xref: /openbmc/linux/drivers/base/property.c (revision 1a59d1b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * property.c - Unified device property interface.
4  *
5  * Copyright (C) 2014, Intel Corporation
6  * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  *          Mika Westerberg <mika.westerberg@linux.intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20 
21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 		&dev->of_node->fwnode : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27 
28 /**
29  * device_property_present - check if a property of a device is present
30  * @dev: Device whose property is being checked
31  * @propname: Name of the property
32  *
33  * Check if property @propname is present in the device firmware description.
34  */
35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 	return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40 
41 /**
42  * fwnode_property_present - check if a property of a firmware node is present
43  * @fwnode: Firmware node whose property to check
44  * @propname: Name of the property
45  */
46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 			     const char *propname)
48 {
49 	bool ret;
50 
51 	ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 	    !IS_ERR_OR_NULL(fwnode->secondary))
54 		ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 					 propname);
56 	return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59 
60 /**
61  * device_property_read_u8_array - return a u8 array property of a device
62  * @dev: Device to get the property of
63  * @propname: Name of the property
64  * @val: The values are stored here or %NULL to return the number of values
65  * @nval: Size of the @val array
66  *
67  * Function reads an array of u8 properties with @propname from the device
68  * firmware description and stores them to @val if found.
69  *
70  * Return: number of values if @val was %NULL,
71  *         %0 if the property was found (success),
72  *	   %-EINVAL if given arguments are not valid,
73  *	   %-ENODATA if the property does not have a value,
74  *	   %-EPROTO if the property is not an array of numbers,
75  *	   %-EOVERFLOW if the size of the property is not as expected.
76  *	   %-ENXIO if no suitable firmware interface is present.
77  */
78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 				  u8 *val, size_t nval)
80 {
81 	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84 
85 /**
86  * device_property_read_u16_array - return a u16 array property of a device
87  * @dev: Device to get the property of
88  * @propname: Name of the property
89  * @val: The values are stored here or %NULL to return the number of values
90  * @nval: Size of the @val array
91  *
92  * Function reads an array of u16 properties with @propname from the device
93  * firmware description and stores them to @val if found.
94  *
95  * Return: number of values if @val was %NULL,
96  *         %0 if the property was found (success),
97  *	   %-EINVAL if given arguments are not valid,
98  *	   %-ENODATA if the property does not have a value,
99  *	   %-EPROTO if the property is not an array of numbers,
100  *	   %-EOVERFLOW if the size of the property is not as expected.
101  *	   %-ENXIO if no suitable firmware interface is present.
102  */
103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 				   u16 *val, size_t nval)
105 {
106 	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109 
110 /**
111  * device_property_read_u32_array - return a u32 array property of a device
112  * @dev: Device to get the property of
113  * @propname: Name of the property
114  * @val: The values are stored here or %NULL to return the number of values
115  * @nval: Size of the @val array
116  *
117  * Function reads an array of u32 properties with @propname from the device
118  * firmware description and stores them to @val if found.
119  *
120  * Return: number of values if @val was %NULL,
121  *         %0 if the property was found (success),
122  *	   %-EINVAL if given arguments are not valid,
123  *	   %-ENODATA if the property does not have a value,
124  *	   %-EPROTO if the property is not an array of numbers,
125  *	   %-EOVERFLOW if the size of the property is not as expected.
126  *	   %-ENXIO if no suitable firmware interface is present.
127  */
128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 				   u32 *val, size_t nval)
130 {
131 	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134 
135 /**
136  * device_property_read_u64_array - return a u64 array property of a device
137  * @dev: Device to get the property of
138  * @propname: Name of the property
139  * @val: The values are stored here or %NULL to return the number of values
140  * @nval: Size of the @val array
141  *
142  * Function reads an array of u64 properties with @propname from the device
143  * firmware description and stores them to @val if found.
144  *
145  * Return: number of values if @val was %NULL,
146  *         %0 if the property was found (success),
147  *	   %-EINVAL if given arguments are not valid,
148  *	   %-ENODATA if the property does not have a value,
149  *	   %-EPROTO if the property is not an array of numbers,
150  *	   %-EOVERFLOW if the size of the property is not as expected.
