1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * property.c - Unified device property interface. 4 * 5 * Copyright (C) 2014, Intel Corporation 6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * Mika Westerberg <mika.westerberg@linux.intel.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/export.h> 12 #include <linux/kernel.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_graph.h> 16 #include <linux/of_irq.h> 17 #include <linux/property.h> 18 #include <linux/phy.h> 19 20 struct fwnode_handle *__dev_fwnode(struct device *dev) 21 { 22 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 23 of_fwnode_handle(dev->of_node) : dev->fwnode; 24 } 25 EXPORT_SYMBOL_GPL(__dev_fwnode); 26 27 const struct fwnode_handle *__dev_fwnode_const(const struct device *dev) 28 { 29 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 30 of_fwnode_handle(dev->of_node) : dev->fwnode; 31 } 32 EXPORT_SYMBOL_GPL(__dev_fwnode_const); 33 34 /** 35 * device_property_present - check if a property of a device is present 36 * @dev: Device whose property is being checked 37 * @propname: Name of the property 38 * 39 * Check if property @propname is present in the device firmware description. 40 * 41 * Return: true if property @propname is present. Otherwise, returns false. 42 */ 43 bool device_property_present(const struct device *dev, const char *propname) 44 { 45 return fwnode_property_present(dev_fwnode(dev), propname); 46 } 47 EXPORT_SYMBOL_GPL(device_property_present); 48 49 /** 50 * fwnode_property_present - check if a property of a firmware node is present 51 * @fwnode: Firmware node whose property to check 52 * @propname: Name of the property 53 * 54 * Return: true if property @propname is present. Otherwise, returns false. 55 */ 56 bool fwnode_property_present(const struct fwnode_handle *fwnode, 57 const char *propname) 58 { 59 bool ret; 60 61 if (IS_ERR_OR_NULL(fwnode)) 62 return false; 63 64 ret = fwnode_call_bool_op(fwnode, property_present, propname); 65 if (ret) 66 return ret; 67 68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname); 69 } 70 EXPORT_SYMBOL_GPL(fwnode_property_present); 71 72 /** 73 * device_property_read_u8_array - return a u8 array property of a device 74 * @dev: Device to get the property of 75 * @propname: Name of the property 76 * @val: The values are stored here or %NULL to return the number of values 77 * @nval: Size of the @val array 78 * 79 * Function reads an array of u8 properties with @propname from the device 80 * firmware description and stores them to @val if found. 81 * 82 * It's recommended to call device_property_count_u8() instead of calling 83 * this function with @val equals %NULL and @nval equals 0. 84 * 85 * Return: number of values if @val was %NULL, 86 * %0 if the property was found (success), 87 * %-EINVAL if given arguments are not valid, 88 * %-ENODATA if the property does not have a value, 89 * %-EPROTO if the property is not an array of numbers, 90 * %-EOVERFLOW if the size of the property is not as expected. 91 * %-ENXIO if no suitable firmware interface is present. 92 */ 93 int device_property_read_u8_array(const struct device *dev, const char *propname, 94 u8 *val, size_t nval) 95 { 96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval); 97 } 98 EXPORT_SYMBOL_GPL(device_property_read_u8_array); 99 100 /** 101 * device_property_read_u16_array - return a u16 array property of a device 102 * @dev: Device to get the property of 103 * @propname: Name of the property 104 * @val: The values are stored here or %NULL to return the number of values 105 * @nval: Size of the @val array 106 * 107 * Function reads an array of u16 properties with @propname from the device 108 * firmware description and stores them to @val if found. 109 * 110 * It's recommended to call device_property_count_u16() instead of calling 111 * this function with @val equals %NULL and @nval equals 0. 112 * 113 * Return: number of values if @val was %NULL, 114 * %0 if the property was found (success), 115 * %-EINVAL if given arguments are not valid, 116 * %-ENODATA if the property does not have a value, 117 * %-EPROTO if the property is not an array of numbers, 118 * %-EOVERFLOW if the size of the property is not as expected. 119 * %-ENXIO if no suitable firmware interface is present. 120 */ 121 int device_property_read_u16_array(const struct device *dev, const char *propname, 122 u16 *val, size_t nval) 123 { 124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval); 125 } 126 EXPORT_SYMBOL_GPL(device_property_read_u16_array); 127 128 /** 129 * device_property_read_u32_array - return a u32 array property of a device 130 * @dev: Device to get the property of 131 * @propname: Name of the property 132 * @val: The values are stored here or %NULL to return the number of values 133 * @nval: Size of the @val array 134 * 135 * Function reads an array of u32 properties with @propname from the device 136 * firmware description and stores them to @val if found. 137 * 138 * It's recommended to call device_property_count_u32() instead of calling 139 * this function with @val equals %NULL and @nval equals 0. 140 * 141 * Return: number of values if @val was %NULL, 142 * %0 if the property was found (success), 143 * %-EINVAL if given arguments are not valid, 144 * %-ENODATA if the property does not have a value, 145 * %-EPROTO if the property is not an array of numbers, 146 * %-EOVERFLOW if the size of the property is not as expected. 147 * %-ENXIO if no suitable firmware interface is present. 148 */ 149 int device_property_read_u32_array(const struct device *dev, const char *propname, 150 u32 *val, size_t nval) 151 { 152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval); 153 } 154 EXPORT_SYMBOL_GPL(device_property_read_u32_array); 155 156 /** 157 * device_property_read_u64_array - return a u64 array property of a device 158 * @dev: Device to get the property of 159 * @propname: Name of the property 160 * @val: The values are stored here or %NULL to return the number of values 161 * @nval: Size of the @val array 162 * 163 * Function reads an array of u64 properties with @propname from the device 164 * firmware description and stores them to @val if found. 