xref: /openbmc/linux/drivers/base/power/main.c (revision fc28ab18)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36 
37 #include "../base.h"
38 #include "power.h"
39 
40 typedef int (*pm_callback_t)(struct device *);
41 
42 /*
43  * The entries in the dpm_list list are in a depth first order, simply
44  * because children are guaranteed to be discovered after parents, and
45  * are inserted at the back of the list on discovery.
46  *
47  * Since device_pm_add() may be called with a device lock held,
48  * we must never try to acquire a device lock while holding
49  * dpm_list_mutex.
50  */
51 
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57 
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61 
62 static int async_error;
63 
64 static char *pm_verb(int event)
65 {
66 	switch (event) {
67 	case PM_EVENT_SUSPEND:
68 		return "suspend";
69 	case PM_EVENT_RESUME:
70 		return "resume";
71 	case PM_EVENT_FREEZE:
72 		return "freeze";
73 	case PM_EVENT_QUIESCE:
74 		return "quiesce";
75 	case PM_EVENT_HIBERNATE:
76 		return "hibernate";
77 	case PM_EVENT_THAW:
78 		return "thaw";
79 	case PM_EVENT_RESTORE:
80 		return "restore";
81 	case PM_EVENT_RECOVER:
82 		return "recover";
83 	default:
84 		return "(unknown PM event)";
85 	}
86 }
87 
88 /**
89  * device_pm_sleep_init - Initialize system suspend-related device fields.
90  * @dev: Device object being initialized.
91  */
92 void device_pm_sleep_init(struct device *dev)
93 {
94 	dev->power.is_prepared = false;
95 	dev->power.is_suspended = false;
96 	dev->power.is_noirq_suspended = false;
97 	dev->power.is_late_suspended = false;
98 	init_completion(&dev->power.completion);
99 	complete_all(&dev->power.completion);
100 	dev->power.wakeup = NULL;
101 	INIT_LIST_HEAD(&dev->power.entry);
102 }
103 
104 /**
105  * device_pm_lock - Lock the list of active devices used by the PM core.
106  */
107 void device_pm_lock(void)
108 {
109 	mutex_lock(&dpm_list_mtx);
110 }
111 
112 /**
113  * device_pm_unlock - Unlock the list of active devices used by the PM core.
114  */
115 void device_pm_unlock(void)
116 {
117 	mutex_unlock(&dpm_list_mtx);
118 }
119 
120 /**
121  * device_pm_add - Add a device to the PM core's list of active devices.
122  * @dev: Device to add to the list.
123  */
124 void device_pm_add(struct device *dev)
125 {
126 	pr_debug("PM: Adding info for %s:%s\n",
127 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 	device_pm_check_callbacks(dev);
129 	mutex_lock(&dpm_list_mtx);
130 	if (dev->parent && dev->parent->power.is_prepared)
131 		dev_warn(dev, "parent %s should not be sleeping\n",
132 			dev_name(dev->parent));
133 	list_add_tail(&dev->power.entry, &dpm_list);
134 	dev->power.in_dpm_list = true;
135 	mutex_unlock(&dpm_list_mtx);
136 }
137 
138 /**
139  * device_pm_remove - Remove a device from the PM core's list of active devices.
140  * @dev: Device to be removed from the list.
141  */
142 void device_pm_remove(struct device *dev)
143 {
144 	pr_debug("PM: Removing info for %s:%s\n",
145 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146 	complete_all(&dev->power.completion);
147 	mutex_lock(&dpm_list_mtx);
148 	list_del_init(&dev->power.entry);
149 	dev->power.in_dpm_list = false;
150 	mutex_unlock(&dpm_list_mtx);
151 	device_wakeup_disable(dev);
152 	pm_runtime_remove(dev);
153 	device_pm_check_callbacks(dev);
154 }
155 
156 /**
157  * device_pm_move_before - Move device in the PM core's list of active devices.
158  * @deva: Device to move in dpm_list.
159  * @devb: Device @deva should come before.
160  */
161 void device_pm_move_before(struct device *deva, struct device *devb)
162 {
163 	pr_debug("PM: Moving %s:%s before %s:%s\n",
164 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166 	/* Delete deva from dpm_list and reinsert before devb. */
167 	list_move_tail(&deva->power.entry, &devb->power.entry);
168 }
169 
170 /**
171  * device_pm_move_after - Move device in the PM core's list of active devices.
172  * @deva: Device to move in dpm_list.
173  * @devb: Device @deva should come after.
174  */
175 void device_pm_move_after(struct device *deva, struct device *devb)
176 {
177 	pr_debug("PM: Moving %s:%s after %s:%s\n",
178 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 	/* Delete deva from dpm_list and reinsert after devb. */
181 	list_move(&deva->power.entry, &devb->power.entry);
182 }
183 
184 /**
185  * device_pm_move_last - Move device to end of the PM core's list of devices.
186  * @dev: Device to move in dpm_list.
187  */
188 void device_pm_move_last(struct device *dev)
189 {
190 	pr_debug("PM: Moving %s:%s to end of list\n",
191 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192 	list_move_tail(&dev->power.entry, &dpm_list);
193 }
194 
195 static ktime_t initcall_debug_start(struct device *dev)
196 {
197 	ktime_t calltime = 0;
198 
199 	if (pm_print_times_enabled) {
200 		pr_info("calling  %s+ @ %i, parent: %s\n",
201 			dev_name(dev), task_pid_nr(current),
202 			dev->parent ? dev_name(dev->parent) : "none");
203 		calltime = ktime_get();
204 	}
205 
206 	return calltime;
207 }
208 
209 static void initcall_debug_report(struct device *dev, ktime_t calltime,
210 				  int error, pm_message_t state, char *info)
211 {
212 	ktime_t rettime;
213 	s64 nsecs;
214 
215 	rettime = ktime_get();
216 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
217 
218 	if (pm_print_times_enabled) {
219 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
220 			error, (unsigned long long)nsecs >> 10);
221 	}
222 }
223 
224 /**
225  * dpm_wait - Wait for a PM operation to complete.
226  * @dev: Device to wait for.
227  * @async: If unset, wait only if the device's power.async_suspend flag is set.
228  */
229 static void dpm_wait(struct device *dev, bool async)
230 {
231 	if (!dev)
232 		return;
233 
234 	if (async || (pm_async_enabled && dev->power.async_suspend))
235 		wait_for_completion(&dev->power.completion);
236 }
237 
238 static int dpm_wait_fn(struct device *dev, void *async_ptr)
239 {
240 	dpm_wait(dev, *((bool *)async_ptr));
241 	return 0;
242 }
243 
244 static void dpm_wait_for_children(struct device *dev, bool async)
245 {
246        device_for_each_child(dev, &async, dpm_wait_fn);
247 }
248 
249 static void dpm_wait_for_suppliers(struct device *dev, bool async)
250 {
251 	struct device_link *link;
252 	int idx;
253 
254 	idx = device_links_read_lock();
255 
256 	/*
257 	 * If the supplier goes away right after we've checked the link to it,
258 	 * we'll wait for its completion to change the state, but that's fine,
259 	 * because the only things that will block as a result are the SRCU
260 	 * callbacks freeing the link objects for the links in the list we're
261 	 * walking.