151  *	   %-ENXIO if no suitable firmware interface is present.
152  */
153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 				   u64 *val, size_t nval)
155 {
156 	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159 
160 /**
161  * device_property_read_string_array - return a string array property of device
162  * @dev: Device to get the property of
163  * @propname: Name of the property
164  * @val: The values are stored here or %NULL to return the number of values
165  * @nval: Size of the @val array
166  *
167  * Function reads an array of string properties with @propname from the device
168  * firmware description and stores them to @val if found.
169  *
170  * Return: number of values read on success if @val is non-NULL,
171  *	   number of values available on success if @val is NULL,
172  *	   %-EINVAL if given arguments are not valid,
173  *	   %-ENODATA if the property does not have a value,
174  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
175  *	   %-EOVERFLOW if the size of the property is not as expected.
176  *	   %-ENXIO if no suitable firmware interface is present.
177  */
178 int device_property_read_string_array(struct device *dev, const char *propname,
179 				      const char **val, size_t nval)
180 {
181 	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184 
185 /**
186  * device_property_read_string - return a string property of a device
187  * @dev: Device to get the property of
188  * @propname: Name of the property
189  * @val: The value is stored here
190  *
191  * Function reads property @propname from the device firmware description and
192  * stores the value into @val if found. The value is checked to be a string.
193  *
194  * Return: %0 if the property was found (success),
195  *	   %-EINVAL if given arguments are not valid,
196  *	   %-ENODATA if the property does not have a value,
197  *	   %-EPROTO or %-EILSEQ if the property type is not a string.
198  *	   %-ENXIO if no suitable firmware interface is present.
199  */
200 int device_property_read_string(struct device *dev, const char *propname,
201 				const char **val)
202 {
203 	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206 
207 /**
208  * device_property_match_string - find a string in an array and return index
209  * @dev: Device to get the property of
210  * @propname: Name of the property holding the array
211  * @string: String to look for
212  *
213  * Find a given string in a string array and if it is found return the
214  * index back.
215  *
216  * Return: %0 if the property was found (success),
217  *	   %-EINVAL if given arguments are not valid,
218  *	   %-ENODATA if the property does not have a value,
219  *	   %-EPROTO if the property is not an array of strings,
220  *	   %-ENXIO if no suitable firmware interface is present.
221  */
222 int device_property_match_string(struct device *dev, const char *propname,
223 				 const char *string)
224 {
225 	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228 
229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 					  const char *propname,
231 					  unsigned int elem_size, void *val,
232 					  size_t nval)
233 {
234 	int ret;
235 
236 	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 				 elem_size, val, nval);
238 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 	    !IS_ERR_OR_NULL(fwnode->secondary))
240 		ret = fwnode_call_int_op(
241 			fwnode->secondary, property_read_int_array, propname,
242 			elem_size, val, nval);
243 
244 	return ret;
245 }
246 
247 /**
248  * fwnode_property_read_u8_array - return a u8 array property of firmware node
249  * @fwnode: Firmware node to get the property of
250  * @propname: Name of the property
251  * @val: The values are stored here or %NULL to return the number of values
252  * @nval: Size of the @val array
253  *
254  * Read an array of u8 properties with @propname from @fwnode and stores them to
255  * @val if found.
256  *
257  * Return: number of values if @val was %NULL,
258  *         %0 if the property was found (success),
259  *	   %-EINVAL if given arguments are not valid,
260  *	   %-ENODATA if the property does not have a value,
261  *	   %-EPROTO if the property is not an array of numbers,
262  *	   %-EOVERFLOW if the size of the property is not as expected,
263  *	   %-ENXIO if no suitable firmware interface is present.
264  */
265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 				  const char *propname, u8 *val, size_t nval)
267 {
268 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 					      val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272 
273 /**
274  * fwnode_property_read_u16_array - return a u16 array property of firmware node
275  * @fwnode: Firmware node to get the property of
276  * @propname: Name of the property
277  * @val: The values are stored here or %NULL to return the number of values
278  * @nval: Size of the @val array
279  *
280  * Read an array of u16 properties with @propname from @fwnode and store them to
281  * @val if found.