165 * 166 * It's recommended to call device_property_count_u64() instead of calling 167 * this function with @val equals %NULL and @nval equals 0. 168 * 169 * Return: number of values if @val was %NULL, 170 * %0 if the property was found (success), 171 * %-EINVAL if given arguments are not valid, 172 * %-ENODATA if the property does not have a value, 173 * %-EPROTO if the property is not an array of numbers, 174 * %-EOVERFLOW if the size of the property is not as expected. 175 * %-ENXIO if no suitable firmware interface is present. 176 */ 177 int device_property_read_u64_array(const struct device *dev, const char *propname, 178 u64 *val, size_t nval) 179 { 180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval); 181 } 182 EXPORT_SYMBOL_GPL(device_property_read_u64_array); 183 184 /** 185 * device_property_read_string_array - return a string array property of device 186 * @dev: Device to get the property of 187 * @propname: Name of the property 188 * @val: The values are stored here or %NULL to return the number of values 189 * @nval: Size of the @val array 190 * 191 * Function reads an array of string properties with @propname from the device 192 * firmware description and stores them to @val if found. 193 * 194 * It's recommended to call device_property_string_array_count() instead of calling 195 * this function with @val equals %NULL and @nval equals 0. 196 * 197 * Return: number of values read on success if @val is non-NULL, 198 * number of values available on success if @val is NULL, 199 * %-EINVAL if given arguments are not valid, 200 * %-ENODATA if the property does not have a value, 201 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 202 * %-EOVERFLOW if the size of the property is not as expected. 203 * %-ENXIO if no suitable firmware interface is present. 204 */ 205 int device_property_read_string_array(const struct device *dev, const char *propname, 206 const char **val, size_t nval) 207 { 208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval); 209 } 210 EXPORT_SYMBOL_GPL(device_property_read_string_array); 211 212 /** 213 * device_property_read_string - return a string property of a device 214 * @dev: Device to get the property of 215 * @propname: Name of the property 216 * @val: The value is stored here 217 * 218 * Function reads property @propname from the device firmware description and 219 * stores the value into @val if found. The value is checked to be a string. 220 * 221 * Return: %0 if the property was found (success), 222 * %-EINVAL if given arguments are not valid, 223 * %-ENODATA if the property does not have a value, 224 * %-EPROTO or %-EILSEQ if the property type is not a string. 225 * %-ENXIO if no suitable firmware interface is present. 226 */ 227 int device_property_read_string(const struct device *dev, const char *propname, 228 const char **val) 229 { 230 return fwnode_property_read_string(dev_fwnode(dev), propname, val); 231 } 232 EXPORT_SYMBOL_GPL(device_property_read_string); 233 234 /** 235 * device_property_match_string - find a string in an array and return index 236 * @dev: Device to get the property of 237 * @propname: Name of the property holding the array 238 * @string: String to look for 239 * 240 * Find a given string in a string array and if it is found return the 241 * index back. 242 * 243 * Return: index, starting from %0, if the property was found (success), 244 * %-EINVAL if given arguments are not valid, 245 * %-ENODATA if the property does not have a value, 246 * %-EPROTO if the property is not an array of strings, 247 * %-ENXIO if no suitable firmware interface is present. 248 */ 249 int device_property_match_string(const struct device *dev, const char *propname, 250 const char *string) 251 { 252 return fwnode_property_match_string(dev_fwnode(dev), propname, string); 253 } 254 EXPORT_SYMBOL_GPL(device_property_match_string); 255 256 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 257 const char *propname, 258 unsigned int elem_size, void *val, 259 size_t nval) 260 { 261 int ret; 262 263 if (IS_ERR_OR_NULL(fwnode)) 264 return -EINVAL; 265 266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname, 267 elem_size, val, nval); 268 if (ret != -EINVAL) 269 return ret; 270 271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname, 272 elem_size, val, nval); 273 } 274 275 /** 276 * fwnode_property_read_u8_array - return a u8 array property of firmware node 277 * @fwnode: Firmware node to get the property of 278 * @propname: Name of the property 279 * @val: The values are stored here or %NULL to return the number of values 280 * @nval: Size of the @val array 281 * 282 * Read an array of u8 properties with @propname from @fwnode and stores them to 283 * @val if found. 284 * 285 * It's recommended to call fwnode_property_count_u8() instead of calling 286 * this function with @val equals %NULL and @nval equals 0. 287 * 288 * Return: number of values if @val was %NULL, 289 * %0 if the property was found (success), 290 * %-EINVAL if given arguments are not valid, 291 * %-ENODATA if the property does not have a value, 292 * %-EPROTO if the property is not an array of numbers, 293 * %-EOVERFLOW if the size of the property is not as expected, 294 * %-ENXIO if no suitable firmware interface is present. 295 */ 296 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode, 297 const char *propname, u8 *val, size_t nval) 298 { 299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8), 300 val, nval); 301 } 302 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array); 303 304 /** 305 * fwnode_property_read_u16_array - return a u16 array property of firmware node 306 * @fwnode: Firmware node to get the property of 307 * @propname: Name of the property 308 * @val: The values are stored here or %NULL to return the number of values 309 * @nval: Size of the @val array 310 * 311 * Read an array of u16 properties with @propname from @fwnode and store them to 312 * @val if found. 