1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * property.c - Unified device property interface. 4 * 5 * Copyright (C) 2014, Intel Corporation 6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * Mika Westerberg <mika.westerberg@linux.intel.com> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/export.h> 12 #include <linux/kernel.h> 13 #include <linux/of.h> 14 #include <linux/of_address.h> 15 #include <linux/of_graph.h> 16 #include <linux/of_irq.h> 17 #include <linux/property.h> 18 #include <linux/etherdevice.h> 19 #include <linux/phy.h> 20 21 struct fwnode_handle *dev_fwnode(struct device *dev) 22 { 23 return IS_ENABLED(CONFIG_OF) && dev->of_node ? 24 &dev->of_node->fwnode : dev->fwnode; 25 } 26 EXPORT_SYMBOL_GPL(dev_fwnode); 27 28 /** 29 * device_property_present - check if a property of a device is present 30 * @dev: Device whose property is being checked 31 * @propname: Name of the property 32 * 33 * Check if property @propname is present in the device firmware description. 34 */ 35 bool device_property_present(struct device *dev, const char *propname) 36 { 37 return fwnode_property_present(dev_fwnode(dev), propname); 38 } 39 EXPORT_SYMBOL_GPL(device_property_present); 40 41 /** 42 * fwnode_property_present - check if a property of a firmware node is present 43 * @fwnode: Firmware node whose property to check 44 * @propname: Name of the property 45 */ 46 bool fwnode_property_present(const struct fwnode_handle *fwnode, 47 const char *propname) 48 { 49 bool ret; 50 51 ret = fwnode_call_bool_op(fwnode, property_present, propname); 52 if (ret == false && !IS_ERR_OR_NULL(fwnode) && 53 !IS_ERR_OR_NULL(fwnode->secondary)) 54 ret = fwnode_call_bool_op(fwnode->secondary, property_present, 55 propname); 56 return ret; 57 } 58 EXPORT_SYMBOL_GPL(fwnode_property_present); 59 60 /** 61 * device_property_read_u8_array - return a u8 array property of a device 62 * @dev: Device to get the property of 63 * @propname: Name of the property 64 * @val: The values are stored here or %NULL to return the number of values 65 * @nval: Size of the @val array 66 * 67 * Function reads an array of u8 properties with @propname from the device 68 * firmware description and stores them to @val if found. 69 * 70 * Return: number of values if @val was %NULL, 71 * %0 if the property was found (success), 72 * %-EINVAL if given arguments are not valid, 73 * %-ENODATA if the property does not have a value, 74 * %-EPROTO if the property is not an array of numbers, 75 * %-EOVERFLOW if the size of the property is not as expected. 76 * %-ENXIO if no suitable firmware interface is present. 77 */ 78 int device_property_read_u8_array(struct device *dev, const char *propname, 79 u8 *val, size_t nval) 80 { 81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval); 82 } 83 EXPORT_SYMBOL_GPL(device_property_read_u8_array); 84 85 /** 86 * device_property_read_u16_array - return a u16 array property of a device 87 * @dev: Device to get the property of 88 * @propname: Name of the property 89 * @val: The values are stored here or %NULL to return the number of values 90 * @nval: Size of the @val array 91 * 92 * Function reads an array of u16 properties with @propname from the device 93 * firmware description and stores them to @val if found. 94 * 95 * Return: number of values if @val was %NULL, 96 * %0 if the property was found (success), 97 * %-EINVAL if given arguments are not valid, 98 * %-ENODATA if the property does not have a value, 99 * %-EPROTO if the property is not an array of numbers, 100 * %-EOVERFLOW if the size of the property is not as expected. 101 * %-ENXIO if no suitable firmware interface is present. 102 */ 103 int device_property_read_u16_array(struct device *dev, const char *propname, 104 u16 *val, size_t nval) 105 { 106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval); 107 } 108 EXPORT_SYMBOL_GPL(device_property_read_u16_array); 109 110 /** 111 * device_property_read_u32_array - return a u32 array property of a device 112 * @dev: Device to get the property of 113 * @propname: Name of the property 114 * @val: The values are stored here or %NULL to return the number of values 115 * @nval: Size of the @val array 116 * 117 * Function reads an array of u32 properties with @propname from the device 118 * firmware description and stores them to @val if found. 119 * 120 * Return: number of values if @val was %NULL, 121 * %0 if the property was found (success), 122 * %-EINVAL if given arguments are not valid, 123 * %-ENODATA if the property does not have a value, 124 * %-EPROTO if the property is not an array of numbers, 125 * %-EOVERFLOW if the size of the property is not as expected. 126 * %-ENXIO if no suitable firmware interface is present. 127 */ 128 int device_property_read_u32_array(struct device *dev, const char *propname, 129 u32 *val, size_t nval) 130 { 131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval); 132 } 133 EXPORT_SYMBOL_GPL(device_property_read_u32_array); 134 135 /** 136 * device_property_read_u64_array - return a u64 array property of a device 137 * @dev: Device to get the property of 138 * @propname: Name of the property 139 * @val: The values are stored here or %NULL to return the number of values 140 * @nval: Size of the @val array 141 * 142 * Function reads an array of u64 properties with @propname from the device 143 * firmware description and stores them to @val if found. 