262 	 */
263 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
264 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
265 			dpm_wait(link->supplier, async);
266 
267 	device_links_read_unlock(idx);
268 }
269 
270 static void dpm_wait_for_superior(struct device *dev, bool async)
271 {
272 	dpm_wait(dev->parent, async);
273 	dpm_wait_for_suppliers(dev, async);
274 }
275 
276 static void dpm_wait_for_consumers(struct device *dev, bool async)
277 {
278 	struct device_link *link;
279 	int idx;
280 
281 	idx = device_links_read_lock();
282 
283 	/*
284 	 * The status of a device link can only be changed from "dormant" by a
285 	 * probe, but that cannot happen during system suspend/resume.  In
286 	 * theory it can change to "dormant" at that time, but then it is
287 	 * reasonable to wait for the target device anyway (eg. if it goes
288 	 * away, it's better to wait for it to go away completely and then
289 	 * continue instead of trying to continue in parallel with its
290 	 * unregistration).
291 	 */
292 	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
293 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
294 			dpm_wait(link->consumer, async);
295 
296 	device_links_read_unlock(idx);
297 }
298 
299 static void dpm_wait_for_subordinate(struct device *dev, bool async)
300 {
301 	dpm_wait_for_children(dev, async);
302 	dpm_wait_for_consumers(dev, async);
303 }
304 
305 /**
306  * pm_op - Return the PM operation appropriate for given PM event.
307  * @ops: PM operations to choose from.
308  * @state: PM transition of the system being carried out.
309  */
310 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
311 {
312 	switch (state.event) {
313 #ifdef CONFIG_SUSPEND
314 	case PM_EVENT_SUSPEND:
315 		return ops->suspend;
316 	case PM_EVENT_RESUME:
317 		return ops->resume;
318 #endif /* CONFIG_SUSPEND */
319 #ifdef CONFIG_HIBERNATE_CALLBACKS
320 	case PM_EVENT_FREEZE:
321 	case PM_EVENT_QUIESCE:
322 		return ops->freeze;
323 	case PM_EVENT_HIBERNATE:
324 		return ops->poweroff;
325 	case PM_EVENT_THAW:
326 	case PM_EVENT_RECOVER:
327 		return ops->thaw;
328 		break;
329 	case PM_EVENT_RESTORE:
330 		return ops->restore;
331 #endif /* CONFIG_HIBERNATE_CALLBACKS */
332 	}
333 
334 	return NULL;
335 }
336 
337 /**
338  * pm_late_early_op - Return the PM operation appropriate for given PM event.
339  * @ops: PM operations to choose from.
340  * @state: PM transition of the system being carried out.
341  *
342  * Runtime PM is disabled for @dev while this function is being executed.
343  */
344 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
345 				      pm_message_t state)
346 {
347 	switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 	case PM_EVENT_SUSPEND:
350 		return ops->suspend_late;
351 	case PM_EVENT_RESUME:
352 		return ops->resume_early;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 	case PM_EVENT_FREEZE:
356 	case PM_EVENT_QUIESCE:
357 		return ops->freeze_late;
358 	case PM_EVENT_HIBERNATE:
359 		return ops->poweroff_late;
360 	case PM_EVENT_THAW:
361 	case PM_EVENT_RECOVER:
362 		return ops->thaw_early;
363 	case PM_EVENT_RESTORE:
364 		return ops->restore_early;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 	}
367 
368 	return NULL;
369 }
370 
371 /**
372  * pm_noirq_op - Return the PM operation appropriate for given PM event.
373  * @ops: PM operations to choose from.
374  * @state: PM transition of the system being carried out.
375  *
376  * The driver of @dev will not receive interrupts while this function is being
377  * executed.
378  */
379 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
380 {
381 	switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 	case PM_EVENT_SUSPEND:
384 		return ops->suspend_noirq;
385 	case PM_EVENT_RESUME:
386 		return ops->resume_noirq;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 	case PM_EVENT_FREEZE:
390 	case PM_EVENT_QUIESCE:
391 		return ops->freeze_noirq;
392 	case PM_EVENT_HIBERNATE:
393 		return ops->poweroff_noirq;
394 	case PM_EVENT_THAW:
395 	case PM_EVENT_RECOVER:
396 		return ops->thaw_noirq;
397 	case PM_EVENT_RESTORE:
398 		return ops->restore_noirq;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 	}
401 
402 	return NULL;
403 }
404 
405 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
406 {
407 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
408 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
409 		", may wakeup" : "");
410 }
411 
412 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
413 			int error)
414 {
415 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
416 		dev_name(dev), pm_verb(state.event), info, error);
417 }
418 
419 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
420 {
421 	ktime_t calltime;
422 	u64 usecs64;
423 	int usecs;
424 
425 	calltime = ktime_get();
426 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
427 	do_div(usecs64, NSEC_PER_USEC);
428 	usecs = usecs64;
429 	if (usecs == 0)
430 		usecs = 1;
431 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
432 		info ?: "", info ? " " : "", pm_verb(state.event),
433 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
434 }
435 
436 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
437 			    pm_message_t state, char *info)
438 {
439 	ktime_t calltime;
440 	int error;
441 
442 	if (!cb)
443 		return 0;
444 
445 	calltime = initcall_debug_start(dev);
446 
447 	pm_dev_dbg(dev, state, info);
448 	trace_device_pm_callback_start(dev, info, state.event);
449 	error = cb(dev);
450 	trace_device_pm_callback_end(dev, error);
451 	suspend_report_result(cb, error);
452 
453 	initcall_debug_report(dev, calltime, error, state, info);
454 
455 	return error;
456 }
457 
458 #ifdef CONFIG_DPM_WATCHDOG
459 struct dpm_watchdog {
460 	struct device		*dev;
461 	struct task_struct	*tsk;
462 	struct timer_list	timer;
463 };
464 
465 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
466 	struct dpm_watchdog wd
467 
468 /**
469  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
470  * @data: Watchdog object address.
471  *
472  * Called when a driver has timed out suspending or resuming.
473  * There's not much we can do here to recover so panic() to
474  * capture a crash-dump in pstore.
475  */
476 static void dpm_watchdog_handler(unsigned long data)
477 {
478 	struct dpm_watchdog *wd = (void *)data;
479 
480 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
481 	show_stack(wd->tsk, NULL);
482 	panic("%s %s: unrecoverable failure\n",
483 		dev_driver_string(wd->dev), dev_name(wd->dev));
484 }
485 
486 /**
487  * dpm_watchdog_set - Enable pm watchdog for given device.
488  * @wd: Watchdog. Must be allocated on the stack.
489  * @dev: Device to handle.
490  */
491 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
492 {
493 	struct timer_list *timer = &wd->timer;
494 
495 	wd->dev = dev;
496 	wd->tsk = current;
497 
498 	init_timer_on_stack(timer);
499 	/* use same timeout value for both suspend and resume */
500 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
501 	timer->function = dpm_watchdog_handler;
502 	timer->data = (unsigned long)wd;
503 	add_timer(timer);
504 }
505 
506 /**
507  * dpm_watchdog_clear - Disable suspend/resume watchdog.
