xref: /openbmc/linux/drivers/base/property.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20 
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 		&dev->of_node->fwnode : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27 
28 /**
29  * device_property_present - check if a property of a device is present
30  * @dev: Device whose property is being checked
31  * @propname: Name of the property
32  *
33  * Check if property @propname is present in the device firmware description.
34  */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 	return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40 
41 /**
42  * fwnode_property_present - check if a property of a firmware node is present
43  * @fwnode: Firmware node whose property to check
44  * @propname: Name of the property
45  */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 			     const char *propname)
48 {
49 	bool ret;
50 
51 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 	    !IS_ERR_OR_NULL(fwnode->secondary))
54 		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 					 propname);
56 	return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59 
60 /**
61  * device_property_read_u8_array - return a u8 array property of a device
62  * @dev: Device to get the property of
63  * @propname: Name of the property
64  * @val: The values are stored here or %NULL to return the number of values
65  * @nval: Size of the @val array
66  *
67  * Function reads an array of u8 properties with @propname from the device
68  * firmware description and stores them to @val if found.
69  *
70  * Return: number of values if @val was %NULL,
71  *         %0 if the property was found (success),
72  *	   %-EINVAL if given arguments are not valid,
73  *	   %-ENODATA if the property does not have a value,
74  *	   %-EPROTO if the property is not an array of numbers,
75  *	   %-EOVERFLOW if the size of the property is not as expected.
76  *	   %-ENXIO if no suitable firmware interface is present.
77  */
78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 				  u8 *val, size_t nval)
80 {
81 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84 
85 /**
86  * device_property_read_u16_array - return a u16 array property of a device
87  * @dev: Device to get the property of
88  * @propname: Name of the property
89  * @val: The values are stored here or %NULL to return the number of values
90  * @nval: Size of the @val array
91  *
92  * Function reads an array of u16 properties with @propname from the device
93  * firmware description and stores them to @val if found.
94  *
95  * Return: number of values if @val was %NULL,
96  *         %0 if the property was found (success),
97  *	   %-EINVAL if given arguments are not valid,
98  *	   %-ENODATA if the property does not have a value,
99  *	   %-EPROTO if the property is not an array of numbers,
100  *	   %-EOVERFLOW if the size of the property is not as expected.
101  *	   %-ENXIO if no suitable firmware interface is present.
102  */
103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 				   u16 *val, size_t nval)
105 {
106 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109 
110 /**
111  * device_property_read_u32_array - return a u32 array property of a device
112  * @dev: Device to get the property of
113  * @propname: Name of the property
114  * @val: The values are stored here or %NULL to return the number of values
115  * @nval: Size of the @val array
116  *
117  * Function reads an array of u32 properties with @propname from the device
118  * firmware description and stores them to @val if found.
119  *
120  * Return: number of values if @val was %NULL,
121  *         %0 if the property was found (success),
122  *	   %-EINVAL if given arguments are not valid,
123  *	   %-ENODATA if the property does not have a value,
124  *	   %-EPROTO if the property is not an array of numbers,
125  *	   %-EOVERFLOW if the size of the property is not as expected.
126  *	   %-ENXIO if no suitable firmware interface is present.
127  */
128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 				   u32 *val, size_t nval)
130 {
131 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134 
135 /**
136  * device_property_read_u64_array - return a u64 array property of a device
137  * @dev: Device to get the property of
138  * @propname: Name of the property
139  * @val: The values are stored here or %NULL to return the number of values
140  * @nval: Size of the @val array
141  *
142  * Function reads an array of u64 properties with @propname from the device
143  * firmware description and stores them to @val if found.
144  *
145  * Return: number of values if @val was %NULL,
146  *         %0 if the property was found (success),
147  *	   %-EINVAL if given arguments are not valid,
148  *	   %-ENODATA if the property does not have a value,
149  *	   %-EPROTO if the property is not an array of numbers,
150  *	   %-EOVERFLOW if the size of the property is not as expected.
151  *	   %-ENXIO if no suitable firmware interface is present.
152  */
153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 				   u64 *val, size_t nval)
155 {
156 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159 
160 /**
161  * device_property_read_string_array - return a string array property of device
162  * @dev: Device to get the property of
163  * @propname: Name of the property
164  * @val: The values are stored here or %NULL to return the number of values
165  * @nval: Size of the @val array
166  *
167  * Function reads an array of string properties with @propname from the device
168  * firmware description and stores them to @val if found.