313 * 314 * It's recommended to call fwnode_property_count_u16() instead of calling 315 * this function with @val equals %NULL and @nval equals 0. 316 * 317 * Return: number of values if @val was %NULL, 318 * %0 if the property was found (success), 319 * %-EINVAL if given arguments are not valid, 320 * %-ENODATA if the property does not have a value, 321 * %-EPROTO if the property is not an array of numbers, 322 * %-EOVERFLOW if the size of the property is not as expected, 323 * %-ENXIO if no suitable firmware interface is present. 324 */ 325 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode, 326 const char *propname, u16 *val, size_t nval) 327 { 328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16), 329 val, nval); 330 } 331 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array); 332 333 /** 334 * fwnode_property_read_u32_array - return a u32 array property of firmware node 335 * @fwnode: Firmware node to get the property of 336 * @propname: Name of the property 337 * @val: The values are stored here or %NULL to return the number of values 338 * @nval: Size of the @val array 339 * 340 * Read an array of u32 properties with @propname from @fwnode store them to 341 * @val if found. 342 * 343 * It's recommended to call fwnode_property_count_u32() instead of calling 344 * this function with @val equals %NULL and @nval equals 0. 345 * 346 * Return: number of values if @val was %NULL, 347 * %0 if the property was found (success), 348 * %-EINVAL if given arguments are not valid, 349 * %-ENODATA if the property does not have a value, 350 * %-EPROTO if the property is not an array of numbers, 351 * %-EOVERFLOW if the size of the property is not as expected, 352 * %-ENXIO if no suitable firmware interface is present. 353 */ 354 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode, 355 const char *propname, u32 *val, size_t nval) 356 { 357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32), 358 val, nval); 359 } 360 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array); 361 362 /** 363 * fwnode_property_read_u64_array - return a u64 array property firmware node 364 * @fwnode: Firmware node to get the property of 365 * @propname: Name of the property 366 * @val: The values are stored here or %NULL to return the number of values 367 * @nval: Size of the @val array 368 * 369 * Read an array of u64 properties with @propname from @fwnode and store them to 370 * @val if found. 371 * 372 * It's recommended to call fwnode_property_count_u64() instead of calling 373 * this function with @val equals %NULL and @nval equals 0. 374 * 375 * Return: number of values if @val was %NULL, 376 * %0 if the property was found (success), 377 * %-EINVAL if given arguments are not valid, 378 * %-ENODATA if the property does not have a value, 379 * %-EPROTO if the property is not an array of numbers, 380 * %-EOVERFLOW if the size of the property is not as expected, 381 * %-ENXIO if no suitable firmware interface is present. 382 */ 383 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode, 384 const char *propname, u64 *val, size_t nval) 385 { 386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64), 387 val, nval); 388 } 389 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array); 390 391 /** 392 * fwnode_property_read_string_array - return string array property of a node 393 * @fwnode: Firmware node to get the property of 394 * @propname: Name of the property 395 * @val: The values are stored here or %NULL to return the number of values 396 * @nval: Size of the @val array 397 * 398 * Read an string list property @propname from the given firmware node and store 399 * them to @val if found. 400 * 401 * It's recommended to call fwnode_property_string_array_count() instead of calling 402 * this function with @val equals %NULL and @nval equals 0. 403 * 404 * Return: number of values read on success if @val is non-NULL, 405 * number of values available on success if @val is NULL, 406 * %-EINVAL if given arguments are not valid, 407 * %-ENODATA if the property does not have a value, 408 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 409 * %-EOVERFLOW if the size of the property is not as expected, 410 * %-ENXIO if no suitable firmware interface is present. 411 */ 412 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 413 const char *propname, const char **val, 414 size_t nval) 415 { 416 int ret; 417 418 if (IS_ERR_OR_NULL(fwnode)) 419 return -EINVAL; 420 421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname, 422 val, nval); 423 if (ret != -EINVAL) 424 return ret; 425 426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname, 427 val, nval); 428 } 429 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array); 430 431 /** 432 * fwnode_property_read_string - return a string property of a firmware node 433 * @fwnode: Firmware node to get the property of 434 * @propname: Name of the property 435 * @val: The value is stored here 436 * 437 * Read property @propname from the given firmware node and store the value into 438 * @val if found. The value is checked to be a string. 439 * 440 * Return: %0 if the property was found (success), 441 * %-EINVAL if given arguments are not valid, 442 * %-ENODATA if the property does not have a value, 443 * %-EPROTO or %-EILSEQ if the property is not a string, 444 * %-ENXIO if no suitable firmware interface is present. 445 */ 446 int fwnode_property_read_string(const struct fwnode_handle *fwnode, 447 const char *propname, const char **val) 448 { 449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1); 450 451 return ret < 0 ? ret : 0; 452 } 453 EXPORT_SYMBOL_GPL(fwnode_property_read_string); 454 455 /** 456 * fwnode_property_match_string - find a string in an array and return index 457 * @fwnode: Firmware node to get the property of 458 * @propname: Name of the property holding the array 459 * @string: String to look for 460 * 461 * Find a given string in a string array and if it is found return the 462 * index back. 463 * 464 * Return: index, starting from %0, if the property was found (success), 465 * %-EINVAL if given arguments are not valid, 466 * %-ENODATA if the property does not have a value, 467 * %-EPROTO if the property is not an array of strings, 468 * %-ENXIO if no suitable firmware interface is present. 