1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * property.c - Unified device property interface. 4 * 5 * Copyright (C) 2014, Intel Corporation 6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * Mika Westerberg <mika.westerberg@linux.intel.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/export.h> 12 #include <linux/kernel.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_graph.h> 16 #include <linux/of_irq.h> 17 #include <linux/property.h> 18 #include <linux/etherdevice.h> 19 #include <linux/phy.h> 20 21 struct fwnode_handle *dev_fwnode(struct device *dev) 22 { 23 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 24 &dev->of_node->fwnode : dev->fwnode; 25 } 26 EXPORT_SYMBOL_GPL(dev_fwnode); 27 28 /** 29 * device_property_present - check if a property of a device is present 30 * @dev: Device whose property is being checked 31 * @propname: Name of the property 32 * 33 * Check if property @propname is present in the device firmware description. 34 */ 35 bool device_property_present(struct device *dev, const char *propname) 36 { 37 return fwnode_property_present(dev_fwnode(dev), propname); 38 } 39 EXPORT_SYMBOL_GPL(device_property_present); 40 41 /** 42 * fwnode_property_present - check if a property of a firmware node is present 43 * @fwnode: Firmware node whose property to check 44 * @propname: Name of the property 45 */ 46 bool fwnode_property_present(const struct fwnode_handle *fwnode, 47 const char *propname) 48 { 49 bool ret; 50 51 ret = fwnode_call_bool_op(fwnode, property_present, propname); 52 if (ret == false && !IS_ERR_OR_NULL(fwnode) && 53 !IS_ERR_OR_NULL(fwnode->secondary)) 54 ret = fwnode_call_bool_op(fwnode->secondary, property_present, 55 propname); 56 return ret; 57 } 58 EXPORT_SYMBOL_GPL(fwnode_property_present); 59 60 /** 61 * device_property_read_u8_array - return a u8 array property of a device 62 * @dev: Device to get the property of 63 * @propname: Name of the property 64 * @val: The values are stored here or %NULL to return the number of values 65 * @nval: Size of the @val array 66 * 67 * Function reads an array of u8 properties with @propname from the device 68 * firmware description and stores them to @val if found. 69 * 70 * Return: number of values if @val was %NULL, 71 * %0 if the property was found (success), 72 * %-EINVAL if given arguments are not valid, 73 * %-ENODATA if the property does not have a value, 74 * %-EPROTO if the property is not an array of numbers, 75 * %-EOVERFLOW if the size of the property is not as expected. 76 * %-ENXIO if no suitable firmware interface is present. 77 */ 78 int device_property_read_u8_array(struct device *dev, const char *propname, 79 u8 *val, size_t nval) 80 { 81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval); 82 } 83 EXPORT_SYMBOL_GPL(device_property_read_u8_array); 84 85 /** 86 * device_property_read_u16_array - return a u16 array property of a device 87 * @dev: Device to get the property of 88 * @propname: Name of the property 89 * @val: The values are stored here or %NULL to return the number of values 90 * @nval: Size of the @val array 91 * 92 * Function reads an array of u16 properties with @propname from the device 93 * firmware description and stores them to @val if found. 94 * 95 * Return: number of values if @val was %NULL, 96 * %0 if the property was found (success), 97 * %-EINVAL if given arguments are not valid, 98 * %-ENODATA if the property does not have a value, 99 * %-EPROTO if the property is not an array of numbers, 100 * %-EOVERFLOW if the size of the property is not as expected. 101 * %-ENXIO if no suitable firmware interface is present. 102 */ 103 int device_property_read_u16_array(struct device *dev, const char *propname, 104 u16 *val, size_t nval) 105 { 106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval); 107 } 108 EXPORT_SYMBOL_GPL(device_property_read_u16_array); 109 110 /** 111 * device_property_read_u32_array - return a u32 array property of a device 112 * @dev: Device to get the property of 113 * @propname: Name of the property 114 * @val: The values are stored here or %NULL to return the number of values 115 * @nval: Size of the @val array 116 * 117 * Function reads an array of u32 properties with @propname from the device 118 * firmware description and stores them to @val if found. 119 * 120 * Return: number of values if @val was %NULL, 121 * %0 if the property was found (success), 122 * %-EINVAL if given arguments are not valid, 123 * %-ENODATA if the property does not have a value, 124 * %-EPROTO if the property is not an array of numbers, 125 * %-EOVERFLOW if the size of the property is not as expected. 126 * %-ENXIO if no suitable firmware interface is present. 127 */ 128 int device_property_read_u32_array(struct device *dev, const char *propname, 129 u32 *val, size_t nval) 130 { 131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval); 132 } 133 EXPORT_SYMBOL_GPL(device_property_read_u32_array); 134 135 /** 136 * device_property_read_u64_array - return a u64 array property of a device 137 * @dev: Device to get the property of 138 * @propname: Name of the property 139 * @val: The values are stored here or %NULL to return the number of values 140 * @nval: Size of the @val array 141 * 142 * Function reads an array of u64 properties with @propname from the device 143 * firmware description and stores them to @val if found. 144 * 145 * Return: number of values if @val was %NULL, 146 * %0 if the property was found (success), 147 * %-EINVAL if given arguments are not valid, 148 * %-ENODATA if the property does not have a value, 149 * %-EPROTO if the property is not an array of numbers, 150 * %-EOVERFLOW if the size of the property is not as expected. 