508  * @wd: Watchdog to disable.
509  */
510 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
511 {
512 	struct timer_list *timer = &wd->timer;
513 
514 	del_timer_sync(timer);
515 	destroy_timer_on_stack(timer);
516 }
517 #else
518 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
519 #define dpm_watchdog_set(x, y)
520 #define dpm_watchdog_clear(x)
521 #endif
522 
523 /*------------------------- Resume routines -------------------------*/
524 
525 /**
526  * device_resume_noirq - Execute an "early resume" callback for given device.
527  * @dev: Device to handle.
528  * @state: PM transition of the system being carried out.
529  * @async: If true, the device is being resumed asynchronously.
530  *
531  * The driver of @dev will not receive interrupts while this function is being
532  * executed.
533  */
534 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
535 {
536 	pm_callback_t callback = NULL;
537 	char *info = NULL;
538 	int error = 0;
539 
540 	TRACE_DEVICE(dev);
541 	TRACE_RESUME(0);
542 
543 	if (dev->power.syscore || dev->power.direct_complete)
544 		goto Out;
545 
546 	if (!dev->power.is_noirq_suspended)
547 		goto Out;
548 
549 	dpm_wait_for_superior(dev, async);
550 
551 	if (dev->pm_domain) {
552 		info = "noirq power domain ";
553 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
554 	} else if (dev->type && dev->type->pm) {
555 		info = "noirq type ";
556 		callback = pm_noirq_op(dev->type->pm, state);
557 	} else if (dev->class && dev->class->pm) {
558 		info = "noirq class ";
559 		callback = pm_noirq_op(dev->class->pm, state);
560 	} else if (dev->bus && dev->bus->pm) {
561 		info = "noirq bus ";
562 		callback = pm_noirq_op(dev->bus->pm, state);
563 	}
564 
565 	if (!callback && dev->driver && dev->driver->pm) {
566 		info = "noirq driver ";
567 		callback = pm_noirq_op(dev->driver->pm, state);
568 	}
569 
570 	error = dpm_run_callback(callback, dev, state, info);
571 	dev->power.is_noirq_suspended = false;
572 
573  Out:
574 	complete_all(&dev->power.completion);
575 	TRACE_RESUME(error);
576 	return error;
577 }
578 
579 static bool is_async(struct device *dev)
580 {
581 	return dev->power.async_suspend && pm_async_enabled
582 		&& !pm_trace_is_enabled();
583 }
584 
585 static void async_resume_noirq(void *data, async_cookie_t cookie)
586 {
587 	struct device *dev = (struct device *)data;
588 	int error;
589 
590 	error = device_resume_noirq(dev, pm_transition, true);
591 	if (error)
592 		pm_dev_err(dev, pm_transition, " async", error);
593 
594 	put_device(dev);
595 }
596 
597 /**
598  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
599  * @state: PM transition of the system being carried out.
600  *
601  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
602  * enable device drivers to receive interrupts.
603  */
604 void dpm_resume_noirq(pm_message_t state)
605 {
606 	struct device *dev;
607 	ktime_t starttime = ktime_get();
608 
609 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
610 	mutex_lock(&dpm_list_mtx);
611 	pm_transition = state;
612 
613 	/*
614 	 * Advanced the async threads upfront,
615 	 * in case the starting of async threads is
616 	 * delayed by non-async resuming devices.
617 	 */
618 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
619 		reinit_completion(&dev->power.completion);
620 		if (is_async(dev)) {
621 			get_device(dev);
622 			async_schedule(async_resume_noirq, dev);
623 		}
624 	}
625 
626 	while (!list_empty(&dpm_noirq_list)) {
627 		dev = to_device(dpm_noirq_list.next);
628 		get_device(dev);
629 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
630 		mutex_unlock(&dpm_list_mtx);
631 
632 		if (!is_async(dev)) {
633 			int error;
634 
635 			error = device_resume_noirq(dev, state, false);
636 			if (error) {
637 				suspend_stats.failed_resume_noirq++;
638 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
639 				dpm_save_failed_dev(dev_name(dev));
640 				pm_dev_err(dev, state, " noirq", error);
641 			}
642 		}
643 
644 		mutex_lock(&dpm_list_mtx);
645 		put_device(dev);
646 	}
647 	mutex_unlock(&dpm_list_mtx);
648 	async_synchronize_full();
649 	dpm_show_time(starttime, state, "noirq");
650 	resume_device_irqs();
651 	device_wakeup_disarm_wake_irqs();
652 	cpuidle_resume();
653 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
654 }
655 
656 /**
657  * device_resume_early - Execute an "early resume" callback for given device.
658  * @dev: Device to handle.
659  * @state: PM transition of the system being carried out.
660  * @async: If true, the device is being resumed asynchronously.
661  *
662  * Runtime PM is disabled for @dev while this function is being executed.
663  */
664 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
665 {
666 	pm_callback_t callback = NULL;
667 	char *info = NULL;
668 	int error = 0;
669 
670 	TRACE_DEVICE(dev);
671 	TRACE_RESUME(0);
672 
673 	if (dev->power.syscore || dev->power.direct_complete)
674 		goto Out;
675 
676 	if (!dev->power.is_late_suspended)
677 		goto Out;
678 
679 	dpm_wait_for_superior(dev, async);
680 
681 	if (dev->pm_domain) {
682 		info = "early power domain ";
683 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
684 	} else if (dev->type && dev->type->pm) {
685 		info = "early type ";
686 		callback = pm_late_early_op(dev->type->pm, state);
687 	} else if (dev->class && dev->class->pm) {
688 		info = "early class ";
689 		callback = pm_late_early_op(dev->class->pm, state);
690 	} else if (dev->bus && dev->bus->pm) {
691 		info = "early bus ";
692 		callback = pm_late_early_op(dev->bus->pm, state);
693 	}
694 
695 	if (!callback && dev->driver && dev->driver->pm) {
696 		info = "early driver ";
697 		callback = pm_late_early_op(dev->driver->pm, state);
698 	}
699 
700 	error = dpm_run_callback(callback, dev, state, info);
701 	dev->power.is_late_suspended = false;
702 
703  Out:
704 	TRACE_RESUME(error);
705 
706 	pm_runtime_enable(dev);
707 	complete_all(&dev->power.completion);
708 	return error;
709 }
710 
711 static void async_resume_early(void *data, async_cookie_t cookie)
712 {
713 	struct device *dev = (struct device *)data;
714 	int error;
715 
716 	error = device_resume_early(dev, pm_transition, true);
717 	if (error)
718 		pm_dev_err(dev, pm_transition, " async", error);
719 
720 	put_device(dev);
721 }
722 
723 /**
724  * dpm_resume_early - Execute "early resume" callbacks for all devices.
725  * @state: PM transition of the system being carried out.