469 */ 470 int fwnode_property_match_string(const struct fwnode_handle *fwnode, 471 const char *propname, const char *string) 472 { 473 const char **values; 474 int nval, ret; 475 476 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0); 477 if (nval < 0) 478 return nval; 479 480 if (nval == 0) 481 return -ENODATA; 482 483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL); 484 if (!values) 485 return -ENOMEM; 486 487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval); 488 if (ret < 0) 489 goto out_free; 490 491 ret = match_string(values, nval, string); 492 if (ret < 0) 493 ret = -ENODATA; 494 495 out_free: 496 kfree(values); 497 return ret; 498 } 499 EXPORT_SYMBOL_GPL(fwnode_property_match_string); 500 501 /** 502 * fwnode_property_get_reference_args() - Find a reference with arguments 503 * @fwnode: Firmware node where to look for the reference 504 * @prop: The name of the property 505 * @nargs_prop: The name of the property telling the number of 506 * arguments in the referred node. NULL if @nargs is known, 507 * otherwise @nargs is ignored. Only relevant on OF. 508 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL. 509 * @index: Index of the reference, from zero onwards. 510 * @args: Result structure with reference and integer arguments. 511 * 512 * Obtain a reference based on a named property in an fwnode, with 513 * integer arguments. 514 * 515 * The caller is responsible for calling fwnode_handle_put() on the returned 516 * @args->fwnode pointer. 517 * 518 * Return: %0 on success 519 * %-ENOENT when the index is out of bounds, the index has an empty 520 * reference or the property was not found 521 * %-EINVAL on parse error 522 */ 523 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode, 524 const char *prop, const char *nargs_prop, 525 unsigned int nargs, unsigned int index, 526 struct fwnode_reference_args *args) 527 { 528 int ret; 529 530 if (IS_ERR_OR_NULL(fwnode)) 531 return -ENOENT; 532 533 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop, 534 nargs, index, args); 535 if (ret == 0) 536 return ret; 537 538 if (IS_ERR_OR_NULL(fwnode->secondary)) 539 return ret; 540 541 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop, 542 nargs, index, args); 543 } 544 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args); 545 546 /** 547 * fwnode_find_reference - Find named reference to a fwnode_handle 548 * @fwnode: Firmware node where to look for the reference 549 * @name: The name of the reference 550 * @index: Index of the reference 551 * 552 * @index can be used when the named reference holds a table of references. 553 * 554 * The caller is responsible for calling fwnode_handle_put() on the returned 555 * fwnode pointer. 556 * 557 * Return: a pointer to the reference fwnode, when found. Otherwise, 558 * returns an error pointer. 559 */ 560 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode, 561 const char *name, 562 unsigned int index) 563 { 564 struct fwnode_reference_args args; 565 int ret; 566 567 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index, 568 &args); 569 return ret ? ERR_PTR(ret) : args.fwnode; 570 } 571 EXPORT_SYMBOL_GPL(fwnode_find_reference); 572 573 /** 574 * fwnode_get_name - Return the name of a node 575 * @fwnode: The firmware node 576 * 577 * Return: a pointer to the node name, or %NULL. 578 */ 579 const char *fwnode_get_name(const struct fwnode_handle *fwnode) 580 { 581 return fwnode_call_ptr_op(fwnode, get_name); 582 } 583 EXPORT_SYMBOL_GPL(fwnode_get_name); 584 585 /** 586 * fwnode_get_name_prefix - Return the prefix of node for printing purposes 587 * @fwnode: The firmware node 588 * 589 * Return: the prefix of a node, intended to be printed right before the node. 590 * The prefix works also as a separator between the nodes. 591 */ 592 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 593 { 594 return fwnode_call_ptr_op(fwnode, get_name_prefix); 595 } 596 597 /** 598 * fwnode_get_parent - Return parent firwmare node 599 * @fwnode: Firmware whose parent is retrieved 600 * 601 * The caller is responsible for calling fwnode_handle_put() on the returned 602 * fwnode pointer. 603 * 604 * Return: parent firmware node of the given node if possible or %NULL if no 605 * parent was available. 606 */ 607 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode) 608 { 609 return fwnode_call_ptr_op(fwnode, get_parent); 610 } 611 EXPORT_SYMBOL_GPL(fwnode_get_parent); 612 613 /** 614 * fwnode_get_next_parent - Iterate to the node's parent 615 * @fwnode: Firmware whose parent is retrieved 616 * 617 * This is like fwnode_get_parent() except that it drops the refcount 618 * on the passed node, making it suitable for iterating through a 619 * node's parents. 620 * 621 * The caller is responsible for calling fwnode_handle_put() on the returned 622 * fwnode pointer. Note that this function also puts a reference to @fwnode 623 * unconditionally. 624 * 625 * Return: parent firmware node of the given node if possible or %NULL if no 626 * parent was available. 627 */ 628 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode) 629 { 630 struct fwnode_handle *parent = fwnode_get_parent(fwnode); 631 632 fwnode_handle_put(fwnode); 633 634 return parent; 635 } 636 EXPORT_SYMBOL_GPL(fwnode_get_next_parent); 637 638 /** 639 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 640 * @fwnode: firmware node 641 * 642 * Given a firmware node (@fwnode), this function finds its closest ancestor 643 * firmware node that has a corresponding struct device and returns that struct 644 * device. 645 * 646 * The caller is responsible for calling put_device() on the returned device 647 * pointer. 