169  *
170  * Return: number of values read on success if @val is non-NULL,
171  *	   number of values available on success if @val is NULL,
172  *	   %-EINVAL if given arguments are not valid,
173  *	   %-ENODATA if the property does not have a value,
174  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
175  *	   %-EOVERFLOW if the size of the property is not as expected.
176  *	   %-ENXIO if no suitable firmware interface is present.
177  */
178 int device_property_read_string_array(struct device *dev, const char *propname,
179 				      const char **val, size_t nval)
180 {
181 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184 
185 /**
186  * device_property_read_string - return a string property of a device
187  * @dev: Device to get the property of
188  * @propname: Name of the property
189  * @val: The value is stored here
190  *
191  * Function reads property @propname from the device firmware description and
192  * stores the value into @val if found. The value is checked to be a string.
193  *
194  * Return: %0 if the property was found (success),
195  *	   %-EINVAL if given arguments are not valid,
196  *	   %-ENODATA if the property does not have a value,
197  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
198  *	   %-ENXIO if no suitable firmware interface is present.
199  */
200 int device_property_read_string(struct device *dev, const char *propname,
201 				const char **val)
202 {
203 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206 
207 /**
208  * device_property_match_string - find a string in an array and return index
209  * @dev: Device to get the property of
210  * @propname: Name of the property holding the array
211  * @string: String to look for
212  *
213  * Find a given string in a string array and if it is found return the
214  * index back.
215  *
216  * Return: %0 if the property was found (success),
217  *	   %-EINVAL if given arguments are not valid,
218  *	   %-ENODATA if the property does not have a value,
219  *	   %-EPROTO if the property is not an array of strings,
220  *	   %-ENXIO if no suitable firmware interface is present.
221  */
222 int device_property_match_string(struct device *dev, const char *propname,
223 				 const char *string)
224 {
225 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228 
229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 					  const char *propname,
231 					  unsigned int elem_size, void *val,
232 					  size_t nval)
233 {
234 	int ret;
235 
236 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 				 elem_size, val, nval);
238 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 	    !IS_ERR_OR_NULL(fwnode->secondary))
240 		ret = fwnode_call_int_op(
241 			fwnode->secondary, property_read_int_array, propname,
242 			elem_size, val, nval);
243 
244 	return ret;
245 }
246 
247 /**
248  * fwnode_property_read_u8_array - return a u8 array property of firmware node
249  * @fwnode: Firmware node to get the property of
250  * @propname: Name of the property
251  * @val: The values are stored here or %NULL to return the number of values
252  * @nval: Size of the @val array
253  *
254  * Read an array of u8 properties with @propname from @fwnode and stores them to
255  * @val if found.
256  *
257  * Return: number of values if @val was %NULL,
258  *         %0 if the property was found (success),
259  *	   %-EINVAL if given arguments are not valid,
260  *	   %-ENODATA if the property does not have a value,
261  *	   %-EPROTO if the property is not an array of numbers,
262  *	   %-EOVERFLOW if the size of the property is not as expected,
263  *	   %-ENXIO if no suitable firmware interface is present.
264  */
265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 				  const char *propname, u8 *val, size_t nval)
267 {
268 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 					      val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272 
273 /**
274  * fwnode_property_read_u16_array - return a u16 array property of firmware node
275  * @fwnode: Firmware node to get the property of
276  * @propname: Name of the property
277  * @val: The values are stored here or %NULL to return the number of values
278  * @nval: Size of the @val array
279  *
280  * Read an array of u16 properties with @propname from @fwnode and store them to
281  * @val if found.
282  *
283  * Return: number of values if @val was %NULL,
284  *         %0 if the property was found (success),
285  *	   %-EINVAL if given arguments are not valid,
286  *	   %-ENODATA if the property does not have a value,
287  *	   %-EPROTO if the property is not an array of numbers,
288  *	   %-EOVERFLOW if the size of the property is not as expected,
289  *	   %-ENXIO if no suitable firmware interface is present.
290  */
291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 				   const char *propname, u16 *val, size_t nval)
293 {
294 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 					      val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298 
299 /**
300  * fwnode_property_read_u32_array - return a u32 array property of firmware node
301  * @fwnode: Firmware node to get the property of
302  * @propname: Name of the property
303  * @val: The values are stored here or %NULL to return the number of values
304  * @nval: Size of the @val array
305  *
306  * Read an array of u32 properties with @propname from @fwnode store them to
307  * @val if found.
