = src->length;
723 	dst->is_array = src->is_array;
724 	dst->is_string = src->is_string;
725 
726 	return 0;
727 
728 out_free_name:
729 	kfree(dst->name);
730 	return error;
731 }
732 
733 static void property_entry_free_data(const struct property_entry *p)
734 {
735 	size_t i, nval;
736 
737 	if (p->is_array) {
738 		if (p->is_string && p->pointer.str) {
739 			nval = p->length / sizeof(const char *);
740 			for (i = 0; i < nval; i++)
741 				kfree(p->pointer.str[i]);
742 		}
743 		kfree(p->pointer.raw_data);
744 	} else if (p->is_string) {
745 		kfree(p->value.str);
746 	}
747 	kfree(p->name);
748 }
749 
750 /**
751  * property_entries_dup - duplicate array of properties
752  * @properties: array of properties to copy
753  *
754  * This function creates a deep copy of the given NULL-terminated array
755  * of property entries.
756  */
757 struct property_entry *
758 property_entries_dup(const struct property_entry *properties)
759 {
760 	struct property_entry *p;
761 	int i, n = 0;
762 
763 	while (properties[n].name)
764 		n++;
765 
766 	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
767 	if (!p)
768 		return ERR_PTR(-ENOMEM);
769 
770 	for (i = 0; i < n; i++) {
771 		int ret = property_entry_copy_data(&p[i], &properties[i]);
772 		if (ret) {
773 			while (--i >= 0)
774 				property_entry_free_data(&p[i]);
775 			kfree(p);
776 			return ERR_PTR(ret);
777 		}
778 	}
779 
780 	return p;
781 }
782 EXPORT_SYMBOL_GPL(property_entries_dup);
783 
784 /**
785  * property_entries_free - free previously allocated array of properties
786  * @properties: array of properties to destroy
787  *
788  * This function frees given NULL-terminated array of property entries,
789  * along with their data.
790  */
791 void property_entries_free(const struct property_entry *properties)
792 {
793 	const struct property_entry *p;
794 
795 	for (p = properties; p->name; p++)
796 		property_entry_free_data(p);
797 
798 	kfree(properties);
799 }
800 EXPORT_SYMBOL_GPL(property_entries_free);
801 
802 /**
803  * pset_free_set - releases memory allocated for copied property set
804  * @pset: Property set to release
805  *
806  * Function takes previously copied property set and releases all the
807  * memory allocated to it.
808  */
809 static void pset_free_set(struct property_set *pset)
810 {
811 	if (!pset)
812 		return;
813 
814 	property_entries_free(pset->properties);
815 	kfree(pset);
816 }
817 
818 /**
819  * pset_copy_set - copies property set
820  * @pset: Property set to copy
821  *
822  * This function takes a deep copy of the given property set and returns
823  * pointer to the copy. Call device_free_property_set() to free resources
824  * allocated in this function.
825  *
826  * Return: Pointer to the new property set or error pointer.
827  */
828 static struct property_set *pset_copy_set(const struct property_set *pset)
829 {
830 	struct property_entry *properties;
831 	struct property_set *p;
832 
833 	p = kzalloc(sizeof(*p), GFP_KERNEL);
834 	if (!p)
835 		return ERR_PTR(-ENOMEM);
836 
837 	properties = property_entries_dup(pset->properties);
838 	if (IS_ERR(properties)) {
839 		kfree(p);
840 		return ERR_CAST(properties);
841 	}
842 
843 	p->properties = properties;
844 	return p;
845 }
846 
847 /**
848  * device_remove_properties - Remove properties from a device object.
849  * @dev: Device whose properties to remove.
850  *
851  * The function removes properties previously associated to the device
852  * secondary firmware node with device_add_properties(). Memory allocated
853  * to the properties will also be released.
854  */
855 void device_remove_properties(struct device *dev)
856 {
857 	struct fwnode_handle *fwnode;
858 
859 	fwnode = dev_fwnode(dev);
860 	if (!fwnode)
861 		return;
862 	/*
863 	 * Pick either primary or secondary node depending which one holds
864 	 * the pset. If there is no real firmware node (ACPI/DT) primary
865 	 * will hold the pset.
866 	 */
867 	if (is_pset_node(fwnode)) {
868 		set_primary_fwnode(dev, NULL);
869 		pset_free_set(to_pset_node(fwnode));
870 	} else {
871 		fwnode = fwnode->secondary;
872 		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
873 			set_secondary_fwnode(dev, NULL);
874 			pset_free_set(to_pset_node(fwnode));
875 		}
876 	}
877 }
878 EXPORT_SYMBOL_GPL(device_remove_properties);
879 
880 /**
881  * device_add_properties - Add a collection of properties to a device object.