144 * 145 * Return: number of values if @val was %NULL, 146 * %0 if the property was found (success), 147 * %-EINVAL if given arguments are not valid, 148 * %-ENODATA if the property does not have a value, 149 * %-EPROTO if the property is not an array of numbers, 150 * %-EOVERFLOW if the size of the property is not as expected. 151 * %-ENXIO if no suitable firmware interface is present. 152 */ 153 int device_property_read_u64_array(struct device *dev, const char *propname, 154 u64 *val, size_t nval) 155 { 156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval); 157 } 158 EXPORT_SYMBOL_GPL(device_property_read_u64_array); 159 160 /** 161 * device_property_read_string_array - return a string array property of device 162 * @dev: Device to get the property of 163 * @propname: Name of the property 164 * @val: The values are stored here or %NULL to return the number of values 165 * @nval: Size of the @val array 166 * 167 * Function reads an array of string properties with @propname from the device 168 * firmware description and stores them to @val if found. 169 * 170 * Return: number of values read on success if @val is non-NULL, 171 * number of values available on success if @val is NULL, 172 * %-EINVAL if given arguments are not valid, 173 * %-ENODATA if the property does not have a value, 174 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 175 * %-EOVERFLOW if the size of the property is not as expected. 176 * %-ENXIO if no suitable firmware interface is present. 177 */ 178 int device_property_read_string_array(struct device *dev, const char *propname, 179 const char **val, size_t nval) 180 { 181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval); 182 } 183 EXPORT_SYMBOL_GPL(device_property_read_string_array); 184 185 /** 186 * device_property_read_string - return a string property of a device 187 * @dev: Device to get the property of 188 * @propname: Name of the property 189 * @val: The value is stored here 190 * 191 * Function reads property @propname from the device firmware description and 192 * stores the value into @val if found. The value is checked to be a string. 193 * 194 * Return: %0 if the property was found (success), 195 * %-EINVAL if given arguments are not valid, 196 * %-ENODATA if the property does not have a value, 197 * %-EPROTO or %-EILSEQ if the property type is not a string. 198 * %-ENXIO if no suitable firmware interface is present. 199 */ 200 int device_property_read_string(struct device *dev, const char *propname, 201 const char **val) 202 { 203 return fwnode_property_read_string(dev_fwnode(dev), propname, val); 204 } 205 EXPORT_SYMBOL_GPL(device_property_read_string); 206 207 /** 208 * device_property_match_string - find a string in an array and return index 209 * @dev: Device to get the property of 210 * @propname: Name of the property holding the array 211 * @string: String to look for 212 * 213 * Find a given string in a string array and if it is found return the 214 * index back. 215 * 216 * Return: %0 if the property was found (success), 217 * %-EINVAL if given arguments are not valid, 218 * %-ENODATA if the property does not have a value, 219 * %-EPROTO if the property is not an array of strings, 220 * %-ENXIO if no suitable firmware interface is present. 221 */ 222 int device_property_match_string(struct device *dev, const char *propname, 223 const char *string) 224 { 225 return fwnode_property_match_string(dev_fwnode(dev), propname, string); 226 } 227 EXPORT_SYMBOL_GPL(device_property_match_string); 228 229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode, 230 const char *propname, 231 unsigned int elem_size, void *val, 232 size_t nval) 233 { 234 int ret; 235 236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname, 237 elem_size, val, nval); 238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) && 239 !IS_ERR_OR_NULL(fwnode->secondary)) 240 ret = fwnode_call_int_op( 241 fwnode->secondary, property_read_int_array, propname, 242 elem_size, val, nval); 243 244 return ret; 245 } 246 247 /** 248 * fwnode_property_read_u8_array - return a u8 array property of firmware node 249 * @fwnode: Firmware node to get the property of 250 * @propname: Name of the property 251 * @val: The values are stored here or %NULL to return the number of values 252 * @nval: Size of the @val array 253 * 254 * Read an array of u8 properties with @propname from @fwnode and stores them to 255 * @val if found. 256 * 257 * Return: number of values if @val was %NULL, 258 * %0 if the property was found (success), 259 * %-EINVAL if given arguments are not valid, 260 * %-ENODATA if the property does not have a value, 261 * %-EPROTO if the property is not an array of numbers, 262 * %-EOVERFLOW if the size of the property is not as expected, 263 * %-ENXIO if no suitable firmware interface is present. 