308  *
309  * Return: number of values if @val was %NULL,
310  *         %0 if the property was found (success),
311  *	   %-EINVAL if given arguments are not valid,
312  *	   %-ENODATA if the property does not have a value,
313  *	   %-EPROTO if the property is not an array of numbers,
314  *	   %-EOVERFLOW if the size of the property is not as expected,
315  *	   %-ENXIO if no suitable firmware interface is present.
316  */
317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 				   const char *propname, u32 *val, size_t nval)
319 {
320 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 					      val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324 
325 /**
326  * fwnode_property_read_u64_array - return a u64 array property firmware node
327  * @fwnode: Firmware node to get the property of
328  * @propname: Name of the property
329  * @val: The values are stored here or %NULL to return the number of values
330  * @nval: Size of the @val array
331  *
332  * Read an array of u64 properties with @propname from @fwnode and store them to
333  * @val if found.
334  *
335  * Return: number of values if @val was %NULL,
336  *         %0 if the property was found (success),
337  *	   %-EINVAL if given arguments are not valid,
338  *	   %-ENODATA if the property does not have a value,
339  *	   %-EPROTO if the property is not an array of numbers,
340  *	   %-EOVERFLOW if the size of the property is not as expected,
341  *	   %-ENXIO if no suitable firmware interface is present.
342  */
343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 				   const char *propname, u64 *val, size_t nval)
345 {
346 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 					      val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350 
351 /**
352  * fwnode_property_read_string_array - return string array property of a node
353  * @fwnode: Firmware node to get the property of
354  * @propname: Name of the property
355  * @val: The values are stored here or %NULL to return the number of values
356  * @nval: Size of the @val array
357  *
358  * Read an string list property @propname from the given firmware node and store
359  * them to @val if found.
360  *
361  * Return: number of values read on success if @val is non-NULL,
362  *	   number of values available on success if @val is NULL,
363  *	   %-EINVAL if given arguments are not valid,
364  *	   %-ENODATA if the property does not have a value,
365  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
366  *	   %-EOVERFLOW if the size of the property is not as expected,
367  *	   %-ENXIO if no suitable firmware interface is present.
368  */
369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 				      const char *propname, const char **val,
371 				      size_t nval)
372 {
373 	int ret;
374 
375 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 				 val, nval);
377 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 	    !IS_ERR_OR_NULL(fwnode->secondary))
379 		ret = fwnode_call_int_op(fwnode->secondary,
380 					 property_read_string_array, propname,
381 					 val, nval);
382 	return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385 
386 /**
387  * fwnode_property_read_string - return a string property of a firmware node
388  * @fwnode: Firmware node to get the property of
389  * @propname: Name of the property
390  * @val: The value is stored here
391  *
392  * Read property @propname from the given firmware node and store the value into
393  * @val if found.  The value is checked to be a string.
394  *
395  * Return: %0 if the property was found (success),
396  *	   %-EINVAL if given arguments are not valid,
397  *	   %-ENODATA if the property does not have a value,
398  *	   %-EPROTO or %-EILSEQ if the property is not a string,
399  *	   %-ENXIO if no suitable firmware interface is present.
400  */
401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 				const char *propname, const char **val)
403 {
404 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405 
406 	return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409 
410 /**
411  * fwnode_property_match_string - find a string in an array and return index
412  * @fwnode: Firmware node to get the property of
413  * @propname: Name of the property holding the array
414  * @string: String to look for
415  *
416  * Find a given string in a string array and if it is found return the
417  * index back.
418  *
419  * Return: %0 if the property was found (success),
420  *	   %-EINVAL if given arguments are not valid,
421  *	   %-ENODATA if the property does not have a value,
422  *	   %-EPROTO if the property is not an array of strings,
423  *	   %-ENXIO if no suitable firmware interface is present.