282  *
283  * Return: number of values if @val was %NULL,
284  *         %0 if the property was found (success),
285  *	   %-EINVAL if given arguments are not valid,
286  *	   %-ENODATA if the property does not have a value,
287  *	   %-EPROTO if the property is not an array of numbers,
288  *	   %-EOVERFLOW if the size of the property is not as expected,
289  *	   %-ENXIO if no suitable firmware interface is present.
290  */
291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 				   const char *propname, u16 *val, size_t nval)
293 {
294 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 					      val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298 
299 /**
300  * fwnode_property_read_u32_array - return a u32 array property of firmware node
301  * @fwnode: Firmware node to get the property of
302  * @propname: Name of the property
303  * @val: The values are stored here or %NULL to return the number of values
304  * @nval: Size of the @val array
305  *
306  * Read an array of u32 properties with @propname from @fwnode store them to
307  * @val if found.
308  *
309  * Return: number of values if @val was %NULL,
310  *         %0 if the property was found (success),
311  *	   %-EINVAL if given arguments are not valid,
312  *	   %-ENODATA if the property does not have a value,
313  *	   %-EPROTO if the property is not an array of numbers,
314  *	   %-EOVERFLOW if the size of the property is not as expected,
315  *	   %-ENXIO if no suitable firmware interface is present.
316  */
317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 				   const char *propname, u32 *val, size_t nval)
319 {
320 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 					      val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324 
325 /**
326  * fwnode_property_read_u64_array - return a u64 array property firmware node
327  * @fwnode: Firmware node to get the property of
328  * @propname: Name of the property
329  * @val: The values are stored here or %NULL to return the number of values
330  * @nval: Size of the @val array
331  *
332  * Read an array of u64 properties with @propname from @fwnode and store them to
333  * @val if found.
334  *
335  * Return: number of values if @val was %NULL,
336  *         %0 if the property was found (success),
337  *	   %-EINVAL if given arguments are not valid,
338  *	   %-ENODATA if the property does not have a value,
339  *	   %-EPROTO if the property is not an array of numbers,
340  *	   %-EOVERFLOW if the size of the property is not as expected,
341  *	   %-ENXIO if no suitable firmware interface is present.
342  */
343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 				   const char *propname, u64 *val, size_t nval)
345 {
346 	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 					      val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350 
351 /**
352  * fwnode_property_read_string_array - return string array property of a node
353  * @fwnode: Firmware node to get the property of
354  * @propname: Name of the property
355  * @val: The values are stored here or %NULL to return the number of values
356  * @nval: Size of the @val array
357  *
358  * Read an string list property @propname from the given firmware node and store
359  * them to @val if found.
360  *
361  * Return: number of values read on success if @val is non-NULL,
362  *	   number of values available on success if @val is NULL,
363  *	   %-EINVAL if given arguments are not valid,
364  *	   %-ENODATA if the property does not have a value,
365  *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
366  *	   %-EOVERFLOW if the size of the property is not as expected,
367  *	   %-ENXIO if no suitable firmware interface is present.
368  */
369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 				      const char *propname, const char **val,
371 				      size_t nval)
372 {
373 	int ret;
374 
375 	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 				 val, nval);
377 	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 	    !IS_ERR_OR_NULL(fwnode->secondary))
379 		ret = fwnode_call_int_op(fwnode->secondary,
380 					 property_read_string_array, propname,
381 					 val, nval);
382 	return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385 
386 /**
387  * fwnode_property_read_string - return a string property of a firmware node
388  * @fwnode: Firmware node to get the property of
389  * @propname: Name of the property
390  * @val: The value is stored here
391  *
392  * Read property @propname from the given firmware node and store the value into
393  * @val if found.  The value is checked to be a string.
394  *
395  * Return: %0 if the property was found (success),
396  *	   %-EINVAL if given arguments are not valid,
397  *	   %-ENODATA if the property does not have a value,
398  *	   %-EPROTO or %-EILSEQ if the property is not a string,
399  *	   %-ENXIO if no suitable firmware interface is present.