264 */ 265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode, 266 const char *propname, u8 *val, size_t nval) 267 { 268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8), 269 val, nval); 270 } 271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array); 272 273 /** 274 * fwnode_property_read_u16_array - return a u16 array property of firmware node 275 * @fwnode: Firmware node to get the property of 276 * @propname: Name of the property 277 * @val: The values are stored here or %NULL to return the number of values 278 * @nval: Size of the @val array 279 * 280 * Read an array of u16 properties with @propname from @fwnode and store them to 281 * @val if found. 282 * 283 * Return: number of values if @val was %NULL, 284 * %0 if the property was found (success), 285 * %-EINVAL if given arguments are not valid, 286 * %-ENODATA if the property does not have a value, 287 * %-EPROTO if the property is not an array of numbers, 288 * %-EOVERFLOW if the size of the property is not as expected, 289 * %-ENXIO if no suitable firmware interface is present. 290 */ 291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode, 292 const char *propname, u16 *val, size_t nval) 293 { 294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16), 295 val, nval); 296 } 297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array); 298 299 /** 300 * fwnode_property_read_u32_array - return a u32 array property of firmware node 301 * @fwnode: Firmware node to get the property of 302 * @propname: Name of the property 303 * @val: The values are stored here or %NULL to return the number of values 304 * @nval: Size of the @val array 305 * 306 * Read an array of u32 properties with @propname from @fwnode store them to 307 * @val if found. 308 * 309 * Return: number of values if @val was %NULL, 310 * %0 if the property was found (success), 311 * %-EINVAL if given arguments are not valid, 312 * %-ENODATA if the property does not have a value, 313 * %-EPROTO if the property is not an array of numbers, 314 * %-EOVERFLOW if the size of the property is not as expected, 315 * %-ENXIO if no suitable firmware interface is present. 316 */ 317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode, 318 const char *propname, u32 *val, size_t nval) 319 { 320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32), 321 val, nval); 322 } 323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array); 324 325 /** 326 * fwnode_property_read_u64_array - return a u64 array property firmware node 327 * @fwnode: Firmware node to get the property of 328 * @propname: Name of the property 329 * @val: The values are stored here or %NULL to return the number of values 330 * @nval: Size of the @val array 331 * 332 * Read an array of u64 properties with @propname from @fwnode and store them to 333 * @val if found. 334 * 335 * Return: number of values if @val was %NULL, 336 * %0 if the property was found (success), 337 * %-EINVAL if given arguments are not valid, 338 * %-ENODATA if the property does not have a value, 339 * %-EPROTO if the property is not an array of numbers, 340 * %-EOVERFLOW if the size of the property is not as expected, 341 * %-ENXIO if no suitable firmware interface is present. 342 */ 343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode, 344 const char *propname, u64 *val, size_t nval) 345 { 346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64), 347 val, nval); 348 } 349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array); 350 351 /** 352 * fwnode_property_read_string_array - return string array property of a node 353 * @fwnode: Firmware node to get the property of 354 * @propname: Name of the property 355 * @val: The values are stored here or %NULL to return the number of values 356 * @nval: Size of the @val array 357 * 358 * Read an string list property @propname from the given firmware node and store 359 * them to @val if found. 360 * 361 * Return: number of values read on success if @val is non-NULL, 362 * number of values available on success if @val is NULL, 363 * %-EINVAL if given arguments are not valid, 364 * %-ENODATA if the property does not have a value, 365 * %-EPROTO or %-EILSEQ if the property is not an array of strings, 366 * %-EOVERFLOW if the size of the property is not as expected, 367 * %-ENXIO if no suitable firmware interface is present. 368 */ 369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode, 370 const char *propname, const char **val, 371 size_t nval) 372 { 373 int ret; 374 375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname, 376 val, nval); 377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) && 378 !IS_ERR_OR_NULL(fwnode->secondary)) 379 ret = fwnode_call_int_op(fwnode->secondary, 380 property_read_string_array, propname, 381 val, nval); 382 return ret; 383 } 384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array); 385 386 /** 387 * fwnode_property_read_string - return a string property of a firmware node 388 * @fwnode: Firmware node to get the property of 389 * @propname: Name of the property 390 * @val: The value is stored here 391 * 392 * Read property @propname from the given firmware node and store the value into 393 * @val if found. The value is checked to be a string. 