151 * %-ENXIO if no suitable firmware interface is present. 152 */ 153 int device_property_read_u64_array(struct device *dev, const char *propname, 154 u64 *val, size_t nval) 155 { 156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval); 157 } 158 EXPORT_SYMBOL_GPL(device_property_read_u64_array); 159 160 /** 161 * device_property_read_string_array - return a string array property of device 162 * @dev: Device to get the property of 163 * @propname: Name of the property 164 * @val: The values are stored here or %NULL to return the number of values 165 * @nval: Size of the @val array 166 * 167 * Function reads an array of string properties with @propname from the device 168 * firmware description and stores them to @val if found. 169 * 170 * Return: number of values read on success if @val is non-NULL, 171 * number of values available on success if @val is NULL, 172 * %-EINVAL if given arguments are not valid, 173 * %-ENODATA if the property does not have a value, 174 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 175 * %-EOVERFLOW if the size of the property is not as expected. 176 * %-ENXIO if no suitable firmware interface is present. 177 */ 178 int device_property_read_string_array(struct device *dev, const char *propname, 179 const char **val, size_t nval) 180 { 181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval); 182 } 183 EXPORT_SYMBOL_GPL(device_property_read_string_array); 184 185 /** 186 * device_property_read_string - return a string property of a device 187 * @dev: Device to get the property of 188 * @propname: Name of the property 189 * @val: The value is stored here 190 * 191 * Function reads property @propname from the device firmware description and 192 * stores the value into @val if found. The value is checked to be a string. 193 * 194 * Return: %0 if the property was found (success), 195 * %-EINVAL if given arguments are not valid, 196 * %-ENODATA if the property does not have a value, 197 * %-EPROTO or %-EILSEQ if the property type is not a string. 198 * %-ENXIO if no suitable firmware interface is present. 199 */ 200 int device_property_read_string(struct device *dev, const char *propname, 201 const char **val) 202 { 203 return fwnode_property_read_string(dev_fwnode(dev), propname, val); 204 } 205 EXPORT_SYMBOL_GPL(device_property_read_string); 206 207 /** 208 * device_property_match_string - find a string in an array and return index 209 * @dev: Device to get the property of 210 * @propname: Name of the property holding the array 211 * @string: String to look for 212 * 213 * Find a given string in a string array and if it is found return the 214 * index back. 215 * 216 * Return: %0 if the property was found (success), 217 * %-EINVAL if given arguments are not valid, 218 * %-ENODATA if the property does not have a value, 219 * %-EPROTO if the property is not an array of strings, 220 * %-ENXIO if no suitable firmware interface is present. 221 */ 222 int device_property_match_string(struct device *dev, const char *propname, 223 const char *string) 224 { 225 return fwnode_property_match_string(dev_fwnode(dev), propname, string); 226 } 227 EXPORT_SYMBOL_GPL(device_property_match_string); 228 229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 230 const char *propname, 231 unsigned int elem_size, void *val, 232 size_t nval) 233 { 234 int ret; 235 236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname, 237 elem_size, val, nval); 238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) && 239 !IS_ERR_OR_NULL(fwnode->secondary)) 240 ret = fwnode_call_int_op( 241 fwnode->secondary, property_read_int_array, propname, 242 elem_size, val, nval); 243 244 return ret; 245 } 246 247 /** 248 * fwnode_property_read_u8_array - return a u8 array property of firmware node 249 * @fwnode: Firmware node to get the property of 250 * @propname: Name of the property 251 * @val: The values are stored here or %NULL to return the number of values 252 * @nval: Size of the @val array 253 * 254 * Read an array of u8 properties with @propname from @fwnode and stores them to 255 * @val if found. 256 * 257 * Return: number of values if @val was %NULL, 258 * %0 if the property was found (success), 259 * %-EINVAL if given arguments are not valid, 260 * %-ENODATA if the property does not have a value, 261 * %-EPROTO if the property is not an array of numbers, 262 * %-EOVERFLOW if the size of the property is not as expected, 263 * %-ENXIO if no suitable firmware interface is present. 264 */ 265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode, 266 const char *propname, u8 *val, size_t nval) 267 { 268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8), 269 val, nval); 270 } 271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array); 272 273 /** 274 * fwnode_property_read_u16_array - return a u16 array property of firmware node 275 * @fwnode: Firmware node to get the property of 276 * @propname: Name of the property 277 * @val: The values are stored here or %NULL to return the number of values 278 * @nval: Size of the @val array 279 * 280 * Read an array of u16 properties with @propname from @fwnode and store them to 281 * @val if found. 282 * 283 * Return: number of values if @val was %NULL, 284 * %0 if the property was found (success), 285 * %-EINVAL if given arguments are not valid, 286 * %-ENODATA if the property does not have a value, 287 * %-EPROTO if the property is not an array of numbers, 288 * %-EOVERFLOW if the size of the property is not as expected, 289 * %-ENXIO if no suitable firmware interface is present. 