400  */
401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 				const char *propname, const char **val)
403 {
404 	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405 
406 	return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409 
410 /**
411  * fwnode_property_match_string - find a string in an array and return index
412  * @fwnode: Firmware node to get the property of
413  * @propname: Name of the property holding the array
414  * @string: String to look for
415  *
416  * Find a given string in a string array and if it is found return the
417  * index back.
418  *
419  * Return: %0 if the property was found (success),
420  *	   %-EINVAL if given arguments are not valid,
421  *	   %-ENODATA if the property does not have a value,
422  *	   %-EPROTO if the property is not an array of strings,
423  *	   %-ENXIO if no suitable firmware interface is present.
424  */
425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 	const char *propname, const char *string)
427 {
428 	const char **values;
429 	int nval, ret;
430 
431 	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 	if (nval < 0)
433 		return nval;
434 
435 	if (nval == 0)
436 		return -ENODATA;
437 
438 	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 	if (!values)
440 		return -ENOMEM;
441 
442 	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 	if (ret < 0)
444 		goto out;
445 
446 	ret = match_string(values, nval, string);
447 	if (ret < 0)
448 		ret = -ENODATA;
449 out:
450 	kfree(values);
451 	return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454 
455 /**
456  * fwnode_property_get_reference_args() - Find a reference with arguments
457  * @fwnode:	Firmware node where to look for the reference
458  * @prop:	The name of the property
459  * @nargs_prop:	The name of the property telling the number of
460  *		arguments in the referred node. NULL if @nargs is known,
461  *		otherwise @nargs is ignored. Only relevant on OF.
462  * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
463  * @index:	Index of the reference, from zero onwards.
464  * @args:	Result structure with reference and integer arguments.
465  *
466  * Obtain a reference based on a named property in an fwnode, with
467  * integer arguments.
468  *
469  * Caller is responsible to call fwnode_handle_put() on the returned
470  * args->fwnode pointer.
471  *
472  * Returns: %0 on success
473  *	    %-ENOENT when the index is out of bounds, the index has an empty
474  *		     reference or the property was not found
475  *	    %-EINVAL on parse error
476  */
477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 				       const char *prop, const char *nargs_prop,
479 				       unsigned int nargs, unsigned int index,
480 				       struct fwnode_reference_args *args)
481 {
482 	return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 				  nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486 
487 /**
488  * device_remove_properties - Remove properties from a device object.
489  * @dev: Device whose properties to remove.
490  *
491  * The function removes properties previously associated to the device
492  * firmware node with device_add_properties(). Memory allocated to the
493  * properties will also be released.
494  */
495 void device_remove_properties(struct device *dev)
496 {
497 	struct fwnode_handle *fwnode = dev_fwnode(dev);
498 
499 	if (!fwnode)
500 		return;
501 
502 	if (is_software_node(fwnode->secondary)) {
503 		fwnode_remove_software_node(fwnode->secondary);
504 		set_secondary_fwnode(dev, NULL);
505 	}
506 }
507 EXPORT_SYMBOL_GPL(device_remove_properties);
508 
509 /**
510  * device_add_properties - Add a collection of properties to a device object.
511  * @dev: Device to add properties to.
512  * @properties: Collection of properties to add.
513  *
514  * Associate a collection of device properties represented by @properties with
515  * @dev. The function takes a copy of @properties.
516  *
517  * WARNING: The callers should not use this function if it is known that there
518  * is no real firmware node associated with @dev! In that case the callers
519  * should create a software node and assign it to @dev directly.
520  */
521 int device_add_properties(struct device *dev,
522 			  const struct property_entry *properties)
523 {
524 	struct fwnode_handle *fwnode;
525 
526 	fwnode = fwnode_create_software_node(properties, NULL);
527 	if (IS_ERR(fwnode))
528 		return PTR_ERR(fwnode);
529 
530 	set_secondary_fwnode(dev, fwnode);
531 	return 0;
532 }
533 EXPORT_SYMBOL_GPL(device_add_properties);
534 
535 /**
536  * fwnode_get_next_parent - Iterate to the node's parent
537  * @fwnode: Firmware whose parent is retrieved
538  *
539  * This is like fwnode_get_parent() except that it drops the refcount
540  * on the passed node, making it suitable for iterating through a
541  * node's parents.