424  */
425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 	const char *propname, const char *string)
427 {
428 	const char **values;
429 	int nval, ret;
430 
431 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 	if (nval < 0)
433 		return nval;
434 
435 	if (nval == 0)
436 		return -ENODATA;
437 
438 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 	if (!values)
440 		return -ENOMEM;
441 
442 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 	if (ret < 0)
444 		goto out;
445 
446 	ret = match_string(values, nval, string);
447 	if (ret < 0)
448 		ret = -ENODATA;
449 out:
450 	kfree(values);
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454 
455 /**
456  * fwnode_property_get_reference_args() - Find a reference with arguments
457  * @fwnode:	Firmware node where to look for the reference
458  * @prop:	The name of the property
459  * @nargs_prop:	The name of the property telling the number of
460  *		arguments in the referred node. NULL if @nargs is known,
461  *		otherwise @nargs is ignored. Only relevant on OF.
462  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
463  * @index:	Index of the reference, from zero onwards.
464  * @args:	Result structure with reference and integer arguments.
465  *
466  * Obtain a reference based on a named property in an fwnode, with
467  * integer arguments.
468  *
469  * Caller is responsible to call fwnode_handle_put() on the returned
470  * args->fwnode pointer.
471  *
472  * Returns: %0 on success
473  *	    %-ENOENT when the index is out of bounds, the index has an empty
474  *		     reference or the property was not found
475  *	    %-EINVAL on parse error
476  */
477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 				       const char *prop, const char *nargs_prop,
479 				       unsigned int nargs, unsigned int index,
480 				       struct fwnode_reference_args *args)
481 {
482 	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 				  nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486 
487 /**
488  * fwnode_find_reference - Find named reference to a fwnode_handle
489  * @fwnode: Firmware node where to look for the reference
490  * @name: The name of the reference
491  * @index: Index of the reference
492  *
493  * @index can be used when the named reference holds a table of references.
494  *
495  * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496  * call fwnode_handle_put() on the returned fwnode pointer.
497  */
498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 					    const char *name,
500 					    unsigned int index)
501 {
502 	struct fwnode_reference_args args;
503 	int ret;
504 
505 	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 						 &args);
507 	return ret ? ERR_PTR(ret) : args.fwnode;
508 }
509 EXPORT_SYMBOL_GPL(fwnode_find_reference);
510 
511 /**
512  * device_remove_properties - Remove properties from a device object.
513  * @dev: Device whose properties to remove.
514  *
515  * The function removes properties previously associated to the device
516  * firmware node with device_add_properties(). Memory allocated to the
517  * properties will also be released.
518  */
519 void device_remove_properties(struct device *dev)
520 {
521 	struct fwnode_handle *fwnode = dev_fwnode(dev);
522 
523 	if (!fwnode)
524 		return;
525 
526 	if (is_software_node(fwnode->secondary)) {
527 		fwnode_remove_software_node(fwnode->secondary);
528 		set_secondary_fwnode(dev, NULL);
529 	}
530 }
531 EXPORT_SYMBOL_GPL(device_remove_properties);
532 
533 /**
534  * device_add_properties - Add a collection of properties to a device object.
535  * @dev: Device to add properties to.
536  * @properties: Collection of properties to add.
537  *
538  * Associate a collection of device properties represented by @properties with
539  * @dev. The function takes a copy of @properties.
540  *
541  * WARNING: The callers should not use this function if it is known that there
542  * is no real firmware node associated with @dev! In that case the callers
543  * should create a software node and assign it to @dev directly.
544  */
545 int device_add_properties(struct device *dev,
546 			  const struct property_entry *properties)
547 {
548 	struct fwnode_handle *fwnode;
549 
550 	fwnode = fwnode_create_software_node(properties, NULL);
551 	if (IS_ERR(fwnode))
552 		return PTR_ERR(fwnode);
553 
554 	set_secondary_fwnode(dev, fwnode);
555 	return 0;
556 }
557 EXPORT_SYMBOL_GPL(device_add_properties);
558 
559 /**
560  * fwnode_get_name - Return the name of a node
561  * @fwnode: The firmware node
562  *
563  * Returns a pointer to the node name.
564  */
565 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566 {
567 	return fwnode_call_ptr_op(fwnode, get_name);
568 }
569 EXPORT_SYMBOL_GPL(fwnode_get_name);
570 
571 /**
572  * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573  * @fwnode: The firmware node
574  *
575  * Returns the prefix of a node, intended to be printed right before the node.
576  * The prefix works also as a separator between the nodes.
577  */
578 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579 {
580 	return fwnode_call_ptr_op(fwnode, get_name_prefix);
581 }
582 
583 /**
584  * fwnode_get_parent - Return parent firwmare node
585  * @fwnode: Firmware whose parent is retrieved
586  *
587  * Return parent firmware node of the given node if possible or %NULL if no
588  * parent was available.