726  */
727 void dpm_resume_early(pm_message_t state)
728 {
729 	struct device *dev;
730 	ktime_t starttime = ktime_get();
731 
732 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
733 	mutex_lock(&dpm_list_mtx);
734 	pm_transition = state;
735 
736 	/*
737 	 * Advanced the async threads upfront,
738 	 * in case the starting of async threads is
739 	 * delayed by non-async resuming devices.
740 	 */
741 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
742 		reinit_completion(&dev->power.completion);
743 		if (is_async(dev)) {
744 			get_device(dev);
745 			async_schedule(async_resume_early, dev);
746 		}
747 	}
748 
749 	while (!list_empty(&dpm_late_early_list)) {
750 		dev = to_device(dpm_late_early_list.next);
751 		get_device(dev);
752 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
753 		mutex_unlock(&dpm_list_mtx);
754 
755 		if (!is_async(dev)) {
756 			int error;
757 
758 			error = device_resume_early(dev, state, false);
759 			if (error) {
760 				suspend_stats.failed_resume_early++;
761 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
762 				dpm_save_failed_dev(dev_name(dev));
763 				pm_dev_err(dev, state, " early", error);
764 			}
765 		}
766 		mutex_lock(&dpm_list_mtx);
767 		put_device(dev);
768 	}
769 	mutex_unlock(&dpm_list_mtx);
770 	async_synchronize_full();
771 	dpm_show_time(starttime, state, "early");
772 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
773 }
774 
775 /**
776  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
777  * @state: PM transition of the system being carried out.
778  */
779 void dpm_resume_start(pm_message_t state)
780 {
781 	dpm_resume_noirq(state);
782 	dpm_resume_early(state);
783 }
784 EXPORT_SYMBOL_GPL(dpm_resume_start);
785 
786 /**
787  * device_resume - Execute "resume" callbacks for given device.
788  * @dev: Device to handle.
789  * @state: PM transition of the system being carried out.
790  * @async: If true, the device is being resumed asynchronously.
791  */
792 static int device_resume(struct device *dev, pm_message_t state, bool async)
793 {
794 	pm_callback_t callback = NULL;
795 	char *info = NULL;
796 	int error = 0;
797 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
798 
799 	TRACE_DEVICE(dev);
800 	TRACE_RESUME(0);
801 
802 	if (dev->power.syscore)
803 		goto Complete;
804 
805 	if (dev->power.direct_complete) {
806 		/* Match the pm_runtime_disable() in __device_suspend(). */
807 		pm_runtime_enable(dev);
808 		goto Complete;
809 	}
810 
811 	dpm_wait_for_superior(dev, async);
812 	dpm_watchdog_set(&wd, dev);
813 	device_lock(dev);
814 
815 	/*
816 	 * This is a fib.  But we'll allow new children to be added below
817 	 * a resumed device, even if the device hasn't been completed yet.
818 	 */
819 	dev->power.is_prepared = false;
820 
821 	if (!dev->power.is_suspended)
822 		goto Unlock;
823 
824 	if (dev->pm_domain) {
825 		info = "power domain ";
826 		callback = pm_op(&dev->pm_domain->ops, state);
827 		goto Driver;
828 	}
829 
830 	if (dev->type && dev->type->pm) {
831 		info = "type ";
832 		callback = pm_op(dev->type->pm, state);
833 		goto Driver;
834 	}
835 
836 	if (dev->class) {
837 		if (dev->class->pm) {
838 			info = "class ";
839 			callback = pm_op(dev->class->pm, state);
840 			goto Driver;
841 		} else if (dev->class->resume) {
842 			info = "legacy class ";
843 			callback = dev->class->resume;
844 			goto End;
845 		}
846 	}
847 
848 	if (dev->bus) {
849 		if (dev->bus->pm) {
850 			info = "bus ";
851 			callback = pm_op(dev->bus->pm, state);
852 		} else if (dev->bus->resume) {
853 			info = "legacy bus ";
854 			callback = dev->bus->resume;
855 			goto End;
856 		}
857 	}
858 
859  Driver:
860 	if (!callback && dev->driver && dev->driver->pm) {
861 		info = "driver ";
862 		callback = pm_op(dev->driver->pm, state);
863 	}
864 
865  End:
866 	error = dpm_run_callback(callback, dev, state, info);
867 	dev->power.is_suspended = false;
868 
869  Unlock:
870 	device_unlock(dev);
871 	dpm_watchdog_clear(&wd);
872 
873  Complete:
874 	complete_all(&dev->power.completion);
875 
876 	TRACE_RESUME(error);
877 
878 	return error;
879 }
880 
881 static void async_resume(void *data, async_cookie_t cookie)
882 {
883 	struct device *dev = (struct device *)data;
884 	int error;
885 
886 	error = device_resume(dev, pm_transition, true);
887 	if (error)
888 		pm_dev_err(dev, pm_transition, " async", error);
889 	put_device(dev);
890 }
891 
892 /**
893  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
894  * @state: PM transition of the system being carried out.
895  *
896  * Execute the appropriate "resume" callback for all devices whose status
897  * indicates that they are suspended.
898  */
899 void dpm_resume(pm_message_t state)
900 {
901 	struct device *dev;
902 	ktime_t starttime = ktime_get();
903 
904 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
905 	might_sleep();
906 
907 	mutex_lock(&dpm_list_mtx);
908 	pm_transition = state;
909 	async_error = 0;
910 
911 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
912 		reinit_completion(&dev->power.completion);
913 		if (is_async(dev)) {
914 			get_device(dev);
915 			async_schedule(async_resume, dev);
916 		}
917 	}
918 
919 	while (!list_empty(&dpm_suspended_list)) {
920 		dev = to_device(dpm_suspended_list.next);
921 		get_device(dev);
922 		if (!is_async(dev)) {
923 			int error;
924 
925 			mutex_unlock(&dpm_list_mtx);
926 
927 			error = device_resume(dev, state, false);
928 			if (error) {
929 				suspend_stats.failed_resume++;
930 				dpm_save_failed_step(SUSPEND_RESUME);
931 				dpm_save_failed_dev(dev_name(dev));
932 				pm_dev_err(dev, state, "", error);
933 			}
934 
935 			mutex_lock(&dpm_list_mtx);
936 		}
937 		if (!list_empty(&dev->power.entry))
938 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
939 		put_device(dev);
940 	}
941 	mutex_unlock(&dpm_list_mtx);
942 	async_synchronize_full();
943 	dpm_show_time(starttime, state, NULL);
944 
945 	cpufreq_resume();
946 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
947 }
948 
949 /**
950  * device_complete - Complete a PM transition for given device.
951  * @dev: Device to handle.
952  * @state: PM transition of the system being carried out.