394 * 395 * Return: %0 if the property was found (success), 396 * %-EINVAL if given arguments are not valid, 397 * %-ENODATA if the property does not have a value, 398 * %-EPROTO or %-EILSEQ if the property is not a string, 399 * %-ENXIO if no suitable firmware interface is present. 400 */ 401 int fwnode_property_read_string(const struct fwnode_handle *fwnode, 402 const char *propname, const char **val) 403 { 404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1); 405 406 return ret < 0 ? ret : 0; 407 } 408 EXPORT_SYMBOL_GPL(fwnode_property_read_string); 409 410 /** 411 * fwnode_property_match_string - find a string in an array and return index 412 * @fwnode: Firmware node to get the property of 413 * @propname: Name of the property holding the array 414 * @string: String to look for 415 * 416 * Find a given string in a string array and if it is found return the 417 * index back. 418 * 419 * Return: %0 if the property was found (success), 420 * %-EINVAL if given arguments are not valid, 421 * %-ENODATA if the property does not have a value, 422 * %-EPROTO if the property is not an array of strings, 423 * %-ENXIO if no suitable firmware interface is present. 424 */ 425 int fwnode_property_match_string(const struct fwnode_handle *fwnode, 426 const char *propname, const char *string) 427 { 428 const char **values; 429 int nval, ret; 430 431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0); 432 if (nval < 0) 433 return nval; 434 435 if (nval == 0) 436 return -ENODATA; 437 438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL); 439 if (!values) 440 return -ENOMEM; 441 442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval); 443 if (ret < 0) 444 goto out; 445 446 ret = match_string(values, nval, string); 447 if (ret < 0) 448 ret = -ENODATA; 449 out: 450 kfree(values); 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(fwnode_property_match_string); 454 455 /** 456 * fwnode_property_get_reference_args() - Find a reference with arguments 457 * @fwnode: Firmware node where to look for the reference 458 * @prop: The name of the property 459 * @nargs_prop: The name of the property telling the number of 460 * arguments in the referred node. NULL if @nargs is known, 461 * otherwise @nargs is ignored. Only relevant on OF. 462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL. 463 * @index: Index of the reference, from zero onwards. 464 * @args: Result structure with reference and integer arguments. 465 * 466 * Obtain a reference based on a named property in an fwnode, with 467 * integer arguments. 468 * 469 * Caller is responsible to call fwnode_handle_put() on the returned 470 * args->fwnode pointer. 471 * 472 * Returns: %0 on success 473 * %-ENOENT when the index is out of bounds, the index has an empty 474 * reference or the property was not found 475 * %-EINVAL on parse error 476 */ 477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode, 478 const char *prop, const char *nargs_prop, 479 unsigned int nargs, unsigned int index, 480 struct fwnode_reference_args *args) 481 { 482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop, 483 nargs, index, args); 484 } 485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args); 486 487 /** 488 * fwnode_find_reference - Find named reference to a fwnode_handle 489 * @fwnode: Firmware node where to look for the reference 490 * @name: The name of the reference 491 * @index: Index of the reference 492 * 493 * @index can be used when the named reference holds a table of references. 494 * 495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to 496 * call fwnode_handle_put() on the returned fwnode pointer. 497 */ 498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode, 499 const char *name, 500 unsigned int index) 501 { 502 struct fwnode_reference_args args; 503 int ret; 504 505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index, 506 &args); 507 return ret ? ERR_PTR(ret) : args.fwnode; 508 } 509 EXPORT_SYMBOL_GPL(fwnode_find_reference); 510 511 /** 512 * device_remove_properties - Remove properties from a device object. 513 * @dev: Device whose properties to remove. 514 * 515 * The function removes properties previously associated to the device 516 * firmware node with device_add_properties(). Memory allocated to the 517 * properties will also be released. 518 */ 519 void device_remove_properties(struct device *dev) 520 { 521 struct fwnode_handle *fwnode = dev_fwnode(dev); 522 523 if (!fwnode) 524 return; 525 526 if (is_software_node(fwnode->secondary)) { 527 fwnode_remove_software_node(fwnode->secondary); 528 set_secondary_fwnode(dev, NULL); 529 } 530 } 531 EXPORT_SYMBOL_GPL(device_remove_properties); 532 533 /** 534 * device_add_properties - Add a collection of properties to a device object. 535 * @dev: Device to add properties to. 536 * @properties: Collection of properties to add. 537 * 538 * Associate a collection of device properties represented by @properties with 539 * @dev. The function takes a copy of @properties. 