589  */
590 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591 {
592 	return fwnode_call_ptr_op(fwnode, get_parent);
593 }
594 EXPORT_SYMBOL_GPL(fwnode_get_parent);
595 
596 /**
597  * fwnode_get_next_parent - Iterate to the node's parent
598  * @fwnode: Firmware whose parent is retrieved
599  *
600  * This is like fwnode_get_parent() except that it drops the refcount
601  * on the passed node, making it suitable for iterating through a
602  * node's parents.
603  *
604  * Returns a node pointer with refcount incremented, use
605  * fwnode_handle_node() on it when done.
606  */
607 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608 {
609 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610 
611 	fwnode_handle_put(fwnode);
612 
613 	return parent;
614 }
615 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616 
617 /**
618  * fwnode_count_parents - Return the number of parents a node has
619  * @fwnode: The node the parents of which are to be counted
620  *
621  * Returns the number of parents a node has.
622  */
623 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
624 {
625 	struct fwnode_handle *__fwnode;
626 	unsigned int count;
627 
628 	__fwnode = fwnode_get_parent(fwnode);
629 
630 	for (count = 0; __fwnode; count++)
631 		__fwnode = fwnode_get_next_parent(__fwnode);
632 
633 	return count;
634 }
635 EXPORT_SYMBOL_GPL(fwnode_count_parents);
636 
637 /**
638  * fwnode_get_nth_parent - Return an nth parent of a node
639  * @fwnode: The node the parent of which is requested
640  * @depth: Distance of the parent from the node
641  *
642  * Returns the nth parent of a node. If there is no parent at the requested
643  * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
644  * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
645  *
646  * The caller is responsible for calling fwnode_handle_put() for the returned
647  * node.
648  */
649 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
650 					    unsigned int depth)
651 {
652 	unsigned int i;
653 
654 	fwnode_handle_get(fwnode);
655 
656 	for (i = 0; i < depth && fwnode; i++)
657 		fwnode = fwnode_get_next_parent(fwnode);
658 
659 	return fwnode;
660 }
661 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
662 
663 /**
664  * fwnode_get_next_child_node - Return the next child node handle for a node
665  * @fwnode: Firmware node to find the next child node for.
666  * @child: Handle to one of the node's child nodes or a %NULL handle.
667  */
668 struct fwnode_handle *
669 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
670 			   struct fwnode_handle *child)
671 {
672 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
673 }
674 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
675 
676 /**
677  * fwnode_get_next_available_child_node - Return the next
678  * available child node handle for a node
679  * @fwnode: Firmware node to find the next child node for.
680  * @child: Handle to one of the node's child nodes or a %NULL handle.
681  */
682 struct fwnode_handle *
683 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
684 				     struct fwnode_handle *child)
685 {
686 	struct fwnode_handle *next_child = child;
687 
688 	if (!fwnode)
689 		return NULL;
690 
691 	do {
692 		next_child = fwnode_get_next_child_node(fwnode, next_child);
693 
694 		if (!next_child || fwnode_device_is_available(next_child))
695 			break;
696 	} while (next_child);
697 
698 	return next_child;
699 }
700 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
701 
702 /**
703  * device_get_next_child_node - Return the next child node handle for a device
704  * @dev: Device to find the next child node for.
705  * @child: Handle to one of the device's child nodes or a null handle.
706  */
707 struct fwnode_handle *device_get_next_child_node(struct device *dev,
708 						 struct fwnode_handle *child)
709 {
710 	struct acpi_device *adev = ACPI_COMPANION(dev);
711 	struct fwnode_handle *fwnode = NULL, *next;
712 
713 	if (dev->of_node)
714 		fwnode = &dev->of_node->fwnode;
715 	else if (adev)
716 		fwnode = acpi_fwnode_handle(adev);
717 
718 	/* Try to find a child in primary fwnode */
719 	next = fwnode_get_next_child_node(fwnode, child);
720 	if (next)
721 		return next;
722 
723 	/* When no more children in primary, continue with secondary */
724 	if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
725 		next = fwnode_get_next_child_node(fwnode->secondary, child);
726 
727 	return next;
728 }
729 EXPORT_SYMBOL_GPL(device_get_next_child_node);
730 
731 /**
732  * fwnode_get_named_child_node - Return first matching named child node handle
733  * @fwnode: Firmware node to find the named child node for.