882  * @dev: Device to add properties to.
883  * @properties: Collection of properties to add.
884  *
885  * Associate a collection of device properties represented by @properties with
886  * @dev as its secondary firmware node. The function takes a copy of
887  * @properties.
888  */
889 int device_add_properties(struct device *dev,
890 			  const struct property_entry *properties)
891 {
892 	struct property_set *p, pset;
893 
894 	if (!properties)
895 		return -EINVAL;
896 
897 	pset.properties = properties;
898 
899 	p = pset_copy_set(&pset);
900 	if (IS_ERR(p))
901 		return PTR_ERR(p);
902 
903 	p->fwnode.type = FWNODE_PDATA;
904 	p->fwnode.ops = &pset_fwnode_ops;
905 	set_secondary_fwnode(dev, &p->fwnode);
906 	return 0;
907 }
908 EXPORT_SYMBOL_GPL(device_add_properties);
909 
910 /**
911  * fwnode_get_next_parent - Iterate to the node's parent
912  * @fwnode: Firmware whose parent is retrieved
913  *
914  * This is like fwnode_get_parent() except that it drops the refcount
915  * on the passed node, making it suitable for iterating through a
916  * node's parents.
917  *
918  * Returns a node pointer with refcount incremented, use
919  * fwnode_handle_node() on it when done.
920  */
921 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
922 {
923 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
924 
925 	fwnode_handle_put(fwnode);
926 
927 	return parent;
928 }
929 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
930 
931 /**
932  * fwnode_get_parent - Return parent firwmare node
933  * @fwnode: Firmware whose parent is retrieved
934  *
935  * Return parent firmware node of the given node if possible or %NULL if no
936  * parent was available.
937  */
938 struct fwnode_handle *fwnode_get_parent(struct fwnode_handle *fwnode)
939 {
940 	return fwnode_call_ptr_op(fwnode, get_parent);
941 }
942 EXPORT_SYMBOL_GPL(fwnode_get_parent);
943 
944 /**
945  * fwnode_get_next_child_node - Return the next child node handle for a node
946  * @fwnode: Firmware node to find the next child node for.
947  * @child: Handle to one of the node's child nodes or a %NULL handle.
948  */
949 struct fwnode_handle *fwnode_get_next_child_node(struct fwnode_handle *fwnode,
950 						 struct fwnode_handle *child)
951 {
952 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
953 }
954 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
955 
956 /**
957  * device_get_next_child_node - Return the next child node handle for a device
958  * @dev: Device to find the next child node for.
959  * @child: Handle to one of the device's child nodes or a null handle.
960  */
961 struct fwnode_handle *device_get_next_child_node(struct device *dev,
962 						 struct fwnode_handle *child)
963 {
964 	struct acpi_device *adev = ACPI_COMPANION(dev);
965 	struct fwnode_handle *fwnode = NULL;
966 
967 	if (dev->of_node)
968 		fwnode = &dev->of_node->fwnode;
969 	else if (adev)
970 		fwnode = acpi_fwnode_handle(adev);
971 
972 	return fwnode_get_next_child_node(fwnode, child);
973 }
974 EXPORT_SYMBOL_GPL(device_get_next_child_node);
975 
976 /**
977  * fwnode_get_named_child_node - Return first matching named child node handle
978  * @fwnode: Firmware node to find the named child node for.
979  * @childname: String to match child node name against.
980  */
981 struct fwnode_handle *fwnode_get_named_child_node(struct fwnode_handle *fwnode,
982 						  const char *childname)
983 {
984 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
985 }
986 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
987 
988 /**
989  * device_get_named_child_node - Return first matching named child node handle
990  * @dev: Device to find the named child node for.
991  * @childname: String to match child node name against.
992  */
993 struct fwnode_handle *device_get_named_child_node(struct device *dev,
994 						  const char *childname)
995 {
996 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
997 }
998 EXPORT_SYMBOL_GPL(device_get_named_child_node);
999 
1000 /**
1001  * fwnode_handle_get - Obtain a reference to a device node
1002  * @fwnode: Pointer to the device node to obtain the reference to.