290 */ 291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode, 292 const char *propname, u16 *val, size_t nval) 293 { 294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16), 295 val, nval); 296 } 297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array); 298 299 /** 300 * fwnode_property_read_u32_array - return a u32 array property of firmware node 301 * @fwnode: Firmware node to get the property of 302 * @propname: Name of the property 303 * @val: The values are stored here or %NULL to return the number of values 304 * @nval: Size of the @val array 305 * 306 * Read an array of u32 properties with @propname from @fwnode store them to 307 * @val if found. 308 * 309 * Return: number of values if @val was %NULL, 310 * %0 if the property was found (success), 311 * %-EINVAL if given arguments are not valid, 312 * %-ENODATA if the property does not have a value, 313 * %-EPROTO if the property is not an array of numbers, 314 * %-EOVERFLOW if the size of the property is not as expected, 315 * %-ENXIO if no suitable firmware interface is present. 316 */ 317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode, 318 const char *propname, u32 *val, size_t nval) 319 { 320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32), 321 val, nval); 322 } 323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array); 324 325 /** 326 * fwnode_property_read_u64_array - return a u64 array property firmware node 327 * @fwnode: Firmware node to get the property of 328 * @propname: Name of the property 329 * @val: The values are stored here or %NULL to return the number of values 330 * @nval: Size of the @val array 331 * 332 * Read an array of u64 properties with @propname from @fwnode and store them to 333 * @val if found. 334 * 335 * Return: number of values if @val was %NULL, 336 * %0 if the property was found (success), 337 * %-EINVAL if given arguments are not valid, 338 * %-ENODATA if the property does not have a value, 339 * %-EPROTO if the property is not an array of numbers, 340 * %-EOVERFLOW if the size of the property is not as expected, 341 * %-ENXIO if no suitable firmware interface is present. 342 */ 343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode, 344 const char *propname, u64 *val, size_t nval) 345 { 346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64), 347 val, nval); 348 } 349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array); 350 351 /** 352 * fwnode_property_read_string_array - return string array property of a node 353 * @fwnode: Firmware node to get the property of 354 * @propname: Name of the property 355 * @val: The values are stored here or %NULL to return the number of values 356 * @nval: Size of the @val array 357 * 358 * Read an string list property @propname from the given firmware node and store 359 * them to @val if found. 360 * 361 * Return: number of values read on success if @val is non-NULL, 362 * number of values available on success if @val is NULL, 363 * %-EINVAL if given arguments are not valid, 364 * %-ENODATA if the property does not have a value, 365 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 366 * %-EOVERFLOW if the size of the property is not as expected, 367 * %-ENXIO if no suitable firmware interface is present. 368 */ 369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 370 const char *propname, const char **val, 371 size_t nval) 372 { 373 int ret; 374 375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname, 376 val, nval); 377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) && 378 !IS_ERR_OR_NULL(fwnode->secondary)) 379 ret = fwnode_call_int_op(fwnode->secondary, 380 property_read_string_array, propname, 381 val, nval); 382 return ret; 383 } 384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array); 385 386 /** 387 * fwnode_property_read_string - return a string property of a firmware node 388 * @fwnode: Firmware node to get the property of 389 * @propname: Name of the property 390 * @val: The value is stored here 391 * 392 * Read property @propname from the given firmware node and store the value into 393 * @val if found. The value is checked to be a string. 394 * 395 * Return: %0 if the property was found (success), 396 * %-EINVAL if given arguments are not valid, 397 * %-ENODATA if the property does not have a value, 398 * %-EPROTO or %-EILSEQ if the property is not a string, 399 * %-ENXIO if no suitable firmware interface is present. 400 */ 401 int fwnode_property_read_string(const struct fwnode_handle *fwnode, 402 const char *propname, const char **val) 403 { 404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1); 405 406 return ret < 0 ? ret : 0; 407 } 408 EXPORT_SYMBOL_GPL(fwnode_property_read_string); 409 410 /** 411 * fwnode_property_match_string - find a string in an array and return index 412 * @fwnode: Firmware node to get the property of 413 * @propname: Name of the property holding the array 414 * @string: String to look for 415 * 416 * Find a given string in a string array and if it is found return the 417 * index back. 418 * 419 * Return: %0 if the property was found (success), 420 * %-EINVAL if given arguments are not valid, 421 * %-ENODATA if the property does not have a value, 422 * %-EPROTO if the property is not an array of strings, 423 * %-ENXIO if no suitable firmware interface is present. 