540 * 541 * WARNING: The callers should not use this function if it is known that there 542 * is no real firmware node associated with @dev! In that case the callers 543 * should create a software node and assign it to @dev directly. 544 */ 545 int device_add_properties(struct device *dev, 546 const struct property_entry *properties) 547 { 548 struct fwnode_handle *fwnode; 549 550 fwnode = fwnode_create_software_node(properties, NULL); 551 if (IS_ERR(fwnode)) 552 return PTR_ERR(fwnode); 553 554 set_secondary_fwnode(dev, fwnode); 555 return 0; 556 } 557 EXPORT_SYMBOL_GPL(device_add_properties); 558 559 /** 560 * fwnode_get_name - Return the name of a node 561 * @fwnode: The firmware node 562 * 563 * Returns a pointer to the node name. 564 */ 565 const char *fwnode_get_name(const struct fwnode_handle *fwnode) 566 { 567 return fwnode_call_ptr_op(fwnode, get_name); 568 } 569 570 /** 571 * fwnode_get_name_prefix - Return the prefix of node for printing purposes 572 * @fwnode: The firmware node 573 * 574 * Returns the prefix of a node, intended to be printed right before the node. 575 * The prefix works also as a separator between the nodes. 576 */ 577 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode) 578 { 579 return fwnode_call_ptr_op(fwnode, get_name_prefix); 580 } 581 582 /** 583 * fwnode_get_parent - Return parent firwmare node 584 * @fwnode: Firmware whose parent is retrieved 585 * 586 * Return parent firmware node of the given node if possible or %NULL if no 587 * parent was available. 588 */ 589 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode) 590 { 591 return fwnode_call_ptr_op(fwnode, get_parent); 592 } 593 EXPORT_SYMBOL_GPL(fwnode_get_parent); 594 595 /** 596 * fwnode_get_next_parent - Iterate to the node's parent 597 * @fwnode: Firmware whose parent is retrieved 598 * 599 * This is like fwnode_get_parent() except that it drops the refcount 600 * on the passed node, making it suitable for iterating through a 601 * node's parents. 602 * 603 * Returns a node pointer with refcount incremented, use 604 * fwnode_handle_node() on it when done. 605 */ 606 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode) 607 { 608 struct fwnode_handle *parent = fwnode_get_parent(fwnode); 609 610 fwnode_handle_put(fwnode); 611 612 return parent; 613 } 614 EXPORT_SYMBOL_GPL(fwnode_get_next_parent); 615 616 /** 617 * fwnode_count_parents - Return the number of parents a node has 618 * @fwnode: The node the parents of which are to be counted 619 * 620 * Returns the number of parents a node has. 621 */ 622 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode) 623 { 624 struct fwnode_handle *__fwnode; 625 unsigned int count; 626 627 __fwnode = fwnode_get_parent(fwnode); 628 629 for (count = 0; __fwnode; count++) 630 __fwnode = fwnode_get_next_parent(__fwnode); 631 632 return count; 633 } 634 EXPORT_SYMBOL_GPL(fwnode_count_parents); 635 636 /** 637 * fwnode_get_nth_parent - Return an nth parent of a node 638 * @fwnode: The node the parent of which is requested 639 * @depth: Distance of the parent from the node 640 * 641 * Returns the nth parent of a node. If there is no parent at the requested 642 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to 643 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on. 644 * 645 * The caller is responsible for calling fwnode_handle_put() for the returned 646 * node. 647 */ 648 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode, 649 unsigned int depth) 650 { 651 unsigned int i; 652 653 fwnode_handle_get(fwnode); 654 655 for (i = 0; i < depth && fwnode; i++) 656 fwnode = fwnode_get_next_parent(fwnode); 657 658 return fwnode; 659 } 660 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent); 661 662 /** 663 * fwnode_get_next_child_node - Return the next child node handle for a node 664 * @fwnode: Firmware node to find the next child node for. 665 * @child: Handle to one of the node's child nodes or a %NULL handle. 666 */ 667 struct fwnode_handle * 668 fwnode_get_next_child_node(const struct fwnode_handle *fwnode, 669 struct fwnode_handle *child) 670 { 671 return fwnode_call_ptr_op(fwnode, get_next_child_node, child); 672 } 673 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node); 674 675 /** 676 * fwnode_get_next_available_child_node - Return the next 677 * available child node handle for a node 678 * @fwnode: Firmware node to find the next child node for. 679 * @child: Handle to one of the node's child nodes or a %NULL handle. 680 */ 681 struct fwnode_handle * 682 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode, 683 struct fwnode_handle *child) 684 { 685 struct fwnode_handle *next_child = child; 686 687 if (!fwnode) 688 return NULL; 689 690 do { 691 next_child = fwnode_get_next_child_node(fwnode, next_child); 692 693 if (!next_child || fwnode_device_is_available(next_child)) 694 break; 695 } while (next_child); 696 697 return next_child; 698 } 699 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node); 700 701 /** 702 * device_get_next_child_node - Return the next child node handle for a device 703 * @dev: Device to find the next child node for. 704 * @child: Handle to one of the device's child nodes or a null handle. 