1003  */
1004 void fwnode_handle_get(struct fwnode_handle *fwnode)
1005 {
1006 	fwnode_call_void_op(fwnode, get);
1007 }
1008 EXPORT_SYMBOL_GPL(fwnode_handle_get);
1009 
1010 /**
1011  * fwnode_handle_put - Drop reference to a device node
1012  * @fwnode: Pointer to the device node to drop the reference to.
1013  *
1014  * This has to be used when terminating device_for_each_child_node() iteration
1015  * with break or return to prevent stale device node references from being left
1016  * behind.
1017  */
1018 void fwnode_handle_put(struct fwnode_handle *fwnode)
1019 {
1020 	fwnode_call_void_op(fwnode, put);
1021 }
1022 EXPORT_SYMBOL_GPL(fwnode_handle_put);
1023 
1024 /**
1025  * fwnode_device_is_available - check if a device is available for use
1026  * @fwnode: Pointer to the fwnode of the device.
1027  */
1028 bool fwnode_device_is_available(struct fwnode_handle *fwnode)
1029 {
1030 	return fwnode_call_bool_op(fwnode, device_is_available);
1031 }
1032 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1033 
1034 /**
1035  * device_get_child_node_count - return the number of child nodes for device
1036  * @dev: Device to cound the child nodes for
1037  */
1038 unsigned int device_get_child_node_count(struct device *dev)
1039 {
1040 	struct fwnode_handle *child;
1041 	unsigned int count = 0;
1042 
1043 	device_for_each_child_node(dev, child)
1044 		count++;
1045 
1046 	return count;
1047 }
1048 EXPORT_SYMBOL_GPL(device_get_child_node_count);
1049 
1050 bool device_dma_supported(struct device *dev)
1051 {
1052 	/* For DT, this is always supported.
1053 	 * For ACPI, this depends on CCA, which
1054 	 * is determined by the acpi_dma_supported().
1055 	 */
1056 	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1057 		return true;
1058 
1059 	return acpi_dma_supported(ACPI_COMPANION(dev));
1060 }
1061 EXPORT_SYMBOL_GPL(device_dma_supported);
1062 
1063 enum dev_dma_attr device_get_dma_attr(struct device *dev)
1064 {
1065 	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1066 
1067 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1068 		if (of_dma_is_coherent(dev->of_node))
1069 			attr = DEV_DMA_COHERENT;
1070 		else
1071 			attr = DEV_DMA_NON_COHERENT;
1072 	} else
1073 		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1074 
1075 	return attr;
1076 }
1077 EXPORT_SYMBOL_GPL(device_get_dma_attr);
1078 
1079 /**
1080  * device_get_phy_mode - Get phy mode for given device
1081  * @dev:	Pointer to the given device
1082  *
1083  * The function gets phy interface string from property 'phy-mode' or
1084  * 'phy-connection-type', and return its index in phy_modes table, or errno in
1085  * error case.
1086  */
1087 int device_get_phy_mode(struct device *dev)
1088 {
1089 	const char *pm;
1090 	int err, i;
1091 
1092 	err = device_property_read_string(dev, "phy-mode", &pm);
1093 	if (err < 0)
1094 		err = device_property_read_string(dev,
1095 						  "phy-connection-type", &pm);
1096 	if (err < 0)
1097 		return err;
1098 
1099 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1100 		if (!strcasecmp(pm, phy_modes(i)))
1101 			return i;
1102 
1103 	return -ENODEV;
1104 }
1105 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1106 
1107 static void *device_get_mac_addr(struct device *dev,
1108 				 const char *name, char *addr,
1109 				 int alen)
1110 {
1111 	int ret = device_property_read_u8_array(dev, name, addr, alen);
1112 
1113 	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1114 		return addr;
1115 	return NULL;
1116 }
1117 
1118 /**
1119  * device_get_mac_address - Get the MAC for a given device
1120  * @dev:	Pointer to the device
1121  * @addr:	Address of buffer to store the MAC in
1122  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
1123  *
1124  * Search the firmware node for the best MAC address to use.  'mac-address' is
1125  * checked first, because that is supposed to contain to "most recent" MAC
1126  * address. If that isn't set, then 'local-mac-address' is checked next,
1127  * because that is the default address.  If that isn't set, then the obsolete
1128  * 'address' is checked, just in case we're using an old device tree.
1129  *
1130  * Note that the 'address' property is supposed to contain a virtual address of
1131  * the register set, but some DTS files have redefined that property to be the
1132  * MAC address.
1133  *
1134  * All-zero MAC addresses are rejected, because those could be properties that
1135  * exist in the firmware tables, but were not updated by the firmware.  For
1136  * example, the DTS could define 'mac-address' and 'local-mac-address', with
1137  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1138  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1139  * exists but is all zeros.