542  *
543  * Returns a node pointer with refcount incremented, use
544  * fwnode_handle_node() on it when done.
545  */
546 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
547 {
548 	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
549 
550 	fwnode_handle_put(fwnode);
551 
552 	return parent;
553 }
554 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
555 
556 /**
557  * fwnode_get_parent - Return parent firwmare node
558  * @fwnode: Firmware whose parent is retrieved
559  *
560  * Return parent firmware node of the given node if possible or %NULL if no
561  * parent was available.
562  */
563 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
564 {
565 	return fwnode_call_ptr_op(fwnode, get_parent);
566 }
567 EXPORT_SYMBOL_GPL(fwnode_get_parent);
568 
569 /**
570  * fwnode_get_next_child_node - Return the next child node handle for a node
571  * @fwnode: Firmware node to find the next child node for.
572  * @child: Handle to one of the node's child nodes or a %NULL handle.
573  */
574 struct fwnode_handle *
575 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
576 			   struct fwnode_handle *child)
577 {
578 	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
579 }
580 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
581 
582 /**
583  * fwnode_get_next_available_child_node - Return the next
584  * available child node handle for a node
585  * @fwnode: Firmware node to find the next child node for.
586  * @child: Handle to one of the node's child nodes or a %NULL handle.
587  */
588 struct fwnode_handle *
589 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
590 				     struct fwnode_handle *child)
591 {
592 	struct fwnode_handle *next_child = child;
593 
594 	if (!fwnode)
595 		return NULL;
596 
597 	do {
598 		next_child = fwnode_get_next_child_node(fwnode, next_child);
599 
600 		if (!next_child || fwnode_device_is_available(next_child))
601 			break;
602 	} while (next_child);
603 
604 	return next_child;
605 }
606 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
607 
608 /**
609  * device_get_next_child_node - Return the next child node handle for a device
610  * @dev: Device to find the next child node for.
611  * @child: Handle to one of the device's child nodes or a null handle.
612  */
613 struct fwnode_handle *device_get_next_child_node(struct device *dev,
614 						 struct fwnode_handle *child)
615 {
616 	struct acpi_device *adev = ACPI_COMPANION(dev);
617 	struct fwnode_handle *fwnode = NULL;
618 
619 	if (dev->of_node)
620 		fwnode = &dev->of_node->fwnode;
621 	else if (adev)
622 		fwnode = acpi_fwnode_handle(adev);
623 
624 	return fwnode_get_next_child_node(fwnode, child);
625 }
626 EXPORT_SYMBOL_GPL(device_get_next_child_node);
627 
628 /**
629  * fwnode_get_named_child_node - Return first matching named child node handle
630  * @fwnode: Firmware node to find the named child node for.
631  * @childname: String to match child node name against.
632  */
633 struct fwnode_handle *
634 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
635 			    const char *childname)
636 {
637 	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
638 }
639 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
640 
641 /**
642  * device_get_named_child_node - Return first matching named child node handle
643  * @dev: Device to find the named child node for.
644  * @childname: String to match child node name against.
645  */
646 struct fwnode_handle *device_get_named_child_node(struct device *dev,
647 						  const char *childname)
648 {
649 	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
650 }
651 EXPORT_SYMBOL_GPL(device_get_named_child_node);
652 
653 /**
654  * fwnode_handle_get - Obtain a reference to a device node
655  * @fwnode: Pointer to the device node to obtain the reference to.
656  *
657  * Returns the fwnode handle.
658  */
659 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
660 {
661 	if (!fwnode_has_op(fwnode, get))
662 		return fwnode;
663 
664 	return fwnode_call_ptr_op(fwnode, get);
665 }
666 EXPORT_SYMBOL_GPL(fwnode_handle_get);
667 
668 /**
669  * fwnode_handle_put - Drop reference to a device node
670  * @fwnode: Pointer to the device node to drop the reference to.