734  * @childname: String to match child node name against.
735  */
736 struct fwnode_handle *
737 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
738 			    const char *childname)
739 {
740 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
741 }
742 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
743 
744 /**
745  * device_get_named_child_node - Return first matching named child node handle
746  * @dev: Device to find the named child node for.
747  * @childname: String to match child node name against.
748  */
749 struct fwnode_handle *device_get_named_child_node(struct device *dev,
750 						  const char *childname)
751 {
752 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
753 }
754 EXPORT_SYMBOL_GPL(device_get_named_child_node);
755 
756 /**
757  * fwnode_handle_get - Obtain a reference to a device node
758  * @fwnode: Pointer to the device node to obtain the reference to.
759  *
760  * Returns the fwnode handle.
761  */
762 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
763 {
764 	if (!fwnode_has_op(fwnode, get))
765 		return fwnode;
766 
767 	return fwnode_call_ptr_op(fwnode, get);
768 }
769 EXPORT_SYMBOL_GPL(fwnode_handle_get);
770 
771 /**
772  * fwnode_handle_put - Drop reference to a device node
773  * @fwnode: Pointer to the device node to drop the reference to.
774  *
775  * This has to be used when terminating device_for_each_child_node() iteration
776  * with break or return to prevent stale device node references from being left
777  * behind.
778  */
779 void fwnode_handle_put(struct fwnode_handle *fwnode)
780 {
781 	fwnode_call_void_op(fwnode, put);
782 }
783 EXPORT_SYMBOL_GPL(fwnode_handle_put);
784 
785 /**
786  * fwnode_device_is_available - check if a device is available for use
787  * @fwnode: Pointer to the fwnode of the device.
788  */
789 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
790 {
791 	return fwnode_call_bool_op(fwnode, device_is_available);
792 }
793 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
794 
795 /**
796  * device_get_child_node_count - return the number of child nodes for device
797  * @dev: Device to cound the child nodes for
798  */
799 unsigned int device_get_child_node_count(struct device *dev)
800 {
801 	struct fwnode_handle *child;
802 	unsigned int count = 0;
803 
804 	device_for_each_child_node(dev, child)
805 		count++;
806 
807 	return count;
808 }
809 EXPORT_SYMBOL_GPL(device_get_child_node_count);
810 
811 bool device_dma_supported(struct device *dev)
812 {
813 	/* For DT, this is always supported.
814 	 * For ACPI, this depends on CCA, which
815 	 * is determined by the acpi_dma_supported().
816 	 */
817 	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
818 		return true;
819 
820 	return acpi_dma_supported(ACPI_COMPANION(dev));
821 }
822 EXPORT_SYMBOL_GPL(device_dma_supported);
823 
824 enum dev_dma_attr device_get_dma_attr(struct device *dev)
825 {
826 	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
827 
828 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
829 		if (of_dma_is_coherent(dev->of_node))
830 			attr = DEV_DMA_COHERENT;
831 		else
832 			attr = DEV_DMA_NON_COHERENT;
833 	} else
834 		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
835 
836 	return attr;
837 }
838 EXPORT_SYMBOL_GPL(device_get_dma_attr);
839 
840 /**
841  * fwnode_get_phy_mode - Get phy mode for given firmware node
842  * @fwnode:	Pointer to the given node
843  *
844  * The function gets phy interface string from property 'phy-mode' or
845  * 'phy-connection-type', and return its index in phy_modes table, or errno in
846  * error case.
847  */
848 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
849 {
850 	const char *pm;
851 	int err, i;
852 
853 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
854 	if (err < 0)
855 		err = fwnode_property_read_string(fwnode,
856 						  "phy-connection-type", &pm);
857 	if (err < 0)
858 		return err;
859 
860 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
861 		if (!strcasecmp(pm, phy_modes(i)))
862 			return i;
863 
864 	return -ENODEV;
865 }
866 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
867 
868 /**
869  * device_get_phy_mode - Get phy mode for given device
870  * @dev:	Pointer to the given device
871  *
872  * The function gets phy interface string from property 'phy-mode' or
873  * 'phy-connection-type', and return its index in phy_modes table, or errno in
874  * error case.
