1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 struct suspend_stats suspend_stats; 64 static DEFINE_MUTEX(dpm_list_mtx); 65 static pm_message_t pm_transition; 66 67 static int async_error; 68 69 static const char *pm_verb(int event) 70 { 71 switch (event) { 72 case PM_EVENT_SUSPEND: 73 return "suspend"; 74 case PM_EVENT_RESUME: 75 return "resume"; 76 case PM_EVENT_FREEZE: 77 return "freeze"; 78 case PM_EVENT_QUIESCE: 79 return "quiesce"; 80 case PM_EVENT_HIBERNATE: 81 return "hibernate"; 82 case PM_EVENT_THAW: 83 return "thaw"; 84 case PM_EVENT_RESTORE: 85 return "restore"; 86 case PM_EVENT_RECOVER: 87 return "recover"; 88 default: 89 return "(unknown PM event)"; 90 } 91 } 92 93 /** 94 * device_pm_sleep_init - Initialize system suspend-related device fields. 95 * @dev: Device object being initialized. 96 */ 97 void device_pm_sleep_init(struct device *dev) 98 { 99 dev->power.is_prepared = false; 100 dev->power.is_suspended = false; 101 dev->power.is_noirq_suspended = false; 102 dev->power.is_late_suspended = false; 103 init_completion(&dev->power.completion); 104 complete_all(&dev->power.completion); 105 dev->power.wakeup = NULL; 106 INIT_LIST_HEAD(&dev->power.entry); 107 } 108 109 /** 110 * device_pm_lock - Lock the list of active devices used by the PM core. 111 */ 112 void device_pm_lock(void) 113 { 114 mutex_lock(&dpm_list_mtx); 115 } 116 117 /** 118 * device_pm_unlock - Unlock the list of active devices used by the PM core. 119 */ 120 void device_pm_unlock(void) 121 { 122 mutex_unlock(&dpm_list_mtx); 123 } 124 125 /** 126 * device_pm_add - Add a device to the PM core's list of active devices. 127 * @dev: Device to add to the list. 128 */ 129 void device_pm_add(struct device *dev) 130 { 131 /* Skip PM setup/initialization. */ 132 if (device_pm_not_required(dev)) 133 return; 134 135 pr_debug("Adding info for %s:%s\n", 136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 137 device_pm_check_callbacks(dev); 138 mutex_lock(&dpm_list_mtx); 139 if (dev->parent && dev->parent->power.is_prepared) 140 dev_warn(dev, "parent %s should not be sleeping\n", 141 dev_name(dev->parent)); 142 list_add_tail(&dev->power.entry, &dpm_list); 143 dev->power.in_dpm_list = true; 144 mutex_unlock(&dpm_list_mtx); 145 } 146 147 /** 148 * device_pm_remove - Remove a device from the PM core's list of active devices. 149 * @dev: Device to be removed from the list. 150 */ 151 void device_pm_remove(struct device *dev) 152 { 153 if (device_pm_not_required(dev)) 154 return; 155 156 pr_debug("Removing info for %s:%s\n", 157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 158 complete_all(&dev->power.completion); 159 mutex_lock(&dpm_list_mtx); 160 list_del_init(&dev->power.entry); 161 dev->power.in_dpm_list = false; 162 mutex_unlock(&dpm_list_mtx); 163 device_wakeup_disable(dev); 164 pm_runtime_remove(dev); 165 device_pm_check_callbacks(dev); 166 } 167 168 /** 169 * device_pm_move_before - Move device in the PM core's list of active devices. 170 * @deva: Device to move in dpm_list. 171 * @devb: Device @deva should come before. 172 */ 173 void device_pm_move_before(struct device *deva, struct device *devb) 174 { 175 pr_debug("Moving %s:%s before %s:%s\n", 176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 178 /* Delete deva from dpm_list and reinsert before devb. */ 179 list_move_tail(&deva->power.entry, &devb->power.entry); 180 } 181 182 /** 183 * device_pm_move_after - Move device in the PM core's list of active devices. 184 * @deva: Device to move in dpm_list. 185 * @devb: Device @deva should come after. 186 */ 187 void device_pm_move_after(struct device *deva, struct device *devb) 188 { 189 pr_debug("Moving %s:%s after %s:%s\n", 190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 192 /* Delete deva from dpm_list and reinsert after devb. */ 193 list_move(&deva->power.entry, &devb->power.entry); 194 } 195 196 /** 197 * device_pm_move_last - Move device to end of the PM core's list of devices. 