648 * 649 * Return: a pointer to the device of the @fwnode's closest ancestor. 650 */ 651 struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode) 652 { 653 struct fwnode_handle *parent; 654 struct device *dev; 655 656 fwnode_for_each_parent_node(fwnode, parent) { 657 dev = get_dev_from_fwnode(parent); 658 if (dev) { 659 fwnode_handle_put(parent); 660 return dev; 661 } 662 } 663 return NULL; 664 } 665 666 /** 667 * fwnode_count_parents - Return the number of parents a node has 668 * @fwnode: The node the parents of which are to be counted 669 * 670 * Return: the number of parents a node has. 671 */ 672 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode) 673 { 674 struct fwnode_handle *parent; 675 unsigned int count = 0; 676 677 fwnode_for_each_parent_node(fwnode, parent) 678 count++; 679 680 return count; 681 } 682 EXPORT_SYMBOL_GPL(fwnode_count_parents); 683 684 /** 685 * fwnode_get_nth_parent - Return an nth parent of a node 686 * @fwnode: The node the parent of which is requested 687 * @depth: Distance of the parent from the node 688 * 689 * The caller is responsible for calling fwnode_handle_put() on the returned 690 * fwnode pointer. 691 * 692 * Return: the nth parent of a node. If there is no parent at the requested 693 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to 694 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on. 695 */ 696 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode, 697 unsigned int depth) 698 { 699 struct fwnode_handle *parent; 700 701 if (depth == 0) 702 return fwnode_handle_get(fwnode); 703 704 fwnode_for_each_parent_node(fwnode, parent) { 705 if (--depth == 0) 706 return parent; 707 } 708 return NULL; 709 } 710 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent); 711 712 /** 713 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child 714 * @ancestor: Firmware which is tested for being an ancestor 715 * @child: Firmware which is tested for being the child 716 * 717 * A node is considered an ancestor of itself too. 718 * 719 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false. 720 */ 721 bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child) 722 { 723 struct fwnode_handle *parent; 724 725 if (IS_ERR_OR_NULL(ancestor)) 726 return false; 727 728 if (child == ancestor) 729 return true; 730 731 fwnode_for_each_parent_node(child, parent) { 732 if (parent == ancestor) { 733 fwnode_handle_put(parent); 734 return true; 735 } 736 } 737 return false; 738 } 739 740 /** 741 * fwnode_get_next_child_node - Return the next child node handle for a node 742 * @fwnode: Firmware node to find the next child node for. 743 * @child: Handle to one of the node's child nodes or a %NULL handle. 744 * 745 * The caller is responsible for calling fwnode_handle_put() on the returned 746 * fwnode pointer. Note that this function also puts a reference to @child 747 * unconditionally. 748 */ 749 struct fwnode_handle * 750 fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 751 struct fwnode_handle *child) 752 { 753 return fwnode_call_ptr_op(fwnode, get_next_child_node, child); 754 } 755 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node); 756 757 /** 758 * fwnode_get_next_available_child_node - Return the next available child node handle for a node 759 * @fwnode: Firmware node to find the next child node for. 760 * @child: Handle to one of the node's child nodes or a %NULL handle. 761 * 762 * The caller is responsible for calling fwnode_handle_put() on the returned 763 * fwnode pointer. Note that this function also puts a reference to @child 764 * unconditionally. 765 */ 766 struct fwnode_handle * 767 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode, 768 struct fwnode_handle *child) 769 { 770 struct fwnode_handle *next_child = child; 771 772 if (IS_ERR_OR_NULL(fwnode)) 773 return NULL; 774 775 do { 776 next_child = fwnode_get_next_child_node(fwnode, next_child); 777 if (!next_child) 778 return NULL; 779 } while (!fwnode_device_is_available(next_child)); 780 781 return next_child; 782 } 783 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node); 784 785 /** 786 * device_get_next_child_node - Return the next child node handle for a device 787 * @dev: Device to find the next child node for. 788 * @child: Handle to one of the device's child nodes or a %NULL handle. 789 * 790 * The caller is responsible for calling fwnode_handle_put() on the returned 791 * fwnode pointer. Note that this function also puts a reference to @child 792 * unconditionally. 793 */ 794 struct fwnode_handle *device_get_next_child_node(const struct device *dev, 795 struct fwnode_handle *child) 796 { 797 const struct fwnode_handle *fwnode = dev_fwnode(dev); 798 struct fwnode_handle *next; 799 800 if (IS_ERR_OR_NULL(fwnode)) 801 return NULL; 802 803 /* Try to find a child in primary fwnode */ 804 next = fwnode_get_next_child_node(fwnode, child); 805 if (next) 806 return next; 807 808 /* When no more children in primary, continue with secondary */ 809 return fwnode_get_next_child_node(fwnode->secondary, child); 810 } 811 EXPORT_SYMBOL_GPL(device_get_next_child_node); 812 813 /** 814 * fwnode_get_named_child_node - Return first matching named child node handle 815 * @fwnode: Firmware node to find the named child node for. 816 * @childname: String to match child node name against. 817 * 818 * The caller is responsible for calling fwnode_handle_put() on the returned 819 * fwnode pointer. 820 */ 821 struct fwnode_handle * 822 fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 823 const char *childname) 824 { 825 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname); 826 } 827 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node); 828 829 /** 830 * device_get_named_child_node - Return first matching named child node handle 831 * @dev: Device to find the named child node for. 832 * @childname: String to match child node name against. 833 * 834 * The caller is responsible for calling fwnode_handle_put() on the returned 835 * fwnode pointer. 