671  *
672  * This has to be used when terminating device_for_each_child_node() iteration
673  * with break or return to prevent stale device node references from being left
674  * behind.
675  */
676 void fwnode_handle_put(struct fwnode_handle *fwnode)
677 {
678 	fwnode_call_void_op(fwnode, put);
679 }
680 EXPORT_SYMBOL_GPL(fwnode_handle_put);
681 
682 /**
683  * fwnode_device_is_available - check if a device is available for use
684  * @fwnode: Pointer to the fwnode of the device.
685  */
686 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
687 {
688 	return fwnode_call_bool_op(fwnode, device_is_available);
689 }
690 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
691 
692 /**
693  * device_get_child_node_count - return the number of child nodes for device
694  * @dev: Device to cound the child nodes for
695  */
696 unsigned int device_get_child_node_count(struct device *dev)
697 {
698 	struct fwnode_handle *child;
699 	unsigned int count = 0;
700 
701 	device_for_each_child_node(dev, child)
702 		count++;
703 
704 	return count;
705 }
706 EXPORT_SYMBOL_GPL(device_get_child_node_count);
707 
708 bool device_dma_supported(struct device *dev)
709 {
710 	/* For DT, this is always supported.
711 	 * For ACPI, this depends on CCA, which
712 	 * is determined by the acpi_dma_supported().
713 	 */
714 	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
715 		return true;
716 
717 	return acpi_dma_supported(ACPI_COMPANION(dev));
718 }
719 EXPORT_SYMBOL_GPL(device_dma_supported);
720 
721 enum dev_dma_attr device_get_dma_attr(struct device *dev)
722 {
723 	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
724 
725 	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
726 		if (of_dma_is_coherent(dev->of_node))
727 			attr = DEV_DMA_COHERENT;
728 		else
729 			attr = DEV_DMA_NON_COHERENT;
730 	} else
731 		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
732 
733 	return attr;
734 }
735 EXPORT_SYMBOL_GPL(device_get_dma_attr);
736 
737 /**
738  * fwnode_get_phy_mode - Get phy mode for given firmware node
739  * @fwnode:	Pointer to the given node
740  *
741  * The function gets phy interface string from property 'phy-mode' or
742  * 'phy-connection-type', and return its index in phy_modes table, or errno in
743  * error case.
744  */
745 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
746 {
747 	const char *pm;
748 	int err, i;
749 
750 	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
751 	if (err < 0)
752 		err = fwnode_property_read_string(fwnode,
753 						  "phy-connection-type", &pm);
754 	if (err < 0)
755 		return err;
756 
757 	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
758 		if (!strcasecmp(pm, phy_modes(i)))
759 			return i;
760 
761 	return -ENODEV;
762 }
763 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
764 
765 /**
766  * device_get_phy_mode - Get phy mode for given device
767  * @dev:	Pointer to the given device
768  *
769  * The function gets phy interface string from property 'phy-mode' or
770  * 'phy-connection-type', and return its index in phy_modes table, or errno in
771  * error case.
772  */
773 int device_get_phy_mode(struct device *dev)
774 {
775 	return fwnode_get_phy_mode(dev_fwnode(dev));
776 }
777 EXPORT_SYMBOL_GPL(device_get_phy_mode);
778 
779 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
780 				 const char *name, char *addr,
781 				 int alen)
782 {
783 	int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
784 
785 	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
786 		return addr;
787 	return NULL;
788 }
789 
790 /**
791  * fwnode_get_mac_address - Get the MAC from the firmware node
792  * @fwnode:	Pointer to the firmware node
793  * @addr:	Address of buffer to store the MAC in
794  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
795  *
796  * Search the firmware node for the best MAC address to use.  'mac-address' is
797  * checked first, because that is supposed to contain to "most recent" MAC
798  * address. If that isn't set, then 'local-mac-address' is checked next,
799  * because that is the default address.  If that isn't set, then the obsolete
800  * 'address' is checked, just in case we're using an old device tree.