705 */ 706 struct fwnode_handle *device_get_next_child_node(struct device *dev, 707 struct fwnode_handle *child) 708 { 709 struct acpi_device *adev = ACPI_COMPANION(dev); 710 struct fwnode_handle *fwnode = NULL; 711 712 if (dev->of_node) 713 fwnode = &dev->of_node->fwnode; 714 else if (adev) 715 fwnode = acpi_fwnode_handle(adev); 716 717 return fwnode_get_next_child_node(fwnode, child); 718 } 719 EXPORT_SYMBOL_GPL(device_get_next_child_node); 720 721 /** 722 * fwnode_get_named_child_node - Return first matching named child node handle 723 * @fwnode: Firmware node to find the named child node for. 724 * @childname: String to match child node name against. 725 */ 726 struct fwnode_handle * 727 fwnode_get_named_child_node(const struct fwnode_handle *fwnode, 728 const char *childname) 729 { 730 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname); 731 } 732 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node); 733 734 /** 735 * device_get_named_child_node - Return first matching named child node handle 736 * @dev: Device to find the named child node for. 737 * @childname: String to match child node name against. 738 */ 739 struct fwnode_handle *device_get_named_child_node(struct device *dev, 740 const char *childname) 741 { 742 return fwnode_get_named_child_node(dev_fwnode(dev), childname); 743 } 744 EXPORT_SYMBOL_GPL(device_get_named_child_node); 745 746 /** 747 * fwnode_handle_get - Obtain a reference to a device node 748 * @fwnode: Pointer to the device node to obtain the reference to. 749 * 750 * Returns the fwnode handle. 751 */ 752 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode) 753 { 754 if (!fwnode_has_op(fwnode, get)) 755 return fwnode; 756 757 return fwnode_call_ptr_op(fwnode, get); 758 } 759 EXPORT_SYMBOL_GPL(fwnode_handle_get); 760 761 /** 762 * fwnode_handle_put - Drop reference to a device node 763 * @fwnode: Pointer to the device node to drop the reference to. 764 * 765 * This has to be used when terminating device_for_each_child_node() iteration 766 * with break or return to prevent stale device node references from being left 767 * behind. 768 */ 769 void fwnode_handle_put(struct fwnode_handle *fwnode) 770 { 771 fwnode_call_void_op(fwnode, put); 772 } 773 EXPORT_SYMBOL_GPL(fwnode_handle_put); 774 775 /** 776 * fwnode_device_is_available - check if a device is available for use 777 * @fwnode: Pointer to the fwnode of the device. 778 */ 779 bool fwnode_device_is_available(const struct fwnode_handle *fwnode) 780 { 781 return fwnode_call_bool_op(fwnode, device_is_available); 782 } 783 EXPORT_SYMBOL_GPL(fwnode_device_is_available); 784 785 /** 786 * device_get_child_node_count - return the number of child nodes for device 787 * @dev: Device to cound the child nodes for 788 */ 789 unsigned int device_get_child_node_count(struct device *dev) 790 { 791 struct fwnode_handle *child; 792 unsigned int count = 0; 793 794 device_for_each_child_node(dev, child) 795 count++; 796 797 return count; 798 } 799 EXPORT_SYMBOL_GPL(device_get_child_node_count); 800 801 bool device_dma_supported(struct device *dev) 802 { 803 /* For DT, this is always supported. 804 * For ACPI, this depends on CCA, which 805 * is determined by the acpi_dma_supported(). 806 */ 807 if (IS_ENABLED(CONFIG_OF) && dev->of_node) 808 return true; 809 810 return acpi_dma_supported(ACPI_COMPANION(dev)); 811 } 812 EXPORT_SYMBOL_GPL(device_dma_supported); 813 814 enum dev_dma_attr device_get_dma_attr(struct device *dev) 815 { 816 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED; 817 818 if (IS_ENABLED(CONFIG_OF) && dev->of_node) { 819 if (of_dma_is_coherent(dev->of_node)) 820 attr = DEV_DMA_COHERENT; 821 else 822 attr = DEV_DMA_NON_COHERENT; 823 } else 824 attr = acpi_get_dma_attr(ACPI_COMPANION(dev)); 825 826 return attr; 827 } 828 EXPORT_SYMBOL_GPL(device_get_dma_attr); 829 830 /** 831 * fwnode_get_phy_mode - Get phy mode for given firmware node 832 * @fwnode: Pointer to the given node 833 * 834 * The function gets phy interface string from property 'phy-mode' or 835 * 'phy-connection-type', and return its index in phy_modes table, or errno in 836 * error case. 837 */ 838 int fwnode_get_phy_mode(struct fwnode_handle *fwnode) 839 { 840 const char *pm; 841 int err, i; 842 843 err = fwnode_property_read_string(fwnode, "phy-mode", &pm); 844 if (err < 0) 845 err = fwnode_property_read_string(fwnode, 846 "phy-connection-type", &pm); 847 if (err < 0) 848 return err; 849 850 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++) 851 if (!strcasecmp(pm, phy_modes(i))) 852 return i; 853 854 return -ENODEV; 855 } 856 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode); 857 858 /** 859 * device_get_phy_mode - Get phy mode for given device 860 * @dev: Pointer to the given device 861 * 862 * The function gets phy interface string from property 'phy-mode' or 863 * 'phy-connection-type', and return its index in phy_modes table, or errno in 864 * error case. 865 */ 866 int device_get_phy_mode(struct device *dev) 867 { 868 return fwnode_get_phy_mode(dev_fwnode(dev)); 869 } 870 EXPORT_SYMBOL_GPL(device_get_phy_mode); 871 872 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode, 873 const char *name, char *addr, 874 int alen) 875 { 876 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen); 877 878 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr)) 879 return addr; 880 return NULL; 881 } 882 883 /** 884 * fwnode_get_mac_address - Get the MAC from the firmware node 885 * @fwnode: Pointer to the firmware node 886 * @addr: Address of buffer to store the MAC in 887 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN 888 * 889 * Search the firmware node for the best MAC address to use. 