424 */ 425 int fwnode_property_match_string(const struct fwnode_handle *fwnode, 426 const char *propname, const char *string) 427 { 428 const char **values; 429 int nval, ret; 430 431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0); 432 if (nval < 0) 433 return nval; 434 435 if (nval == 0) 436 return -ENODATA; 437 438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL); 439 if (!values) 440 return -ENOMEM; 441 442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval); 443 if (ret < 0) 444 goto out; 445 446 ret = match_string(values, nval, string); 447 if (ret < 0) 448 ret = -ENODATA; 449 out: 450 kfree(values); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(fwnode_property_match_string); 454 455 /** 456 * fwnode_property_get_reference_args() - Find a reference with arguments 457 * @fwnode: Firmware node where to look for the reference 458 * @prop: The name of the property 459 * @nargs_prop: The name of the property telling the number of 460 * arguments in the referred node. NULL if @nargs is known, 461 * otherwise @nargs is ignored. Only relevant on OF. 462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL. 463 * @index: Index of the reference, from zero onwards. 464 * @args: Result structure with reference and integer arguments. 465 * 466 * Obtain a reference based on a named property in an fwnode, with 467 * integer arguments. 468 * 469 * Caller is responsible to call fwnode_handle_put() on the returned 470 * args->fwnode pointer. 471 * 472 * Returns: %0 on success 473 * %-ENOENT when the index is out of bounds, the index has an empty 474 * reference or the property was not found 475 * %-EINVAL on parse error 476 */ 477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode, 478 const char *prop, const char *nargs_prop, 479 unsigned int nargs, unsigned int index, 480 struct fwnode_reference_args *args) 481 { 482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop, 483 nargs, index, args); 484 } 485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args); 486 487 /** 488 * fwnode_find_reference - Find named reference to a fwnode_handle 489 * @fwnode: Firmware node where to look for the reference 490 * @name: The name of the reference 491 * @index: Index of the reference 492 * 493 * @index can be used when the named reference holds a table of references. 494 * 495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to 496 * call fwnode_handle_put() on the returned fwnode pointer. 497 */ 498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode, 499 const char *name, 500 unsigned int index) 501 { 502 struct fwnode_reference_args args; 503 int ret; 504 505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index, 506 &args); 507 return ret ? ERR_PTR(ret) : args.fwnode; 508 } 509 EXPORT_SYMBOL_GPL(fwnode_find_reference); 510 511 /** 512 * device_remove_properties - Remove properties from a device object. 513 * @dev: Device whose properties to remove. 514 * 515 * The function removes properties previously associated to the device 516 * firmware node with device_add_properties(). Memory allocated to the 517 * properties will also be released. 518 */ 519 void device_remove_properties(struct device *dev) 520 { 521 struct fwnode_handle *fwnode = dev_fwnode(dev); 522 523 if (!fwnode) 524 return; 525 526 if (is_software_node(fwnode->secondary)) { 527 fwnode_remove_software_node(fwnode->secondary); 528 set_secondary_fwnode(dev, NULL); 529 } 530 } 531 EXPORT_SYMBOL_GPL(device_remove_properties); 532 533 /** 534 * device_add_properties - Add a collection of properties to a device object. 535 * @dev: Device to add properties to. 536 * @properties: Collection of properties to add. 537 * 538 * Associate a collection of device properties represented by @properties with 539 * @dev. The function takes a copy of @properties. 540 * 541 * WARNING: The callers should not use this function if it is known that there 542 * is no real firmware node associated with @dev! In that case the callers 543 * should create a software node and assign it to @dev directly. 544 */ 545 int device_add_properties(struct device *dev, 546 const struct property_entry *properties) 547 { 548 struct fwnode_handle *fwnode; 549 550 fwnode = fwnode_create_software_node(properties, NULL); 551 if (IS_ERR(fwnode)) 552 return PTR_ERR(fwnode); 553 554 set_secondary_fwnode(dev, fwnode); 555 return 0; 556 } 557 EXPORT_SYMBOL_GPL(device_add_properties); 558 559 /** 560 * fwnode_get_name - Return the name of a node 561 * @fwnode: The firmware node 562 * 563 * Returns a pointer to the node name. 564 */ 565 const char *fwnode_get_name(const struct fwnode_handle *fwnode) 566 { 567 return fwnode_call_ptr_op(fwnode, get_name); 568 } 569 EXPORT_SYMBOL_GPL(fwnode_get_name); 570 571 /** 572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes 573 * @fwnode: The firmware node 574 * 575 * Returns the prefix of a node, intended to be printed right before the node. 576 * The prefix works also as a separator between the nodes. 577 */ 578 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 579 { 580 return fwnode_call_ptr_op(fwnode, get_name_prefix); 581 } 582 583 /** 584 * fwnode_get_parent - Return parent firwmare node 585 * @fwnode: Firmware whose parent is retrieved 586 * 587 * Return parent firmware node of the given node if possible or %NULL if no 588 * parent was available. 589 */ 590 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode) 591 { 592 return fwnode_call_ptr_op(fwnode, get_parent); 593 } 594 EXPORT_SYMBOL_GPL(fwnode_get_parent); 595 596 /** 597 * fwnode_get_next_parent - Iterate to the node's parent 598 * @fwnode: Firmware whose parent is retrieved 599 * 600 * This is like fwnode_get_parent() except that it drops the refcount 601 * on the passed node, making it suitable for iterating through a 602 * node's parents. 