836 */ 837 struct fwnode_handle *device_get_named_child_node(const struct device *dev, 838 const char *childname) 839 { 840 return fwnode_get_named_child_node(dev_fwnode(dev), childname); 841 } 842 EXPORT_SYMBOL_GPL(device_get_named_child_node); 843 844 /** 845 * fwnode_handle_get - Obtain a reference to a device node 846 * @fwnode: Pointer to the device node to obtain the reference to. 847 * 848 * The caller is responsible for calling fwnode_handle_put() on the returned 849 * fwnode pointer. 850 * 851 * Return: the fwnode handle. 852 */ 853 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode) 854 { 855 if (!fwnode_has_op(fwnode, get)) 856 return fwnode; 857 858 return fwnode_call_ptr_op(fwnode, get); 859 } 860 EXPORT_SYMBOL_GPL(fwnode_handle_get); 861 862 /** 863 * fwnode_handle_put - Drop reference to a device node 864 * @fwnode: Pointer to the device node to drop the reference to. 865 * 866 * This has to be used when terminating device_for_each_child_node() iteration 867 * with break or return to prevent stale device node references from being left 868 * behind. 869 */ 870 void fwnode_handle_put(struct fwnode_handle *fwnode) 871 { 872 fwnode_call_void_op(fwnode, put); 873 } 874 EXPORT_SYMBOL_GPL(fwnode_handle_put); 875 876 /** 877 * fwnode_device_is_available - check if a device is available for use 878 * @fwnode: Pointer to the fwnode of the device. 879 * 880 * Return: true if device is available for use. Otherwise, returns false. 881 * 882 * For fwnode node types that don't implement the .device_is_available() 883 * operation, this function returns true. 884 */ 885 bool fwnode_device_is_available(const struct fwnode_handle *fwnode) 886 { 887 if (IS_ERR_OR_NULL(fwnode)) 888 return false; 889 890 if (!fwnode_has_op(fwnode, device_is_available)) 891 return true; 892 893 return fwnode_call_bool_op(fwnode, device_is_available); 894 } 895 EXPORT_SYMBOL_GPL(fwnode_device_is_available); 896 897 /** 898 * device_get_child_node_count - return the number of child nodes for device 899 * @dev: Device to cound the child nodes for 900 * 901 * Return: the number of child nodes for a given device. 902 */ 903 unsigned int device_get_child_node_count(const struct device *dev) 904 { 905 struct fwnode_handle *child; 906 unsigned int count = 0; 907 908 device_for_each_child_node(dev, child) 909 count++; 910 911 return count; 912 } 913 EXPORT_SYMBOL_GPL(device_get_child_node_count); 914 915 bool device_dma_supported(const struct device *dev) 916 { 917 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported); 918 } 919 EXPORT_SYMBOL_GPL(device_dma_supported); 920 921 enum dev_dma_attr device_get_dma_attr(const struct device *dev) 922 { 923 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr)) 924 return DEV_DMA_NOT_SUPPORTED; 925 926 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr); 927 } 928 EXPORT_SYMBOL_GPL(device_get_dma_attr); 929 930 /** 931 * fwnode_get_phy_mode - Get phy mode for given firmware node 932 * @fwnode: Pointer to the given node 933 * 934 * The function gets phy interface string from property 'phy-mode' or 935 * 'phy-connection-type', and return its index in phy_modes table, or errno in 936 * error case. 937 */ 938 int fwnode_get_phy_mode(const struct fwnode_handle *fwnode) 939 { 940 const char *pm; 941 int err, i; 942 943 err = fwnode_property_read_string(fwnode, "phy-mode", &pm); 944 if (err < 0) 945 err = fwnode_property_read_string(fwnode, 946 "phy-connection-type", &pm); 947 if (err < 0) 948 return err; 949 950 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) 951 if (!strcasecmp(pm, phy_modes(i))) 952 return i; 953 954 return -ENODEV; 955 } 956 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode); 957 958 /** 959 * device_get_phy_mode - Get phy mode for given device 960 * @dev: Pointer to the given device 961 * 962 * The function gets phy interface string from property 'phy-mode' or 963 * 'phy-connection-type', and return its index in phy_modes table, or errno in 964 * error case. 965 */ 966 int device_get_phy_mode(struct device *dev) 967 { 968 return fwnode_get_phy_mode(dev_fwnode(dev)); 969 } 970 EXPORT_SYMBOL_GPL(device_get_phy_mode); 971 972 /** 973 * fwnode_iomap - Maps the memory mapped IO for a given fwnode 974 * @fwnode: Pointer to the firmware node 975 * @index: Index of the IO range 976 * 977 * Return: a pointer to the mapped memory. 978 */ 979 void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index) 980 { 981 return fwnode_call_ptr_op(fwnode, iomap, index); 982 } 983 EXPORT_SYMBOL(fwnode_iomap); 984 985 /** 986 * fwnode_irq_get - Get IRQ directly from a fwnode 987 * @fwnode: Pointer to the firmware node 988 * @index: Zero-based index of the IRQ 989 * 990 * Return: Linux IRQ number on success. Other values are determined 991 * according to acpi_irq_get() or of_irq_get() operation. 992 */ 993 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index) 994 { 995 return fwnode_call_int_op(fwnode, irq_get, index); 996 } 997 EXPORT_SYMBOL(fwnode_irq_get); 998 999 /** 1000 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name 1001 * @fwnode: Pointer to the firmware node 1002 * @name: IRQ name 1003 * 1004 * Description: 1005 * Find a match to the string @name in the 'interrupt-names' string array 1006 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ 1007 * number of the IRQ resource corresponding to the index of the matched 1008 * string. 1009 * 1010 * Return: Linux IRQ number on success, or negative errno otherwise. 1011 */ 1012 int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name) 1013 { 1014 int index; 1015 1016 if (!name) 1017 return -EINVAL; 1018 1019 index = fwnode_property_match_string(fwnode, "interrupt-names", name); 1020 if (index < 0) 1021 return index; 1022 1023 return fwnode_irq_get(fwnode, index); 1024 } 1025 EXPORT_SYMBOL(fwnode_irq_get_byname); 1026 1027 /** 1028 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node 1029 * @fwnode: Pointer to the parent firmware node 1030 * @prev: Previous endpoint node or %NULL to get the first 1031 * 1032 * The caller is responsible for calling fwnode_handle_put() on the returned 1033 * fwnode pointer. Note that this function also puts a reference to @prev 1034 * unconditionally. 