875  */
876 int device_get_phy_mode(struct device *dev)
877 {
878 	return fwnode_get_phy_mode(dev_fwnode(dev));
879 }
880 EXPORT_SYMBOL_GPL(device_get_phy_mode);
881 
882 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
883 				 const char *name, char *addr,
884 				 int alen)
885 {
886 	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
887 
888 	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
889 		return addr;
890 	return NULL;
891 }
892 
893 /**
894  * fwnode_get_mac_address - Get the MAC from the firmware node
895  * @fwnode:	Pointer to the firmware node
896  * @addr:	Address of buffer to store the MAC in
897  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
898  *
899  * Search the firmware node for the best MAC address to use.  'mac-address' is
900  * checked first, because that is supposed to contain to "most recent" MAC
901  * address. If that isn't set, then 'local-mac-address' is checked next,
902  * because that is the default address.  If that isn't set, then the obsolete
903  * 'address' is checked, just in case we're using an old device tree.
904  *
905  * Note that the 'address' property is supposed to contain a virtual address of
906  * the register set, but some DTS files have redefined that property to be the
907  * MAC address.
908  *
909  * All-zero MAC addresses are rejected, because those could be properties that
910  * exist in the firmware tables, but were not updated by the firmware.  For
911  * example, the DTS could define 'mac-address' and 'local-mac-address', with
912  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
913  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
914  * exists but is all zeros.
915 */
916 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
917 {
918 	char *res;
919 
920 	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
921 	if (res)
922 		return res;
923 
924 	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
925 	if (res)
926 		return res;
927 
928 	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
929 }
930 EXPORT_SYMBOL(fwnode_get_mac_address);
931 
932 /**
933  * device_get_mac_address - Get the MAC for a given device
934  * @dev:	Pointer to the device
935  * @addr:	Address of buffer to store the MAC in
936  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
937  */
938 void *device_get_mac_address(struct device *dev, char *addr, int alen)
939 {
940 	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
941 }
942 EXPORT_SYMBOL(device_get_mac_address);
943 
944 /**
945  * fwnode_irq_get - Get IRQ directly from a fwnode
946  * @fwnode:	Pointer to the firmware node
947  * @index:	Zero-based index of the IRQ
948  *
949  * Returns Linux IRQ number on success. Other values are determined
950  * accordingly to acpi_/of_ irq_get() operation.
951  */
952 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
953 {
954 	struct device_node *of_node = to_of_node(fwnode);
955 	struct resource res;
956 	int ret;
957 
958 	if (IS_ENABLED(CONFIG_OF) && of_node)
959 		return of_irq_get(of_node, index);
960 
961 	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
962 	if (ret)
963 		return ret;
964 
965 	return res.start;
966 }
967 EXPORT_SYMBOL(fwnode_irq_get);
968 
969 /**
970  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
971  * @fwnode: Pointer to the parent firmware node
972  * @prev: Previous endpoint node or %NULL to get the first
973  *
974  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
975  * are available.
976  */
977 struct fwnode_handle *
978 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
979 			       struct fwnode_handle *prev)
980 {
981 	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
982 }
983 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
984 
985 /**
986  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
987  * @endpoint: Endpoint firmware node of the port
988  *
989  * Return: the firmware node of the device the @endpoint belongs to.
990  */
991 struct fwnode_handle *
992 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
993 {
994 	struct fwnode_handle *port, *parent;
995 
996 	port = fwnode_get_parent(endpoint);
997 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
998 
999 	fwnode_handle_put(port);
1000 
1001 	return parent;
1002 }
1003 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1004 
1005 /**
1006  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1007  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1008  *
1009  * Extracts firmware node of a remote device the @fwnode points to.
1010  */
1011 struct fwnode_handle *
1012 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1013 {
1014 	struct fwnode_handle *endpoint, *parent;
1015 
1016 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1017 	parent = fwnode_graph_get_port_parent(endpoint);
1018 
1019 	fwnode_handle_put(endpoint);
1020 
1021 	return parent;
1022 }
1023 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1024 
1025 /**
1026  * fwnode_graph_get_remote_port - Return fwnode of a remote port
1027  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1028  *
1029  * Extracts firmware node of a remote port the @fwnode points to.
1030  */
1031 struct fwnode_handle *
1032 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1033 {
1034 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1035 }
1036 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1037 
1038 /**
1039  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1040  * @fwnode: Endpoint firmware node pointing to the remote endpoint
1041  *
1042  * Extracts firmware node of a remote endpoint the @fwnode points to.