603 * 604 * Returns a node pointer with refcount incremented, use 605 * fwnode_handle_node() on it when done. 606 */ 607 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode) 608 { 609 struct fwnode_handle *parent = fwnode_get_parent(fwnode); 610 611 fwnode_handle_put(fwnode); 612 613 return parent; 614 } 615 EXPORT_SYMBOL_GPL(fwnode_get_next_parent); 616 617 /** 618 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode 619 * @fwnode: firmware node 620 * 621 * Given a firmware node (@fwnode), this function finds its closest ancestor 622 * firmware node that has a corresponding struct device and returns that struct 623 * device. 624 * 625 * The caller of this function is expected to call put_device() on the returned 626 * device when they are done. 627 */ 628 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode) 629 { 630 struct device *dev = NULL; 631 632 fwnode_handle_get(fwnode); 633 do { 634 fwnode = fwnode_get_next_parent(fwnode); 635 if (fwnode) 636 dev = get_dev_from_fwnode(fwnode); 637 } while (fwnode && !dev); 638 fwnode_handle_put(fwnode); 639 return dev; 640 } 641 642 /** 643 * fwnode_count_parents - Return the number of parents a node has 644 * @fwnode: The node the parents of which are to be counted 645 * 646 * Returns the number of parents a node has. 647 */ 648 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode) 649 { 650 struct fwnode_handle *__fwnode; 651 unsigned int count; 652 653 __fwnode = fwnode_get_parent(fwnode); 654 655 for (count = 0; __fwnode; count++) 656 __fwnode = fwnode_get_next_parent(__fwnode); 657 658 return count; 659 } 660 EXPORT_SYMBOL_GPL(fwnode_count_parents); 661 662 /** 663 * fwnode_get_nth_parent - Return an nth parent of a node 664 * @fwnode: The node the parent of which is requested 665 * @depth: Distance of the parent from the node 666 * 667 * Returns the nth parent of a node. If there is no parent at the requested 668 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to 669 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on. 670 * 671 * The caller is responsible for calling fwnode_handle_put() for the returned 672 * node. 673 */ 674 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode, 675 unsigned int depth) 676 { 677 unsigned int i; 678 679 fwnode_handle_get(fwnode); 680 681 for (i = 0; i < depth && fwnode; i++) 682 fwnode = fwnode_get_next_parent(fwnode); 683 684 return fwnode; 685 } 686 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent); 687 688 /** 689 * fwnode_is_ancestor_of - Test if @test_ancestor is ancestor of @test_child 690 * @test_ancestor: Firmware which is tested for being an ancestor 691 * @test_child: Firmware which is tested for being the child 692 * 693 * A node is considered an ancestor of itself too. 694 * 695 * Returns true if @test_ancestor is an ancestor of @test_child. 696 * Otherwise, returns false. 697 */ 698 bool fwnode_is_ancestor_of(struct fwnode_handle *test_ancestor, 699 struct fwnode_handle *test_child) 700 { 701 if (!test_ancestor) 702 return false; 703 704 fwnode_handle_get(test_child); 705 while (test_child) { 706 if (test_child == test_ancestor) { 707 fwnode_handle_put(test_child); 708 return true; 709 } 710 test_child = fwnode_get_next_parent(test_child); 711 } 712 return false; 713 } 714 715 /** 716 * fwnode_get_next_child_node - Return the next child node handle for a node 717 * @fwnode: Firmware node to find the next child node for. 718 * @child: Handle to one of the node's child nodes or a %NULL handle. 719 */ 720 struct fwnode_handle * 721 fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 722 struct fwnode_handle *child) 723 { 724 return fwnode_call_ptr_op(fwnode, get_next_child_node, child); 725 } 726 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node); 727 728 /** 729 * fwnode_get_next_available_child_node - Return the next 730 * available child node handle for a node 731 * @fwnode: Firmware node to find the next child node for. 732 * @child: Handle to one of the node's child nodes or a %NULL handle. 733 */ 734 struct fwnode_handle * 735 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode, 736 struct fwnode_handle *child) 737 { 738 struct fwnode_handle *next_child = child; 739 740 if (!fwnode) 741 return NULL; 742 743 do { 744 next_child = fwnode_get_next_child_node(fwnode, next_child); 745 746 if (!next_child || fwnode_device_is_available(next_child)) 747 break; 748 } while (next_child); 749 750 return next_child; 751 } 752 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node); 753 754 /** 755 * device_get_next_child_node - Return the next child node handle for a device 756 * @dev: Device to find the next child node for. 757 * @child: Handle to one of the device's child nodes or a null handle. 758 */ 759 struct fwnode_handle *device_get_next_child_node(struct device *dev, 760 struct fwnode_handle *child) 761 { 762 struct acpi_device *adev = ACPI_COMPANION(dev); 763 struct fwnode_handle *fwnode = NULL, *next; 764 765 if (dev->of_node) 766 fwnode = &dev->of_node->fwnode; 767 else if (adev) 768 fwnode = acpi_fwnode_handle(adev); 769 770 /* Try to find a child in primary fwnode */ 771 next = fwnode_get_next_child_node(fwnode, child); 772 if (next) 773 return next; 774 775 /* When no more children in primary, continue with secondary */ 776 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary)) 777 next = fwnode_get_next_child_node(fwnode->secondary, child); 778 779 return next; 780 } 781 EXPORT_SYMBOL_GPL(device_get_next_child_node); 782 783 /** 784 * fwnode_get_named_child_node - Return first matching named child node handle 785 * @fwnode: Firmware node to find the named child node for. 786 * @childname: String to match child node name against. 