801  *
802  * Note that the 'address' property is supposed to contain a virtual address of
803  * the register set, but some DTS files have redefined that property to be the
804  * MAC address.
805  *
806  * All-zero MAC addresses are rejected, because those could be properties that
807  * exist in the firmware tables, but were not updated by the firmware.  For
808  * example, the DTS could define 'mac-address' and 'local-mac-address', with
809  * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
810  * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
811  * exists but is all zeros.
812 */
813 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
814 {
815 	char *res;
816 
817 	res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
818 	if (res)
819 		return res;
820 
821 	res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
822 	if (res)
823 		return res;
824 
825 	return fwnode_get_mac_addr(fwnode, "address", addr, alen);
826 }
827 EXPORT_SYMBOL(fwnode_get_mac_address);
828 
829 /**
830  * device_get_mac_address - Get the MAC for a given device
831  * @dev:	Pointer to the device
832  * @addr:	Address of buffer to store the MAC in
833  * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
834  */
835 void *device_get_mac_address(struct device *dev, char *addr, int alen)
836 {
837 	return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
838 }
839 EXPORT_SYMBOL(device_get_mac_address);
840 
841 /**
842  * fwnode_irq_get - Get IRQ directly from a fwnode
843  * @fwnode:	Pointer to the firmware node
844  * @index:	Zero-based index of the IRQ
845  *
846  * Returns Linux IRQ number on success. Other values are determined
847  * accordingly to acpi_/of_ irq_get() operation.
848  */
849 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index)
850 {
851 	struct device_node *of_node = to_of_node(fwnode);
852 	struct resource res;
853 	int ret;
854 
855 	if (IS_ENABLED(CONFIG_OF) && of_node)
856 		return of_irq_get(of_node, index);
857 
858 	ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
859 	if (ret)
860 		return ret;
861 
862 	return res.start;
863 }
864 EXPORT_SYMBOL(fwnode_irq_get);
865 
866 /**
867  * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
868  * @fwnode: Pointer to the parent firmware node
869  * @prev: Previous endpoint node or %NULL to get the first
870  *
871  * Returns an endpoint firmware node pointer or %NULL if no more endpoints
872  * are available.
873  */
874 struct fwnode_handle *
875 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
876 			       struct fwnode_handle *prev)
877 {
878 	return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
879 }
880 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
881 
882 /**
883  * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
884  * @endpoint: Endpoint firmware node of the port
885  *
886  * Return: the firmware node of the device the @endpoint belongs to.
887  */
888 struct fwnode_handle *
889 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
890 {
891 	struct fwnode_handle *port, *parent;
892 
893 	port = fwnode_get_parent(endpoint);
894 	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
895 
896 	fwnode_handle_put(port);
897 
898 	return parent;
899 }
900 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
901 
902 /**
903  * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
904  * @fwnode: Endpoint firmware node pointing to the remote endpoint
905  *
906  * Extracts firmware node of a remote device the @fwnode points to.
907  */
908 struct fwnode_handle *
909 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
910 {
911 	struct fwnode_handle *endpoint, *parent;
912 
913 	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
914 	parent = fwnode_graph_get_port_parent(endpoint);
915 
916 	fwnode_handle_put(endpoint);
917 
918 	return parent;
919 }
920 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
921 
922 /**
923  * fwnode_graph_get_remote_port - Return fwnode of a remote port
924  * @fwnode: Endpoint firmware node pointing to the remote endpoint
925  *
926  * Extracts firmware node of a remote port the @fwnode points to.
927  */
928 struct fwnode_handle *
929 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
930 {
931 	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
932 }
933 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
934 
935 /**
936  * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
937  * @fwnode: Endpoint firmware node pointing to the remote endpoint
938  *
939  * Extracts firmware node of a remote endpoint the @fwnode points to.
940  */
941 struct fwnode_handle *
942 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
943 {
944 	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
945 }
946 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
947 
948 /**
949  * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
950  * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
951  * @port_id: identifier of the parent port node
952  * @endpoint_id: identifier of the endpoint node
953  *
954  * Return: Remote fwnode handle associated with remote endpoint node linked
955  *	   to @node. Use fwnode_node_put() on it when done.