1035 * 1036 * Return: an endpoint firmware node pointer or %NULL if no more endpoints 1037 * are available. 1038 */ 1039 struct fwnode_handle * 1040 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1041 struct fwnode_handle *prev) 1042 { 1043 struct fwnode_handle *ep, *port_parent = NULL; 1044 const struct fwnode_handle *parent; 1045 1046 /* 1047 * If this function is in a loop and the previous iteration returned 1048 * an endpoint from fwnode->secondary, then we need to use the secondary 1049 * as parent rather than @fwnode. 1050 */ 1051 if (prev) { 1052 port_parent = fwnode_graph_get_port_parent(prev); 1053 parent = port_parent; 1054 } else { 1055 parent = fwnode; 1056 } 1057 if (IS_ERR_OR_NULL(parent)) 1058 return NULL; 1059 1060 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev); 1061 if (ep) 1062 goto out_put_port_parent; 1063 1064 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL); 1065 1066 out_put_port_parent: 1067 fwnode_handle_put(port_parent); 1068 return ep; 1069 } 1070 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint); 1071 1072 /** 1073 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint 1074 * @endpoint: Endpoint firmware node of the port 1075 * 1076 * The caller is responsible for calling fwnode_handle_put() on the returned 1077 * fwnode pointer. 1078 * 1079 * Return: the firmware node of the device the @endpoint belongs to. 1080 */ 1081 struct fwnode_handle * 1082 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint) 1083 { 1084 struct fwnode_handle *port, *parent; 1085 1086 port = fwnode_get_parent(endpoint); 1087 parent = fwnode_call_ptr_op(port, graph_get_port_parent); 1088 1089 fwnode_handle_put(port); 1090 1091 return parent; 1092 } 1093 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent); 1094 1095 /** 1096 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device 1097 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1098 * 1099 * Extracts firmware node of a remote device the @fwnode points to. 1100 * 1101 * The caller is responsible for calling fwnode_handle_put() on the returned 1102 * fwnode pointer. 1103 */ 1104 struct fwnode_handle * 1105 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode) 1106 { 1107 struct fwnode_handle *endpoint, *parent; 1108 1109 endpoint = fwnode_graph_get_remote_endpoint(fwnode); 1110 parent = fwnode_graph_get_port_parent(endpoint); 1111 1112 fwnode_handle_put(endpoint); 1113 1114 return parent; 1115 } 1116 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent); 1117 1118 /** 1119 * fwnode_graph_get_remote_port - Return fwnode of a remote port 1120 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1121 * 1122 * Extracts firmware node of a remote port the @fwnode points to. 1123 * 1124 * The caller is responsible for calling fwnode_handle_put() on the returned 1125 * fwnode pointer. 1126 */ 1127 struct fwnode_handle * 1128 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode) 1129 { 1130 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode)); 1131 } 1132 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port); 1133 1134 /** 1135 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint 1136 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1137 * 1138 * Extracts firmware node of a remote endpoint the @fwnode points to. 1139 * 1140 * The caller is responsible for calling fwnode_handle_put() on the returned 1141 * fwnode pointer. 1142 */ 1143 struct fwnode_handle * 1144 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1145 { 1146 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint); 1147 } 1148 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint); 1149 1150 static bool fwnode_graph_remote_available(struct fwnode_handle *ep) 1151 { 1152 struct fwnode_handle *dev_node; 1153 bool available; 1154 1155 dev_node = fwnode_graph_get_remote_port_parent(ep); 1156 available = fwnode_device_is_available(dev_node); 1157 fwnode_handle_put(dev_node); 1158 1159 return available; 1160 } 1161 1162 /** 1163 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers 1164 * @fwnode: parent fwnode_handle containing the graph 1165 * @port: identifier of the port node 1166 * @endpoint: identifier of the endpoint node under the port node 1167 * @flags: fwnode lookup flags 1168 * 1169 * The caller is responsible for calling fwnode_handle_put() on the returned 1170 * fwnode pointer. 1171 * 1172 * Return: the fwnode handle of the local endpoint corresponding the port and 1173 * endpoint IDs or %NULL if not found. 1174 * 1175 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint 1176 * has not been found, look for the closest endpoint ID greater than the 1177 * specified one and return the endpoint that corresponds to it, if present. 1178 * 1179 * Does not return endpoints that belong to disabled devices or endpoints that 1180 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags. 1181 */ 1182 struct fwnode_handle * 1183 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode, 1184 u32 port, u32 endpoint, unsigned long flags) 1185 { 1186 struct fwnode_handle *ep, *best_ep = NULL; 1187 unsigned int best_ep_id = 0; 1188 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT; 1189 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED); 1190 1191 fwnode_graph_for_each_endpoint(fwnode, ep) { 1192 struct fwnode_endpoint fwnode_ep = { 0 }; 1193 int ret; 1194 1195 if (enabled_only && !fwnode_graph_remote_available(ep)) 1196 continue; 1197 1198 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep); 1199 if (ret < 0) 1200 continue; 1201 1202 if (fwnode_ep.port != port) 1203 continue; 1204 1205 if (fwnode_ep.id == endpoint) 1206 return ep; 1207 1208 if (!endpoint_next) 1209 continue; 1210 1211 /* 1212 * If the endpoint that has just been found is not the first 1213 * matching one and the ID of the one found previously is closer 1214 * to the requested endpoint ID, skip it. 1215 */ 1216 if (fwnode_ep.id < endpoint || 1217 (best_ep && best_ep_id < fwnode_ep.id)) 1218 continue; 1219 1220 fwnode_handle_put(best_ep); 1221 best_ep = fwnode_handle_get(ep); 1222 best_ep_id = fwnode_ep.id; 1223 } 1224 1225 return best_ep; 1226 } 1227 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id); 1228 1229 /** 1230 * fwnode_graph_get_endpoint_count - Count endpoints on a device node 1231 * @fwnode: The node related to a device 1232 * @flags: fwnode lookup flags 1233 * Count endpoints in a device node. 1234 * 1235 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints 1236 * and endpoints connected to disabled devices are counted. 