787 */ 788 struct fwnode_handle * 789 fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 790 const char *childname) 791 { 792 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname); 793 } 794 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node); 795 796 /** 797 * device_get_named_child_node - Return first matching named child node handle 798 * @dev: Device to find the named child node for. 799 * @childname: String to match child node name against. 800 */ 801 struct fwnode_handle *device_get_named_child_node(struct device *dev, 802 const char *childname) 803 { 804 return fwnode_get_named_child_node(dev_fwnode(dev), childname); 805 } 806 EXPORT_SYMBOL_GPL(device_get_named_child_node); 807 808 /** 809 * fwnode_handle_get - Obtain a reference to a device node 810 * @fwnode: Pointer to the device node to obtain the reference to. 811 * 812 * Returns the fwnode handle. 813 */ 814 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode) 815 { 816 if (!fwnode_has_op(fwnode, get)) 817 return fwnode; 818 819 return fwnode_call_ptr_op(fwnode, get); 820 } 821 EXPORT_SYMBOL_GPL(fwnode_handle_get); 822 823 /** 824 * fwnode_handle_put - Drop reference to a device node 825 * @fwnode: Pointer to the device node to drop the reference to. 826 * 827 * This has to be used when terminating device_for_each_child_node() iteration 828 * with break or return to prevent stale device node references from being left 829 * behind. 830 */ 831 void fwnode_handle_put(struct fwnode_handle *fwnode) 832 { 833 fwnode_call_void_op(fwnode, put); 834 } 835 EXPORT_SYMBOL_GPL(fwnode_handle_put); 836 837 /** 838 * fwnode_device_is_available - check if a device is available for use 839 * @fwnode: Pointer to the fwnode of the device. 840 * 841 * For fwnode node types that don't implement the .device_is_available() 842 * operation, this function returns true. 843 */ 844 bool fwnode_device_is_available(const struct fwnode_handle *fwnode) 845 { 846 if (!fwnode_has_op(fwnode, device_is_available)) 847 return true; 848 849 return fwnode_call_bool_op(fwnode, device_is_available); 850 } 851 EXPORT_SYMBOL_GPL(fwnode_device_is_available); 852 853 /** 854 * device_get_child_node_count - return the number of child nodes for device 855 * @dev: Device to cound the child nodes for 856 */ 857 unsigned int device_get_child_node_count(struct device *dev) 858 { 859 struct fwnode_handle *child; 860 unsigned int count = 0; 861 862 device_for_each_child_node(dev, child) 863 count++; 864 865 return count; 866 } 867 EXPORT_SYMBOL_GPL(device_get_child_node_count); 868 869 bool device_dma_supported(struct device *dev) 870 { 871 /* For DT, this is always supported. 872 * For ACPI, this depends on CCA, which 873 * is determined by the acpi_dma_supported(). 874 */ 875 if (IS_ENABLED(CONFIG_OF) && dev->of_node) 876 return true; 877 878 return acpi_dma_supported(ACPI_COMPANION(dev)); 879 } 880 EXPORT_SYMBOL_GPL(device_dma_supported); 881 882 enum dev_dma_attr device_get_dma_attr(struct device *dev) 883 { 884 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED; 885 886 if (IS_ENABLED(CONFIG_OF) && dev->of_node) { 887 if (of_dma_is_coherent(dev->of_node)) 888 attr = DEV_DMA_COHERENT; 889 else 890 attr = DEV_DMA_NON_COHERENT; 891 } else 892 attr = acpi_get_dma_attr(ACPI_COMPANION(dev)); 893 894 return attr; 895 } 896 EXPORT_SYMBOL_GPL(device_get_dma_attr); 897 898 /** 899 * fwnode_get_phy_mode - Get phy mode for given firmware node 900 * @fwnode: Pointer to the given node 901 * 902 * The function gets phy interface string from property 'phy-mode' or 903 * 'phy-connection-type', and return its index in phy_modes table, or errno in 904 * error case. 905 */ 906 int fwnode_get_phy_mode(struct fwnode_handle *fwnode) 907 { 908 const char *pm; 909 int err, i; 910 911 err = fwnode_property_read_string(fwnode, "phy-mode", &pm); 912 if (err < 0) 913 err = fwnode_property_read_string(fwnode, 914 "phy-connection-type", &pm); 915 if (err < 0) 916 return err; 917 918 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) 919 if (!strcasecmp(pm, phy_modes(i))) 920 return i; 921 922 return -ENODEV; 923 } 924 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode); 925 926 /** 927 * device_get_phy_mode - Get phy mode for given device 928 * @dev: Pointer to the given device 929 * 930 * The function gets phy interface string from property 'phy-mode' or 931 * 'phy-connection-type', and return its index in phy_modes table, or errno in 932 * error case. 933 */ 934 int device_get_phy_mode(struct device *dev) 935 { 936 return fwnode_get_phy_mode(dev_fwnode(dev)); 937 } 938 EXPORT_SYMBOL_GPL(device_get_phy_mode); 939 940 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode, 941 const char *name, char *addr, 942 int alen) 943 { 944 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen); 945 946 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr)) 947 return addr; 948 return NULL; 949 } 950 951 /** 952 * fwnode_get_mac_address - Get the MAC from the firmware node 953 * @fwnode: Pointer to the firmware node 954 * @addr: Address of buffer to store the MAC in 955 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN 956 * 957 * Search the firmware node for the best MAC address to use. 'mac-address' is 958 * checked first, because that is supposed to contain to "most recent" MAC 959 * address. If that isn't set, then 'local-mac-address' is checked next, 960 * because that is the default address. If that isn't set, then the obsolete 961 * 'address' is checked, just in case we're using an old device tree. 962 * 963 * Note that the 'address' property is supposed to contain a virtual address of 964 * the register set, but some DTS files have redefined that property to be the 965 * MAC address. 