953  */
954 static void device_complete(struct device *dev, pm_message_t state)
955 {
956 	void (*callback)(struct device *) = NULL;
957 	char *info = NULL;
958 
959 	if (dev->power.syscore)
960 		return;
961 
962 	device_lock(dev);
963 
964 	if (dev->pm_domain) {
965 		info = "completing power domain ";
966 		callback = dev->pm_domain->ops.complete;
967 	} else if (dev->type && dev->type->pm) {
968 		info = "completing type ";
969 		callback = dev->type->pm->complete;
970 	} else if (dev->class && dev->class->pm) {
971 		info = "completing class ";
972 		callback = dev->class->pm->complete;
973 	} else if (dev->bus && dev->bus->pm) {
974 		info = "completing bus ";
975 		callback = dev->bus->pm->complete;
976 	}
977 
978 	if (!callback && dev->driver && dev->driver->pm) {
979 		info = "completing driver ";
980 		callback = dev->driver->pm->complete;
981 	}
982 
983 	if (callback) {
984 		pm_dev_dbg(dev, state, info);
985 		callback(dev);
986 	}
987 
988 	device_unlock(dev);
989 
990 	pm_runtime_put(dev);
991 }
992 
993 /**
994  * dpm_complete - Complete a PM transition for all non-sysdev devices.
995  * @state: PM transition of the system being carried out.
996  *
997  * Execute the ->complete() callbacks for all devices whose PM status is not
998  * DPM_ON (this allows new devices to be registered).
999  */
1000 void dpm_complete(pm_message_t state)
1001 {
1002 	struct list_head list;
1003 
1004 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1005 	might_sleep();
1006 
1007 	INIT_LIST_HEAD(&list);
1008 	mutex_lock(&dpm_list_mtx);
1009 	while (!list_empty(&dpm_prepared_list)) {
1010 		struct device *dev = to_device(dpm_prepared_list.prev);
1011 
1012 		get_device(dev);
1013 		dev->power.is_prepared = false;
1014 		list_move(&dev->power.entry, &list);
1015 		mutex_unlock(&dpm_list_mtx);
1016 
1017 		trace_device_pm_callback_start(dev, "", state.event);
1018 		device_complete(dev, state);
1019 		trace_device_pm_callback_end(dev, 0);
1020 
1021 		mutex_lock(&dpm_list_mtx);
1022 		put_device(dev);
1023 	}
1024 	list_splice(&list, &dpm_list);
1025 	mutex_unlock(&dpm_list_mtx);
1026 
1027 	/* Allow device probing and trigger re-probing of deferred devices */
1028 	device_unblock_probing();
1029 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1030 }
1031 
1032 /**
1033  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1034  * @state: PM transition of the system being carried out.
1035  *
1036  * Execute "resume" callbacks for all devices and complete the PM transition of
1037  * the system.
1038  */
1039 void dpm_resume_end(pm_message_t state)
1040 {
1041 	dpm_resume(state);
1042 	dpm_complete(state);
1043 }
1044 EXPORT_SYMBOL_GPL(dpm_resume_end);
1045 
1046 
1047 /*------------------------- Suspend routines -------------------------*/
1048 
1049 /**
1050  * resume_event - Return a "resume" message for given "suspend" sleep state.
1051  * @sleep_state: PM message representing a sleep state.
1052  *
1053  * Return a PM message representing the resume event corresponding to given
1054  * sleep state.
1055  */
1056 static pm_message_t resume_event(pm_message_t sleep_state)
1057 {
1058 	switch (sleep_state.event) {
1059 	case PM_EVENT_SUSPEND:
1060 		return PMSG_RESUME;
1061 	case PM_EVENT_FREEZE:
1062 	case PM_EVENT_QUIESCE:
1063 		return PMSG_RECOVER;
1064 	case PM_EVENT_HIBERNATE:
1065 		return PMSG_RESTORE;
1066 	}
1067 	return PMSG_ON;
1068 }
1069 
1070 /**
1071  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1072  * @dev: Device to handle.
1073  * @state: PM transition of the system being carried out.
1074  * @async: If true, the device is being suspended asynchronously.
1075  *
1076  * The driver of @dev will not receive interrupts while this function is being
1077  * executed.
1078  */
1079 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1080 {
1081 	pm_callback_t callback = NULL;
1082 	char *info = NULL;
1083 	int error = 0;
1084 
1085 	TRACE_DEVICE(dev);
1086 	TRACE_SUSPEND(0);
1087 
1088 	dpm_wait_for_subordinate(dev, async);
1089 
1090 	if (async_error)
1091 		goto Complete;
1092 
1093 	if (pm_wakeup_pending()) {
1094 		async_error = -EBUSY;
1095 		goto Complete;
1096 	}
1097 
1098 	if (dev->power.syscore || dev->power.direct_complete)
1099 		goto Complete;
1100 
1101 	if (dev->pm_domain) {
1102 		info = "noirq power domain ";
1103 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1104 	} else if (dev->type && dev->type->pm) {
1105 		info = "noirq type ";
1106 		callback = pm_noirq_op(dev->type->pm, state);
1107 	} else if (dev->class && dev->class->pm) {
1108 		info = "noirq class ";
1109 		callback = pm_noirq_op(dev->class->pm, state);
1110 	} else if (dev->bus && dev->bus->pm) {
1111 		info = "noirq bus ";
1112 		callback = pm_noirq_op(dev->bus->pm, state);
1113 	}
1114 
1115 	if (!callback && dev->driver && dev->driver->pm) {
1116 		info = "noirq driver ";
1117 		callback = pm_noirq_op(dev->driver->pm, state);
1118 	}
1119 
1120 	error = dpm_run_callback(callback, dev, state, info);
1121 	if (!error)
1122 		dev->power.is_noirq_suspended = true;
1123 	else
1124 		async_error = error;
1125 
1126 Complete:
1127 	complete_all(&dev->power.completion);
1128 	TRACE_SUSPEND(error);
1129 	return error;
1130 }
1131 
1132 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1133 {
1134 	struct device *dev = (struct device *)data;
1135 	int error;
1136 
1137 	error = __device_suspend_noirq(dev, pm_transition, true);
1138 	if (error) {
1139 		dpm_save_failed_dev(dev_name(dev));
1140 		pm_dev_err(dev, pm_transition, " async", error);
1141 	}
1142 
1143 	put_device(dev);
1144 }
1145 
1146 static int device_suspend_noirq(struct device *dev)
1147 {
1148 	reinit_completion(&dev->power.completion);
1149 
1150 	if (is_async(dev)) {
1151 		get_device(dev);
1152 		async_schedule(async_suspend_noirq, dev);
1153 		return 0;
1154 	}
1155 	return __device_suspend_noirq(dev, pm_transition, false);
1156 }
1157 
1158 /**
1159  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1160  * @state: PM transition of the system being carried out.
1161  *
1162  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1163  * handlers for all non-sysdev devices.