1237 */ 1238 unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode, 1239 unsigned long flags) 1240 { 1241 struct fwnode_handle *ep; 1242 unsigned int count = 0; 1243 1244 fwnode_graph_for_each_endpoint(fwnode, ep) { 1245 if (flags & FWNODE_GRAPH_DEVICE_DISABLED || 1246 fwnode_graph_remote_available(ep)) 1247 count++; 1248 } 1249 1250 return count; 1251 } 1252 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count); 1253 1254 /** 1255 * fwnode_graph_parse_endpoint - parse common endpoint node properties 1256 * @fwnode: pointer to endpoint fwnode_handle 1257 * @endpoint: pointer to the fwnode endpoint data structure 1258 * 1259 * Parse @fwnode representing a graph endpoint node and store the 1260 * information in @endpoint. The caller must hold a reference to 1261 * @fwnode. 1262 */ 1263 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1264 struct fwnode_endpoint *endpoint) 1265 { 1266 memset(endpoint, 0, sizeof(*endpoint)); 1267 1268 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint); 1269 } 1270 EXPORT_SYMBOL(fwnode_graph_parse_endpoint); 1271 1272 const void *device_get_match_data(const struct device *dev) 1273 { 1274 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev); 1275 } 1276 EXPORT_SYMBOL_GPL(device_get_match_data); 1277 1278 static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode, 1279 const char *con_id, void *data, 1280 devcon_match_fn_t match, 1281 void **matches, 1282 unsigned int matches_len) 1283 { 1284 struct fwnode_handle *node; 1285 struct fwnode_handle *ep; 1286 unsigned int count = 0; 1287 void *ret; 1288 1289 fwnode_graph_for_each_endpoint(fwnode, ep) { 1290 if (matches && count >= matches_len) { 1291 fwnode_handle_put(ep); 1292 break; 1293 } 1294 1295 node = fwnode_graph_get_remote_port_parent(ep); 1296 if (!fwnode_device_is_available(node)) { 1297 fwnode_handle_put(node); 1298 continue; 1299 } 1300 1301 ret = match(node, con_id, data); 1302 fwnode_handle_put(node); 1303 if (ret) { 1304 if (matches) 1305 matches[count] = ret; 1306 count++; 1307 } 1308 } 1309 return count; 1310 } 1311 1312 static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode, 1313 const char *con_id, void *data, 1314 devcon_match_fn_t match, 1315 void **matches, 1316 unsigned int matches_len) 1317 { 1318 struct fwnode_handle *node; 1319 unsigned int count = 0; 1320 unsigned int i; 1321 void *ret; 1322 1323 for (i = 0; ; i++) { 1324 if (matches && count >= matches_len) 1325 break; 1326 1327 node = fwnode_find_reference(fwnode, con_id, i); 1328 if (IS_ERR(node)) 1329 break; 1330 1331 ret = match(node, NULL, data); 1332 fwnode_handle_put(node); 1333 if (ret) { 1334 if (matches) 1335 matches[count] = ret; 1336 count++; 1337 } 1338 } 1339 1340 return count; 1341 } 1342 1343 /** 1344 * fwnode_connection_find_match - Find connection from a device node 1345 * @fwnode: Device node with the connection 1346 * @con_id: Identifier for the connection 1347 * @data: Data for the match function 1348 * @match: Function to check and convert the connection description 1349 * 1350 * Find a connection with unique identifier @con_id between @fwnode and another 1351 * device node. @match will be used to convert the connection description to 1352 * data the caller is expecting to be returned. 1353 */ 1354 void *fwnode_connection_find_match(const struct fwnode_handle *fwnode, 1355 const char *con_id, void *data, 1356 devcon_match_fn_t match) 1357 { 1358 unsigned int count; 1359 void *ret; 1360 1361 if (!fwnode || !match) 1362 return NULL; 1363 1364 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1); 1365 if (count) 1366 return ret; 1367 1368 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1); 1369 return count ? ret : NULL; 1370 } 1371 EXPORT_SYMBOL_GPL(fwnode_connection_find_match); 1372 1373 /** 1374 * fwnode_connection_find_matches - Find connections from a device node 1375 * @fwnode: Device node with the connection 1376 * @con_id: Identifier for the connection 1377 * @data: Data for the match function 1378 * @match: Function to check and convert the connection description 1379 * @matches: (Optional) array of pointers to fill with matches 1380 * @matches_len: Length of @matches 1381 * 1382 * Find up to @matches_len connections with unique identifier @con_id between 1383 * @fwnode and other device nodes. @match will be used to convert the 1384 * connection description to data the caller is expecting to be returned 1385 * through the @matches array. 1386 * 1387 * If @matches is %NULL @matches_len is ignored and the total number of resolved 1388 * matches is returned. 1389 * 1390 * Return: Number of matches resolved, or negative errno. 1391 */ 1392 int fwnode_connection_find_matches(const struct fwnode_handle *fwnode, 1393 const char *con_id, void *data, 1394 devcon_match_fn_t match, 1395 void **matches, unsigned int matches_len) 1396 { 1397 unsigned int count_graph; 1398 unsigned int count_ref; 1399 1400 if (!fwnode || !match) 1401 return -EINVAL; 1402 1403 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match, 1404 matches, matches_len); 1405 1406 if (matches) { 1407 matches += count_graph; 1408 matches_len -= count_graph; 1409 } 1410 1411 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match, 1412 matches, matches_len); 1413 1414 return count_graph + count_ref; 1415 } 1416 EXPORT_SYMBOL_GPL(fwnode_connection_find_matches); 1417