966 * 967 * All-zero MAC addresses are rejected, because those could be properties that 968 * exist in the firmware tables, but were not updated by the firmware. For 969 * example, the DTS could define 'mac-address' and 'local-mac-address', with 970 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'. 971 * In this case, the real MAC is in 'local-mac-address', and 'mac-address' 972 * exists but is all zeros. 973 */ 974 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen) 975 { 976 char *res; 977 978 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen); 979 if (res) 980 return res; 981 982 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen); 983 if (res) 984 return res; 985 986 return fwnode_get_mac_addr(fwnode, "address", addr, alen); 987 } 988 EXPORT_SYMBOL(fwnode_get_mac_address); 989 990 /** 991 * device_get_mac_address - Get the MAC for a given device 992 * @dev: Pointer to the device 993 * @addr: Address of buffer to store the MAC in 994 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN 995 */ 996 void *device_get_mac_address(struct device *dev, char *addr, int alen) 997 { 998 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen); 999 } 1000 EXPORT_SYMBOL(device_get_mac_address); 1001 1002 /** 1003 * fwnode_irq_get - Get IRQ directly from a fwnode 1004 * @fwnode: Pointer to the firmware node 1005 * @index: Zero-based index of the IRQ 1006 * 1007 * Returns Linux IRQ number on success. Other values are determined 1008 * accordingly to acpi_/of_ irq_get() operation. 1009 */ 1010 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index) 1011 { 1012 struct device_node *of_node = to_of_node(fwnode); 1013 struct resource res; 1014 int ret; 1015 1016 if (IS_ENABLED(CONFIG_OF) && of_node) 1017 return of_irq_get(of_node, index); 1018 1019 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res); 1020 if (ret) 1021 return ret; 1022 1023 return res.start; 1024 } 1025 EXPORT_SYMBOL(fwnode_irq_get); 1026 1027 /** 1028 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node 1029 * @fwnode: Pointer to the parent firmware node 1030 * @prev: Previous endpoint node or %NULL to get the first 1031 * 1032 * Returns an endpoint firmware node pointer or %NULL if no more endpoints 1033 * are available. 1034 */ 1035 struct fwnode_handle * 1036 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 1037 struct fwnode_handle *prev) 1038 { 1039 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev); 1040 } 1041 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint); 1042 1043 /** 1044 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint 1045 * @endpoint: Endpoint firmware node of the port 1046 * 1047 * Return: the firmware node of the device the @endpoint belongs to. 1048 */ 1049 struct fwnode_handle * 1050 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint) 1051 { 1052 struct fwnode_handle *port, *parent; 1053 1054 port = fwnode_get_parent(endpoint); 1055 parent = fwnode_call_ptr_op(port, graph_get_port_parent); 1056 1057 fwnode_handle_put(port); 1058 1059 return parent; 1060 } 1061 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent); 1062 1063 /** 1064 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device 1065 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1066 * 1067 * Extracts firmware node of a remote device the @fwnode points to. 1068 */ 1069 struct fwnode_handle * 1070 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode) 1071 { 1072 struct fwnode_handle *endpoint, *parent; 1073 1074 endpoint = fwnode_graph_get_remote_endpoint(fwnode); 1075 parent = fwnode_graph_get_port_parent(endpoint); 1076 1077 fwnode_handle_put(endpoint); 1078 1079 return parent; 1080 } 1081 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent); 1082 1083 /** 1084 * fwnode_graph_get_remote_port - Return fwnode of a remote port 1085 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1086 * 1087 * Extracts firmware node of a remote port the @fwnode points to. 1088 */ 1089 struct fwnode_handle * 1090 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode) 1091 { 1092 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode)); 1093 } 1094 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port); 1095 1096 /** 1097 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint 1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1099 * 1100 * Extracts firmware node of a remote endpoint the @fwnode points to. 1101 */ 1102 struct fwnode_handle * 1103 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1104 { 1105 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint); 1106 } 1107 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint); 1108 1109 /** 1110 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint 1111 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint 1112 * @port_id: identifier of the parent port node 1113 * @endpoint_id: identifier of the endpoint node 1114 * 1115 * Return: Remote fwnode handle associated with remote endpoint node linked 1116 * to @node. Use fwnode_node_put() on it when done. 1117 */ 1118 struct fwnode_handle * 1119 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id, 1120 u32 endpoint_id) 1121 { 1122 struct fwnode_handle *endpoint = NULL; 1123 1124 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) { 1125 struct fwnode_endpoint fwnode_ep; 1126 struct fwnode_handle *remote; 1127 int ret; 1128 1129 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep); 1130 if (ret < 0) 1131 continue; 1132 1133 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id) 1134 continue; 1135 1136 remote = fwnode_graph_get_remote_port_parent(endpoint); 1137 if (!remote) 1138 return NULL; 1139 1140 return fwnode_device_is_available(remote) ? remote : NULL; 1141 } 1142 1143 return NULL; 1144 } 1145 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node); 1146 1147 /** 1148 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers 1149 * @fwnode: parent fwnode_handle containing the graph 1150 * @port: identifier of the port node 1151 * @endpoint: identifier of the endpoint node under the port node 1152 * @flags: fwnode lookup flags 1153 * 1154 * Return the fwnode handle of the local endpoint corresponding the port and 1155 * endpoint IDs or NULL if not found. 