1164  */
1165 int dpm_suspend_noirq(pm_message_t state)
1166 {
1167 	ktime_t starttime = ktime_get();
1168 	int error = 0;
1169 
1170 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1171 	cpuidle_pause();
1172 	device_wakeup_arm_wake_irqs();
1173 	suspend_device_irqs();
1174 	mutex_lock(&dpm_list_mtx);
1175 	pm_transition = state;
1176 	async_error = 0;
1177 
1178 	while (!list_empty(&dpm_late_early_list)) {
1179 		struct device *dev = to_device(dpm_late_early_list.prev);
1180 
1181 		get_device(dev);
1182 		mutex_unlock(&dpm_list_mtx);
1183 
1184 		error = device_suspend_noirq(dev);
1185 
1186 		mutex_lock(&dpm_list_mtx);
1187 		if (error) {
1188 			pm_dev_err(dev, state, " noirq", error);
1189 			dpm_save_failed_dev(dev_name(dev));
1190 			put_device(dev);
1191 			break;
1192 		}
1193 		if (!list_empty(&dev->power.entry))
1194 			list_move(&dev->power.entry, &dpm_noirq_list);
1195 		put_device(dev);
1196 
1197 		if (async_error)
1198 			break;
1199 	}
1200 	mutex_unlock(&dpm_list_mtx);
1201 	async_synchronize_full();
1202 	if (!error)
1203 		error = async_error;
1204 
1205 	if (error) {
1206 		suspend_stats.failed_suspend_noirq++;
1207 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1208 		dpm_resume_noirq(resume_event(state));
1209 	} else {
1210 		dpm_show_time(starttime, state, "noirq");
1211 	}
1212 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1213 	return error;
1214 }
1215 
1216 /**
1217  * device_suspend_late - Execute a "late suspend" callback for given device.
1218  * @dev: Device to handle.
1219  * @state: PM transition of the system being carried out.
1220  * @async: If true, the device is being suspended asynchronously.
1221  *
1222  * Runtime PM is disabled for @dev while this function is being executed.
1223  */
1224 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1225 {
1226 	pm_callback_t callback = NULL;
1227 	char *info = NULL;
1228 	int error = 0;
1229 
1230 	TRACE_DEVICE(dev);
1231 	TRACE_SUSPEND(0);
1232 
1233 	__pm_runtime_disable(dev, false);
1234 
1235 	dpm_wait_for_subordinate(dev, async);
1236 
1237 	if (async_error)
1238 		goto Complete;
1239 
1240 	if (pm_wakeup_pending()) {
1241 		async_error = -EBUSY;
1242 		goto Complete;
1243 	}
1244 
1245 	if (dev->power.syscore || dev->power.direct_complete)
1246 		goto Complete;
1247 
1248 	if (dev->pm_domain) {
1249 		info = "late power domain ";
1250 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1251 	} else if (dev->type && dev->type->pm) {
1252 		info = "late type ";
1253 		callback = pm_late_early_op(dev->type->pm, state);
1254 	} else if (dev->class && dev->class->pm) {
1255 		info = "late class ";
1256 		callback = pm_late_early_op(dev->class->pm, state);
1257 	} else if (dev->bus && dev->bus->pm) {
1258 		info = "late bus ";
1259 		callback = pm_late_early_op(dev->bus->pm, state);
1260 	}
1261 
1262 	if (!callback && dev->driver && dev->driver->pm) {
1263 		info = "late driver ";
1264 		callback = pm_late_early_op(dev->driver->pm, state);
1265 	}
1266 
1267 	error = dpm_run_callback(callback, dev, state, info);
1268 	if (!error)
1269 		dev->power.is_late_suspended = true;
1270 	else
1271 		async_error = error;
1272 
1273 Complete:
1274 	TRACE_SUSPEND(error);
1275 	complete_all(&dev->power.completion);
1276 	return error;
1277 }
1278 
1279 static void async_suspend_late(void *data, async_cookie_t cookie)
1280 {
1281 	struct device *dev = (struct device *)data;
1282 	int error;
1283 
1284 	error = __device_suspend_late(dev, pm_transition, true);
1285 	if (error) {
1286 		dpm_save_failed_dev(dev_name(dev));
1287 		pm_dev_err(dev, pm_transition, " async", error);
1288 	}
1289 	put_device(dev);
1290 }
1291 
1292 static int device_suspend_late(struct device *dev)
1293 {
1294 	reinit_completion(&dev->power.completion);
1295 
1296 	if (is_async(dev)) {
1297 		get_device(dev);
1298 		async_schedule(async_suspend_late, dev);
1299 		return 0;
1300 	}
1301 
1302 	return __device_suspend_late(dev, pm_transition, false);
1303 }
1304 
1305 /**
1306  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1307  * @state: PM transition of the system being carried out.
1308  */
1309 int dpm_suspend_late(pm_message_t state)
1310 {
1311 	ktime_t starttime = ktime_get();
1312 	int error = 0;
1313 
1314 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1315 	mutex_lock(&dpm_list_mtx);
1316 	pm_transition = state;
1317 	async_error = 0;
1318 
1319 	while (!list_empty(&dpm_suspended_list)) {
1320 		struct device *dev = to_device(dpm_suspended_list.prev);
1321 
1322 		get_device(dev);
1323 		mutex_unlock(&dpm_list_mtx);
1324 
1325 		error = device_suspend_late(dev);
1326 
1327 		mutex_lock(&dpm_list_mtx);
1328 		if (!list_empty(&dev->power.entry))
1329 			list_move(&dev->power.entry, &dpm_late_early_list);
1330 
1331 		if (error) {
1332 			pm_dev_err(dev, state, " late", error);
1333 			dpm_save_failed_dev(dev_name(dev));
1334 			put_device(dev);
1335 			break;
1336 		}
1337 		put_device(dev);
1338 
1339 		if (async_error)
1340 			break;
1341 	}
1342 	mutex_unlock(&dpm_list_mtx);
1343 	async_synchronize_full();
1344 	if (!error)
1345 		error = async_error;
1346 	if (error) {
1347 		suspend_stats.failed_suspend_late++;
1348 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1349 		dpm_resume_early(resume_event(state));
1350 	} else {
1351 		dpm_show_time(starttime, state, "late");
1352 	}
1353 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1354 	return error;
1355 }
1356 
1357 /**
1358  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1359  * @state: PM transition of the system being carried out.
1360  */
1361 int dpm_suspend_end(pm_message_t state)
1362 {
1363 	int error = dpm_suspend_late(state);
1364 	if (error)
1365 		return error;
1366 
1367 	error = dpm_suspend_noirq(state);
1368 	if (error) {
1369 		dpm_resume_early(resume_event(state));
1370 		return error;
1371 	}
1372 
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1376 
1377 /**
1378  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1379  * @dev: Device to suspend.
1380  * @state: PM transition of the system being carried out.
1381  * @cb: Suspend callback to execute.
1382  * @info: string description of caller.
1383  */
1384 static int legacy_suspend(struct device *dev, pm_message_t state,
1385 			  int (*cb)(struct device *dev, pm_message_t state),
1386 			  char *info)
1387 {
1388 	int error;
1389 	ktime_t calltime;
1390 
1391 	calltime = initcall_debug_start(dev);
1392 
1393 	trace_device_pm_callback_start(dev, info, state.event);
1394 	error = cb(dev, state);
1395 	trace_device_pm_callback_end(dev, error);
1396 	suspend_report_result(cb, error);
1397 
1398 	initcall_debug_report(dev, calltime, error, state, info);
1399 
1400 	return error;
1401 }
1402 
1403 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1404 {
1405 	struct device_link *link;
1406 	int idx;
1407 
1408 	idx = device_links_read_lock();
1409 
1410 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1411 		spin_lock_irq(&link->supplier->power.lock);
1412 		link->supplier->power.direct_complete = false;
1413 		spin_unlock_irq(&link->supplier->power.lock);
1414 	}
1415 
1416 	device_links_read_unlock(idx);
1417 }
1418 
1419 /**
1420  * device_suspend - Execute "suspend" callbacks for given device.