1140 */
1141 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1142 {
1143 	char *res;
1144 
1145 	res = device_get_mac_addr(dev, "mac-address", addr, alen);
1146 	if (res)
1147 		return res;
1148 
1149 	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1150 	if (res)
1151 		return res;
1152 
1153 	return device_get_mac_addr(dev, "address", addr, alen);
1154 }
1155 EXPORT_SYMBOL(device_get_mac_address);
1156 
1157 /**
1158  * device_graph_get_next_endpoint - Get next endpoint firmware node
1159  * @fwnode: Pointer to the parent firmware node
1160  * @prev: Previous endpoint node or %NULL to get the first
1161  *
1162  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1163  * are available.
1164  */
1165 struct fwnode_handle *
1166 fwnode_graph_get_next_endpoint(struct fwnode_handle *fwnode,
1167 			       struct fwnode_handle *prev)
1168 {
1169 	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1170 }
1171 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1172 
1173 /**
1174  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1175  * @endpoint: Endpoint firmware node of the port
1176  *
1177  * Return: the firmware node of the device the @endpoint belongs to.
1178  */
1179 struct fwnode_handle *
1180 fwnode_graph_get_port_parent(struct fwnode_handle *endpoint)
1181 {
1182 	struct fwnode_handle *port, *parent;
1183 
1184 	port = fwnode_get_parent(endpoint);
1185 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1186 
1187 	fwnode_handle_put(port);
1188 
1189 	return parent;
1190 }
1191 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1192 
1193 /**
1194  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1195  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1196  *
1197  * Extracts firmware node of a remote device the @fwnode points to.
1198  */
1199 struct fwnode_handle *
1200 fwnode_graph_get_remote_port_parent(struct fwnode_handle *fwnode)
1201 {
1202 	struct fwnode_handle *endpoint, *parent;
1203 
1204 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1205 	parent = fwnode_graph_get_port_parent(endpoint);
1206 
1207 	fwnode_handle_put(endpoint);
1208 
1209 	return parent;
1210 }
1211 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1212 
1213 /**
1214  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1215  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1216  *
1217  * Extracts firmware node of a remote port the @fwnode points to.
1218  */
1219 struct fwnode_handle *fwnode_graph_get_remote_port(struct fwnode_handle *fwnode)
1220 {
1221 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1222 }
1223 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1224 
1225 /**
1226  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1227  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1228  *
1229  * Extracts firmware node of a remote endpoint the @fwnode points to.
1230  */
1231 struct fwnode_handle *
1232 fwnode_graph_get_remote_endpoint(struct fwnode_handle *fwnode)
1233 {
1234 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1235 }
1236 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1237 
1238 /**
1239  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1240  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1241  * @port_id: identifier of the parent port node
1242  * @endpoint_id: identifier of the endpoint node
1243  *
1244  * Return: Remote fwnode handle associated with remote endpoint node linked
1245  *	   to @node. Use fwnode_node_put() on it when done.
1246  */
1247 struct fwnode_handle *fwnode_graph_get_remote_node(struct fwnode_handle *fwnode,
1248 						   u32 port_id, u32 endpoint_id)
1249 {
1250 	struct fwnode_handle *endpoint = NULL;
1251 
1252 	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1253 		struct fwnode_endpoint fwnode_ep;
1254 		struct fwnode_handle *remote;
1255 		int ret;
1256 
1257 		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1258 		if (ret < 0)
1259 			continue;
1260 
1261 		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1262 			continue;
1263 
1264 		remote = fwnode_graph_get_remote_port_parent(endpoint);
1265 		if (!remote)
1266 			return NULL;
1267 
1268 		return fwnode_device_is_available(remote) ? remote : NULL;
1269 	}
1270 
1271 	return NULL;
1272 }
1273 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1274 
1275 /**
1276  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1277  * @fwnode: pointer to endpoint fwnode_handle
1278  * @endpoint: pointer to the fwnode endpoint data structure
1279  *
1280  * Parse @fwnode representing a graph endpoint node and store the
1281  * information in @endpoint. The caller must hold a reference to
1282  * @fwnode.
1283  */
1284 int fwnode_graph_parse_endpoint(struct fwnode_handle *fwnode,
1285 				struct fwnode_endpoint *endpoint)
1286 {
1287 	memset(endpoint, 0, sizeof(*endpoint));
1288 
1289 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1290 }
1291 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1292