1156 * 1157 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint 1158 * has not been found, look for the closest endpoint ID greater than the 1159 * specified one and return the endpoint that corresponds to it, if present. 1160 * 1161 * Do not return endpoints that belong to disabled devices, unless 1162 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags. 1163 * 1164 * The returned endpoint needs to be released by calling fwnode_handle_put() on 1165 * it when it is not needed any more. 1166 */ 1167 struct fwnode_handle * 1168 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode, 1169 u32 port, u32 endpoint, unsigned long flags) 1170 { 1171 struct fwnode_handle *ep = NULL, *best_ep = NULL; 1172 unsigned int best_ep_id = 0; 1173 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT; 1174 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED); 1175 1176 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) { 1177 struct fwnode_endpoint fwnode_ep = { 0 }; 1178 int ret; 1179 1180 if (enabled_only) { 1181 struct fwnode_handle *dev_node; 1182 bool available; 1183 1184 dev_node = fwnode_graph_get_remote_port_parent(ep); 1185 available = fwnode_device_is_available(dev_node); 1186 fwnode_handle_put(dev_node); 1187 if (!available) 1188 continue; 1189 } 1190 1191 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep); 1192 if (ret < 0) 1193 continue; 1194 1195 if (fwnode_ep.port != port) 1196 continue; 1197 1198 if (fwnode_ep.id == endpoint) 1199 return ep; 1200 1201 if (!endpoint_next) 1202 continue; 1203 1204 /* 1205 * If the endpoint that has just been found is not the first 1206 * matching one and the ID of the one found previously is closer 1207 * to the requested endpoint ID, skip it. 1208 */ 1209 if (fwnode_ep.id < endpoint || 1210 (best_ep && best_ep_id < fwnode_ep.id)) 1211 continue; 1212 1213 fwnode_handle_put(best_ep); 1214 best_ep = fwnode_handle_get(ep); 1215 best_ep_id = fwnode_ep.id; 1216 } 1217 1218 if (best_ep) 1219 return best_ep; 1220 1221 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary)) 1222 return fwnode_graph_get_endpoint_by_id(fwnode->secondary, port, 1223 endpoint, flags); 1224 1225 return NULL; 1226 } 1227 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id); 1228 1229 /** 1230 * fwnode_graph_parse_endpoint - parse common endpoint node properties 1231 * @fwnode: pointer to endpoint fwnode_handle 1232 * @endpoint: pointer to the fwnode endpoint data structure 1233 * 1234 * Parse @fwnode representing a graph endpoint node and store the 1235 * information in @endpoint. The caller must hold a reference to 1236 * @fwnode. 1237 */ 1238 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1239 struct fwnode_endpoint *endpoint) 1240 { 1241 memset(endpoint, 0, sizeof(*endpoint)); 1242 1243 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint); 1244 } 1245 EXPORT_SYMBOL(fwnode_graph_parse_endpoint); 1246 1247 const void *device_get_match_data(struct device *dev) 1248 { 1249 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev); 1250 } 1251 EXPORT_SYMBOL_GPL(device_get_match_data); 1252 1253 static void * 1254 fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id, 1255 void *data, devcon_match_fn_t match) 1256 { 1257 struct fwnode_handle *node; 1258 struct fwnode_handle *ep; 1259 void *ret; 1260 1261 fwnode_graph_for_each_endpoint(fwnode, ep) { 1262 node = fwnode_graph_get_remote_port_parent(ep); 1263 if (!fwnode_device_is_available(node)) 1264 continue; 1265 1266 ret = match(node, con_id, data); 1267 fwnode_handle_put(node); 1268 if (ret) { 1269 fwnode_handle_put(ep); 1270 return ret; 1271 } 1272 } 1273 return NULL; 1274 } 1275 1276 static void * 1277 fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id, 1278 void *data, devcon_match_fn_t match) 1279 { 1280 struct fwnode_handle *node; 1281 void *ret; 1282 int i; 1283 1284 for (i = 0; ; i++) { 1285 node = fwnode_find_reference(fwnode, con_id, i); 1286 if (IS_ERR(node)) 1287 break; 1288 1289 ret = match(node, NULL, data); 1290 fwnode_handle_put(node); 1291 if (ret) 1292 return ret; 1293 } 1294 1295 return NULL; 1296 } 1297 1298 /** 1299 * fwnode_connection_find_match - Find connection from a device node 1300 * @fwnode: Device node with the connection 1301 * @con_id: Identifier for the connection 1302 * @data: Data for the match function 1303 * @match: Function to check and convert the connection description 1304 * 1305 * Find a connection with unique identifier @con_id between @fwnode and another 1306 * device node. @match will be used to convert the connection description to 1307 * data the caller is expecting to be returned. 1308 */ 1309 void *fwnode_connection_find_match(struct fwnode_handle *fwnode, 1310 const char *con_id, void *data, 1311 devcon_match_fn_t match) 1312 { 1313 void *ret; 1314 1315 if (!fwnode || !match) 1316 return NULL; 1317 1318 ret = fwnode_graph_devcon_match(fwnode, con_id, data, match); 1319 if (ret) 1320 return ret; 1321 1322 return fwnode_devcon_match(fwnode, con_id, data, match); 1323 } 1324 EXPORT_SYMBOL_GPL(fwnode_connection_find_match); 1325