1421  * @dev: Device to handle.
1422  * @state: PM transition of the system being carried out.
1423  * @async: If true, the device is being suspended asynchronously.
1424  */
1425 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1426 {
1427 	pm_callback_t callback = NULL;
1428 	char *info = NULL;
1429 	int error = 0;
1430 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1431 
1432 	TRACE_DEVICE(dev);
1433 	TRACE_SUSPEND(0);
1434 
1435 	dpm_wait_for_subordinate(dev, async);
1436 
1437 	if (async_error)
1438 		goto Complete;
1439 
1440 	/*
1441 	 * If a device configured to wake up the system from sleep states
1442 	 * has been suspended at run time and there's a resume request pending
1443 	 * for it, this is equivalent to the device signaling wakeup, so the
1444 	 * system suspend operation should be aborted.
1445 	 */
1446 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1447 		pm_wakeup_event(dev, 0);
1448 
1449 	if (pm_wakeup_pending()) {
1450 		async_error = -EBUSY;
1451 		goto Complete;
1452 	}
1453 
1454 	if (dev->power.syscore)
1455 		goto Complete;
1456 
1457 	if (dev->power.direct_complete) {
1458 		if (pm_runtime_status_suspended(dev)) {
1459 			pm_runtime_disable(dev);
1460 			if (pm_runtime_status_suspended(dev))
1461 				goto Complete;
1462 
1463 			pm_runtime_enable(dev);
1464 		}
1465 		dev->power.direct_complete = false;
1466 	}
1467 
1468 	dpm_watchdog_set(&wd, dev);
1469 	device_lock(dev);
1470 
1471 	if (dev->pm_domain) {
1472 		info = "power domain ";
1473 		callback = pm_op(&dev->pm_domain->ops, state);
1474 		goto Run;
1475 	}
1476 
1477 	if (dev->type && dev->type->pm) {
1478 		info = "type ";
1479 		callback = pm_op(dev->type->pm, state);
1480 		goto Run;
1481 	}
1482 
1483 	if (dev->class) {
1484 		if (dev->class->pm) {
1485 			info = "class ";
1486 			callback = pm_op(dev->class->pm, state);
1487 			goto Run;
1488 		} else if (dev->class->suspend) {
1489 			pm_dev_dbg(dev, state, "legacy class ");
1490 			error = legacy_suspend(dev, state, dev->class->suspend,
1491 						"legacy class ");
1492 			goto End;
1493 		}
1494 	}
1495 
1496 	if (dev->bus) {
1497 		if (dev->bus->pm) {
1498 			info = "bus ";
1499 			callback = pm_op(dev->bus->pm, state);
1500 		} else if (dev->bus->suspend) {
1501 			pm_dev_dbg(dev, state, "legacy bus ");
1502 			error = legacy_suspend(dev, state, dev->bus->suspend,
1503 						"legacy bus ");
1504 			goto End;
1505 		}
1506 	}
1507 
1508  Run:
1509 	if (!callback && dev->driver && dev->driver->pm) {
1510 		info = "driver ";
1511 		callback = pm_op(dev->driver->pm, state);
1512 	}
1513 
1514 	error = dpm_run_callback(callback, dev, state, info);
1515 
1516  End:
1517 	if (!error) {
1518 		struct device *parent = dev->parent;
1519 
1520 		dev->power.is_suspended = true;
1521 		if (parent) {
1522 			spin_lock_irq(&parent->power.lock);
1523 
1524 			dev->parent->power.direct_complete = false;
1525 			if (dev->power.wakeup_path
1526 			    && !dev->parent->power.ignore_children)
1527 				dev->parent->power.wakeup_path = true;
1528 
1529 			spin_unlock_irq(&parent->power.lock);
1530 		}
1531 		dpm_clear_suppliers_direct_complete(dev);
1532 	}
1533 
1534 	device_unlock(dev);
1535 	dpm_watchdog_clear(&wd);
1536 
1537  Complete:
1538 	if (error)
1539 		async_error = error;
1540 
1541 	complete_all(&dev->power.completion);
1542 	TRACE_SUSPEND(error);
1543 	return error;
1544 }
1545 
1546 static void async_suspend(void *data, async_cookie_t cookie)
1547 {
1548 	struct device *dev = (struct device *)data;
1549 	int error;
1550 
1551 	error = __device_suspend(dev, pm_transition, true);
1552 	if (error) {
1553 		dpm_save_failed_dev(dev_name(dev));
1554 		pm_dev_err(dev, pm_transition, " async", error);
1555 	}
1556 
1557 	put_device(dev);
1558 }
1559 
1560 static int device_suspend(struct device *dev)
1561 {
1562 	reinit_completion(&dev->power.completion);
1563 
1564 	if (is_async(dev)) {
1565 		get_device(dev);
1566 		async_schedule(async_suspend, dev);
1567 		return 0;
1568 	}
1569 
1570 	return __device_suspend(dev, pm_transition, false);
1571 }
1572 
1573 /**
1574  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1575  * @state: PM transition of the system being carried out.
1576  */
1577 int dpm_suspend(pm_message_t state)
1578 {
1579 	ktime_t starttime = ktime_get();
1580 	int error = 0;
1581 
1582 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1583 	might_sleep();
1584 
1585 	cpufreq_suspend();
1586 
1587 	mutex_lock(&dpm_list_mtx);
1588 	pm_transition = state;
1589 	async_error = 0;
1590 	while (!list_empty(&dpm_prepared_list)) {
1591 		struct device *dev = to_device(dpm_prepared_list.prev);
1592 
1593 		get_device(dev);
1594 		mutex_unlock(&dpm_list_mtx);
1595 
1596 		error = device_suspend(dev);
1597 
1598 		mutex_lock(&dpm_list_mtx);
1599 		if (error) {
1600 			pm_dev_err(dev, state, "", error);
1601 			dpm_save_failed_dev(dev_name(dev));
1602 			put_device(dev);
1603 			break;
1604 		}
1605 		if (!list_empty(&dev->power.entry))
1606 			list_move(&dev->power.entry, &dpm_suspended_list);
1607 		put_device(dev);
1608 		if (async_error)
1609 			break;
1610 	}
1611 	mutex_unlock(&dpm_list_mtx);
1612 	async_synchronize_full();
1613 	if (!error)
1614 		error = async_error;
1615 	if (error) {
1616 		suspend_stats.failed_suspend++;
1617 		dpm_save_failed_step(SUSPEND_SUSPEND);
1618 	} else
1619 		dpm_show_time(starttime, state, NULL);
1620 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1621 	return error;
1622 }
1623 
1624 /**
1625  * device_prepare - Prepare a device for system power transition.