956  */
957 struct fwnode_handle *
958 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
959 			     u32 endpoint_id)
960 {
961 	struct fwnode_handle *endpoint = NULL;
962 
963 	while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
964 		struct fwnode_endpoint fwnode_ep;
965 		struct fwnode_handle *remote;
966 		int ret;
967 
968 		ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
969 		if (ret < 0)
970 			continue;
971 
972 		if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
973 			continue;
974 
975 		remote = fwnode_graph_get_remote_port_parent(endpoint);
976 		if (!remote)
977 			return NULL;
978 
979 		return fwnode_device_is_available(remote) ? remote : NULL;
980 	}
981 
982 	return NULL;
983 }
984 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
985 
986 /**
987  * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
988  * @fwnode: parent fwnode_handle containing the graph
989  * @port: identifier of the port node
990  * @endpoint: identifier of the endpoint node under the port node
991  * @flags: fwnode lookup flags
992  *
993  * Return the fwnode handle of the local endpoint corresponding the port and
994  * endpoint IDs or NULL if not found.
995  *
996  * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
997  * has not been found, look for the closest endpoint ID greater than the
998  * specified one and return the endpoint that corresponds to it, if present.
999  *
1000  * Do not return endpoints that belong to disabled devices, unless
1001  * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1002  *
1003  * The returned endpoint needs to be released by calling fwnode_handle_put() on
1004  * it when it is not needed any more.
1005  */
1006 struct fwnode_handle *
1007 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1008 				u32 port, u32 endpoint, unsigned long flags)
1009 {
1010 	struct fwnode_handle *ep = NULL, *best_ep = NULL;
1011 	unsigned int best_ep_id = 0;
1012 	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1013 	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1014 
1015 	while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1016 		struct fwnode_endpoint fwnode_ep = { 0 };
1017 		int ret;
1018 
1019 		if (enabled_only) {
1020 			struct fwnode_handle *dev_node;
1021 			bool available;
1022 
1023 			dev_node = fwnode_graph_get_remote_port_parent(ep);
1024 			available = fwnode_device_is_available(dev_node);
1025 			fwnode_handle_put(dev_node);
1026 			if (!available)
1027 				continue;
1028 		}
1029 
1030 		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1031 		if (ret < 0)
1032 			continue;
1033 
1034 		if (fwnode_ep.port != port)
1035 			continue;
1036 
1037 		if (fwnode_ep.id == endpoint)
1038 			return ep;
1039 
1040 		if (!endpoint_next)
1041 			continue;
1042 
1043 		/*
1044 		 * If the endpoint that has just been found is not the first
1045 		 * matching one and the ID of the one found previously is closer
1046 		 * to the requested endpoint ID, skip it.
1047 		 */
1048 		if (fwnode_ep.id < endpoint ||
1049 		    (best_ep && best_ep_id < fwnode_ep.id))
1050 			continue;
1051 
1052 		fwnode_handle_put(best_ep);
1053 		best_ep = fwnode_handle_get(ep);
1054 		best_ep_id = fwnode_ep.id;
1055 	}
1056 
1057 	return best_ep;
1058 }
1059 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1060 
1061 /**
1062  * fwnode_graph_parse_endpoint - parse common endpoint node properties
1063  * @fwnode: pointer to endpoint fwnode_handle
1064  * @endpoint: pointer to the fwnode endpoint data structure
1065  *
1066  * Parse @fwnode representing a graph endpoint node and store the
1067  * information in @endpoint. The caller must hold a reference to
1068  * @fwnode.
1069  */
1070 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1071 				struct fwnode_endpoint *endpoint)
1072 {
1073 	memset(endpoint, 0, sizeof(*endpoint));
1074 
1075 	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1076 }
1077 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1078 
1079 const void *device_get_match_data(struct device *dev)
1080 {
1081 	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1082 }
1083 EXPORT_SYMBOL_GPL(device_get_match_data);
1084