1043  */
1044 struct fwnode_handle *
1045 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1046 {
1047 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1048 }
1049 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1050 
1051 /**
1052  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1053  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1054  * @port_id: identifier of the parent port node
1055  * @endpoint_id: identifier of the endpoint node
1056  *
1057  * Return: Remote fwnode handle associated with remote endpoint node linked
1058  *	   to @node. Use fwnode_node_put() on it when done.
1059  */
1060 struct fwnode_handle *
1061 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1062 			     u32 endpoint_id)
1063 {
1064 	struct fwnode_handle *endpoint = NULL;
1065 
1066 	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1067 		struct fwnode_endpoint fwnode_ep;
1068 		struct fwnode_handle *remote;
1069 		int ret;
1070 
1071 		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1072 		if (ret < 0)
1073 			continue;
1074 
1075 		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1076 			continue;
1077 
1078 		remote = fwnode_graph_get_remote_port_parent(endpoint);
1079 		if (!remote)
1080 			return NULL;
1081 
1082 		return fwnode_device_is_available(remote) ? remote : NULL;
1083 	}
1084 
1085 	return NULL;
1086 }
1087 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1088 
1089 /**
1090  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1091  * @fwnode: parent fwnode_handle containing the graph
1092  * @port: identifier of the port node
1093  * @endpoint: identifier of the endpoint node under the port node
1094  * @flags: fwnode lookup flags
1095  *
1096  * Return the fwnode handle of the local endpoint corresponding the port and
1097  * endpoint IDs or NULL if not found.
1098  *
1099  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1100  * has not been found, look for the closest endpoint ID greater than the
1101  * specified one and return the endpoint that corresponds to it, if present.
1102  *
1103  * Do not return endpoints that belong to disabled devices, unless
1104  * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1105  *
1106  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1107  * it when it is not needed any more.
1108  */
1109 struct fwnode_handle *
1110 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1111 				u32 port, u32 endpoint, unsigned long flags)
1112 {
1113 	struct fwnode_handle *ep = NULL, *best_ep = NULL;
1114 	unsigned int best_ep_id = 0;
1115 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1116 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1117 
1118 	while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1119 		struct fwnode_endpoint fwnode_ep = { 0 };
1120 		int ret;
1121 
1122 		if (enabled_only) {
1123 			struct fwnode_handle *dev_node;
1124 			bool available;
1125 
1126 			dev_node = fwnode_graph_get_remote_port_parent(ep);
1127 			available = fwnode_device_is_available(dev_node);
1128 			fwnode_handle_put(dev_node);
1129 			if (!available)
1130 				continue;
1131 		}
1132 
1133 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1134 		if (ret < 0)
1135 			continue;
1136 
1137 		if (fwnode_ep.port != port)
1138 			continue;
1139 
1140 		if (fwnode_ep.id == endpoint)
1141 			return ep;
1142 
1143 		if (!endpoint_next)
1144 			continue;
1145 
1146 		/*
1147 		 * If the endpoint that has just been found is not the first
1148 		 * matching one and the ID of the one found previously is closer
1149 		 * to the requested endpoint ID, skip it.
1150 		 */
1151 		if (fwnode_ep.id < endpoint ||
1152 		    (best_ep && best_ep_id < fwnode_ep.id))
1153 			continue;
1154 
1155 		fwnode_handle_put(best_ep);
1156 		best_ep = fwnode_handle_get(ep);
1157 		best_ep_id = fwnode_ep.id;
1158 	}
1159 
1160 	return best_ep;
1161 }
1162 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1163 
1164 /**
1165  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1166  * @fwnode: pointer to endpoint fwnode_handle
1167  * @endpoint: pointer to the fwnode endpoint data structure
1168  *
1169  * Parse @fwnode representing a graph endpoint node and store the
1170  * information in @endpoint. The caller must hold a reference to
1171  * @fwnode.
1172  */
1173 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1174 				struct fwnode_endpoint *endpoint)
1175 {
1176 	memset(endpoint, 0, sizeof(*endpoint));
1177 
1178 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1179 }
1180 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1181 
1182 const void *device_get_match_data(struct device *dev)
1183 {
1184 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1185 }
1186 EXPORT_SYMBOL_GPL(device_get_match_data);
1187