1626  * @dev: Device to handle.
1627  * @state: PM transition of the system being carried out.
1628  *
1629  * Execute the ->prepare() callback(s) for given device.  No new children of the
1630  * device may be registered after this function has returned.
1631  */
1632 static int device_prepare(struct device *dev, pm_message_t state)
1633 {
1634 	int (*callback)(struct device *) = NULL;
1635 	int ret = 0;
1636 
1637 	if (dev->power.syscore)
1638 		return 0;
1639 
1640 	/*
1641 	 * If a device's parent goes into runtime suspend at the wrong time,
1642 	 * it won't be possible to resume the device.  To prevent this we
1643 	 * block runtime suspend here, during the prepare phase, and allow
1644 	 * it again during the complete phase.
1645 	 */
1646 	pm_runtime_get_noresume(dev);
1647 
1648 	device_lock(dev);
1649 
1650 	dev->power.wakeup_path = device_may_wakeup(dev);
1651 
1652 	if (dev->power.no_pm_callbacks) {
1653 		ret = 1;	/* Let device go direct_complete */
1654 		goto unlock;
1655 	}
1656 
1657 	if (dev->pm_domain)
1658 		callback = dev->pm_domain->ops.prepare;
1659 	else if (dev->type && dev->type->pm)
1660 		callback = dev->type->pm->prepare;
1661 	else if (dev->class && dev->class->pm)
1662 		callback = dev->class->pm->prepare;
1663 	else if (dev->bus && dev->bus->pm)
1664 		callback = dev->bus->pm->prepare;
1665 
1666 	if (!callback && dev->driver && dev->driver->pm)
1667 		callback = dev->driver->pm->prepare;
1668 
1669 	if (callback)
1670 		ret = callback(dev);
1671 
1672 unlock:
1673 	device_unlock(dev);
1674 
1675 	if (ret < 0) {
1676 		suspend_report_result(callback, ret);
1677 		pm_runtime_put(dev);
1678 		return ret;
1679 	}
1680 	/*
1681 	 * A positive return value from ->prepare() means "this device appears
1682 	 * to be runtime-suspended and its state is fine, so if it really is
1683 	 * runtime-suspended, you can leave it in that state provided that you
1684 	 * will do the same thing with all of its descendants".  This only
1685 	 * applies to suspend transitions, however.
1686 	 */
1687 	spin_lock_irq(&dev->power.lock);
1688 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1689 	spin_unlock_irq(&dev->power.lock);
1690 	return 0;
1691 }
1692 
1693 /**
1694  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1695  * @state: PM transition of the system being carried out.
1696  *
1697  * Execute the ->prepare() callback(s) for all devices.
1698  */
1699 int dpm_prepare(pm_message_t state)
1700 {
1701 	int error = 0;
1702 
1703 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1704 	might_sleep();
1705 
1706 	/*
1707 	 * Give a chance for the known devices to complete their probes, before
1708 	 * disable probing of devices. This sync point is important at least
1709 	 * at boot time + hibernation restore.
1710 	 */
1711 	wait_for_device_probe();
1712 	/*
1713 	 * It is unsafe if probing of devices will happen during suspend or
1714 	 * hibernation and system behavior will be unpredictable in this case.
1715 	 * So, let's prohibit device's probing here and defer their probes
1716 	 * instead. The normal behavior will be restored in dpm_complete().
1717 	 */
1718 	device_block_probing();
1719 
1720 	mutex_lock(&dpm_list_mtx);
1721 	while (!list_empty(&dpm_list)) {
1722 		struct device *dev = to_device(dpm_list.next);
1723 
1724 		get_device(dev);
1725 		mutex_unlock(&dpm_list_mtx);
1726 
1727 		trace_device_pm_callback_start(dev, "", state.event);
1728 		error = device_prepare(dev, state);
1729 		trace_device_pm_callback_end(dev, error);
1730 
1731 		mutex_lock(&dpm_list_mtx);
1732 		if (error) {
1733 			if (error == -EAGAIN) {
1734 				put_device(dev);
1735 				error = 0;
1736 				continue;
1737 			}
1738 			printk(KERN_INFO "PM: Device %s not prepared "
1739 				"for power transition: code %d\n",
1740 				dev_name(dev), error);
1741 			put_device(dev);
1742 			break;
1743 		}
1744 		dev->power.is_prepared = true;
1745 		if (!list_empty(&dev->power.entry))
1746 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1747 		put_device(dev);
1748 	}
1749 	mutex_unlock(&dpm_list_mtx);
1750 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1751 	return error;
1752 }
1753 
1754 /**
1755  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1756  * @state: PM transition of the system being carried out.
1757  *
1758  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1759  * callbacks for them.
1760  */
1761 int dpm_suspend_start(pm_message_t state)
1762 {
1763 	int error;
1764 
1765 	error = dpm_prepare(state);
1766 	if (error) {
1767 		suspend_stats.failed_prepare++;
1768 		dpm_save_failed_step(SUSPEND_PREPARE);
1769 	} else
1770 		error = dpm_suspend(state);
1771 	return error;
1772 }
1773 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1774 
1775 void __suspend_report_result(const char *function, void *fn, int ret)
1776 {
1777 	if (ret)
1778 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1779 }
1780 EXPORT_SYMBOL_GPL(__suspend_report_result);
1781 
1782 /**
1783  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1784  * @dev: Device to wait for.
1785  * @subordinate: Device that needs to wait for @dev.
1786  */
1787 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1788 {
1789 	dpm_wait(dev, subordinate->power.async_suspend);
1790 	return async_error;
1791 }
1792 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1793 
1794 /**
1795  * dpm_for_each_dev - device iterator.
1796  * @data: data for the callback.
1797  * @fn: function to be called for each device.
1798  *
1799  * Iterate over devices in dpm_list, and call @fn for each device,
1800  * passing it @data.
1801  */
1802 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1803 {
1804 	struct device *dev;
1805 
1806 	if (!fn)
1807 		return;
1808 
1809 	device_pm_lock();
1810 	list_for_each_entry(dev, &dpm_list, power.entry)
1811 		fn(dev, data);
1812 	device_pm_unlock();
1813 }
1814 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1815 
1816 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1817 {
1818 	if (!ops)
1819 		return true;
1820 
1821 	return !ops->prepare &&
1822 	       !ops->suspend &&
1823 	       !ops->suspend_late &&
1824 	       !ops->suspend_noirq &&
1825 	       !ops->resume_noirq &&
1826 	       !ops->resume_early &&
1827 	       !ops->resume &&
1828 	       !ops->complete;
1829 }
1830 
1831 void device_pm_check_callbacks(struct device *dev)
1832 {
1833 	spin_lock_irq(&dev->power.lock);
1834 	dev->power.no_pm_callbacks =
1835 		(!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1836 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1837 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1838 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1839 		(!dev->driver || pm_ops_is_empty(dev->driver->pm));
1840 	spin_unlock_irq(&dev->power.lock);
1841 }
1842