'mac-address' is 890 * checked first, because that is supposed to contain to "most recent" MAC 891 * address. If that isn't set, then 'local-mac-address' is checked next, 892 * because that is the default address. If that isn't set, then the obsolete 893 * 'address' is checked, just in case we're using an old device tree. 894 * 895 * Note that the 'address' property is supposed to contain a virtual address of 896 * the register set, but some DTS files have redefined that property to be the 897 * MAC address. 898 * 899 * All-zero MAC addresses are rejected, because those could be properties that 900 * exist in the firmware tables, but were not updated by the firmware. For 901 * example, the DTS could define 'mac-address' and 'local-mac-address', with 902 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'. 903 * In this case, the real MAC is in 'local-mac-address', and 'mac-address' 904 * exists but is all zeros. 905 */ 906 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen) 907 { 908 char *res; 909 910 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen); 911 if (res) 912 return res; 913 914 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen); 915 if (res) 916 return res; 917 918 return fwnode_get_mac_addr(fwnode, "address", addr, alen); 919 } 920 EXPORT_SYMBOL(fwnode_get_mac_address); 921 922 /** 923 * device_get_mac_address - Get the MAC for a given device 924 * @dev: Pointer to the device 925 * @addr: Address of buffer to store the MAC in 926 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN 927 */ 928 void *device_get_mac_address(struct device *dev, char *addr, int alen) 929 { 930 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen); 931 } 932 EXPORT_SYMBOL(device_get_mac_address); 933 934 /** 935 * fwnode_irq_get - Get IRQ directly from a fwnode 936 * @fwnode: Pointer to the firmware node 937 * @index: Zero-based index of the IRQ 938 * 939 * Returns Linux IRQ number on success. Other values are determined 940 * accordingly to acpi_/of_ irq_get() operation. 941 */ 942 int fwnode_irq_get(struct fwnode_handle *fwnode, unsigned int index) 943 { 944 struct device_node *of_node = to_of_node(fwnode); 945 struct resource res; 946 int ret; 947 948 if (IS_ENABLED(CONFIG_OF) && of_node) 949 return of_irq_get(of_node, index); 950 951 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res); 952 if (ret) 953 return ret; 954 955 return res.start; 956 } 957 EXPORT_SYMBOL(fwnode_irq_get); 958 959 /** 960 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node 961 * @fwnode: Pointer to the parent firmware node 962 * @prev: Previous endpoint node or %NULL to get the first 963 * 964 * Returns an endpoint firmware node pointer or %NULL if no more endpoints 965 * are available. 966 */ 967 struct fwnode_handle * 968 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode, 969 struct fwnode_handle *prev) 970 { 971 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev); 972 } 973 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint); 974 975 /** 976 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint 977 * @endpoint: Endpoint firmware node of the port 978 * 979 * Return: the firmware node of the device the @endpoint belongs to. 980 */ 981 struct fwnode_handle * 982 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint) 983 { 984 struct fwnode_handle *port, *parent; 985 986 port = fwnode_get_parent(endpoint); 987 parent = fwnode_call_ptr_op(port, graph_get_port_parent); 988 989 fwnode_handle_put(port); 990 991 return parent; 992 } 993 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent); 994 995 /** 996 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device 997 * @fwnode: Endpoint firmware node pointing to the remote endpoint 998 * 999 * Extracts firmware node of a remote device the @fwnode points to. 1000 */ 1001 struct fwnode_handle * 1002 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode) 1003 { 1004 struct fwnode_handle *endpoint, *parent; 1005 1006 endpoint = fwnode_graph_get_remote_endpoint(fwnode); 1007 parent = fwnode_graph_get_port_parent(endpoint); 1008 1009 fwnode_handle_put(endpoint); 1010 1011 return parent; 1012 } 1013 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent); 1014 1015 /** 1016 * fwnode_graph_get_remote_port - Return fwnode of a remote port 1017 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1018 * 1019 * Extracts firmware node of a remote port the @fwnode points to. 1020 */ 1021 struct fwnode_handle * 1022 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode) 1023 { 1024 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode)); 1025 } 1026 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port); 1027 1028 /** 1029 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint 1030 * @fwnode: Endpoint firmware node pointing to the remote endpoint 1031 * 1032 * Extracts firmware node of a remote endpoint the @fwnode points to. 1033 */ 1034 struct fwnode_handle * 1035 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode) 1036 { 1037 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint); 1038 } 1039 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint); 1040 1041 /** 1042 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint 1043 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint 1044 * @port_id: identifier of the parent port node 1045 * @endpoint_id: identifier of the endpoint node 1046 * 1047 * Return: Remote fwnode handle associated with remote endpoint node linked 1048 * to @node. Use fwnode_node_put() on it when done. 1049 */ 1050 struct fwnode_handle * 1051 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id, 1052 u32 endpoint_id) 1053 { 1054 struct fwnode_handle *endpoint = NULL; 1055 1056 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) { 1057 struct fwnode_endpoint fwnode_ep; 1058 struct fwnode_handle *remote; 1059 int ret; 1060 1061 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep); 1062 if (ret < 0) 1063 continue; 1064 1065 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id) 1066 continue; 1067 1068 remote = fwnode_graph_get_remote_port_parent(endpoint); 1069 if (!remote) 1070 return NULL; 1071 1072 return fwnode_device_is_available(remote) ? remote : NULL; 1073 } 1074 1075 return NULL; 1076 } 1077 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node); 1078 1079 /** 1080 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers 1081 * @fwnode: parent fwnode_handle containing the graph 1082 * @port: identifier of the port node 1083 * @endpoint: identifier of the endpoint node under the port node 1084 * @flags: fwnode lookup flags 1085 * 1086 * Return the fwnode handle of the local endpoint corresponding the port and 1087 * endpoint IDs or NULL if not found. 1088 * 1089 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint 1090 * has not been found, look for the closest endpoint ID greater than the 1091 * specified one and return the endpoint that corresponds to it, if present. 1092 * 1093 * Do not return endpoints that belong to disabled devices, unless 1094 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags. 1095 * 1096 * The returned endpoint needs to be released by calling fwnode_handle_put() on 1097 * it when it is not needed any more. 1098 */ 1099 struct fwnode_handle * 1100 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode, 1101 u32 port, u32 endpoint, unsigned long flags) 1102 { 1103 struct fwnode_handle *ep = NULL, *best_ep = NULL; 1104 unsigned int best_ep_id = 0; 1105 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT; 1106 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED); 1107 1108 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) { 1109 struct fwnode_endpoint fwnode_ep = { 0 }; 1110 int ret; 1111 1112 if (enabled_only) { 1113 struct fwnode_handle *dev_node; 1114 bool available; 1115 1116 dev_node = fwnode_graph_get_remote_port_parent(ep); 1117 available = fwnode_device_is_available(dev_node); 1118 fwnode_handle_put(dev_node); 1119 if (!available) 1120 continue; 1121 } 1122 1123 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep); 1124 if (ret < 0) 1125 continue; 1126 1127 if (fwnode_ep.port != port) 1128 continue; 1129 1130 if (fwnode_ep.id == endpoint) 1131 return ep; 1132 1133 if (!endpoint_next) 1134 continue; 1135 1136 /* 1137 * If the endpoint that has just been found is not the first 1138 * matching one and the ID of the one found previously is closer 1139 * to the requested endpoint ID, skip it. 1140 */ 1141 if (fwnode_ep.id < endpoint || 1142 (best_ep && best_ep_id < fwnode_ep.id)) 1143 continue; 1144 1145 fwnode_handle_put(best_ep); 1146 best_ep = fwnode_handle_get(ep); 1147 best_ep_id = fwnode_ep.id; 1148 } 1149 1150 return best_ep; 1151 } 1152 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id); 1153 1154 /** 1155 * fwnode_graph_parse_endpoint - parse common endpoint node properties 1156 * @fwnode: pointer to endpoint fwnode_handle 1157 * @endpoint: pointer to the fwnode endpoint data structure 1158 * 1159 * Parse @fwnode representing a graph endpoint node and store the 1160 * information in @endpoint. The caller must hold a reference to 1161 * @fwnode. 1162 */ 1163 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode, 1164 struct fwnode_endpoint *endpoint) 1165 { 1166 memset(endpoint, 0, sizeof(*endpoint)); 1167 1168 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint); 1169 } 1170 EXPORT_SYMBOL(fwnode_graph_parse_endpoint); 1171 1172 const void *device_get_match_data(struct device *dev) 1173 { 1174 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev); 1175 } 1176 EXPORT_SYMBOL_GPL(device_get_match_data); 1177