198 * @dev: Device to move in dpm_list. 199 */ 200 void device_pm_move_last(struct device *dev) 201 { 202 pr_debug("Moving %s:%s to end of list\n", 203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 204 list_move_tail(&dev->power.entry, &dpm_list); 205 } 206 207 static ktime_t initcall_debug_start(struct device *dev, void *cb) 208 { 209 if (!pm_print_times_enabled) 210 return 0; 211 212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 213 task_pid_nr(current), 214 dev->parent ? dev_name(dev->parent) : "none"); 215 return ktime_get(); 216 } 217 218 static void initcall_debug_report(struct device *dev, ktime_t calltime, 219 void *cb, int error) 220 { 221 ktime_t rettime; 222 223 if (!pm_print_times_enabled) 224 return; 225 226 rettime = ktime_get(); 227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 228 (unsigned long long)ktime_us_delta(rettime, calltime)); 229 } 230 231 /** 232 * dpm_wait - Wait for a PM operation to complete. 233 * @dev: Device to wait for. 234 * @async: If unset, wait only if the device's power.async_suspend flag is set. 235 */ 236 static void dpm_wait(struct device *dev, bool async) 237 { 238 if (!dev) 239 return; 240 241 if (async || (pm_async_enabled && dev->power.async_suspend)) 242 wait_for_completion(&dev->power.completion); 243 } 244 245 static int dpm_wait_fn(struct device *dev, void *async_ptr) 246 { 247 dpm_wait(dev, *((bool *)async_ptr)); 248 return 0; 249 } 250 251 static void dpm_wait_for_children(struct device *dev, bool async) 252 { 253 device_for_each_child(dev, &async, dpm_wait_fn); 254 } 255 256 static void dpm_wait_for_suppliers(struct device *dev, bool async) 257 { 258 struct device_link *link; 259 int idx; 260 261 idx = device_links_read_lock(); 262 263 /* 264 * If the supplier goes away right after we've checked the link to it, 265 * we'll wait for its completion to change the state, but that's fine, 266 * because the only things that will block as a result are the SRCU 267 * callbacks freeing the link objects for the links in the list we're 268 * walking. 269 */ 270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 271 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 272 dpm_wait(link->supplier, async); 273 274 device_links_read_unlock(idx); 275 } 276 277 static bool dpm_wait_for_superior(struct device *dev, bool async) 278 { 279 struct device *parent; 280 281 /* 282 * If the device is resumed asynchronously and the parent's callback 283 * deletes both the device and the parent itself, the parent object may 284 * be freed while this function is running, so avoid that by reference 285 * counting the parent once more unless the device has been deleted 286 * already (in which case return right away). 287 */ 288 mutex_lock(&dpm_list_mtx); 289 290 if (!device_pm_initialized(dev)) { 291 mutex_unlock(&dpm_list_mtx); 292 return false; 293 } 294 295 parent = get_device(dev->parent); 296 297 mutex_unlock(&dpm_list_mtx); 298 299 dpm_wait(parent, async); 300 put_device(parent); 301 302 dpm_wait_for_suppliers(dev, async); 303 304 /* 305 * If the parent's callback has deleted the device, attempting to resume 306 * it would be invalid, so avoid doing that then. 307 */ 308 return device_pm_initialized(dev); 309 } 310 311 static void dpm_wait_for_consumers(struct device *dev, bool async) 312 { 313 struct device_link *link; 314 int idx; 315 316 idx = device_links_read_lock(); 317 318 /* 319 * The status of a device link can only be changed from "dormant" by a 320 * probe, but that cannot happen during system suspend/resume. In 321 * theory it can change to "dormant" at that time, but then it is 322 * reasonable to wait for the target device anyway (eg. if it goes 323 * away, it's better to wait for it to go away completely and then 324 * continue instead of trying to continue in parallel with its 325 * unregistration). 326 */ 327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 328 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 329 dpm_wait(link->consumer, async); 330 331 device_links_read_unlock(idx); 332 } 333 334 static void dpm_wait_for_subordinate(struct device *dev, bool async) 335 { 336 dpm_wait_for_children(dev, async); 337 dpm_wait_for_consumers(dev, async); 338 } 339 340 /** 341 * pm_op - Return the PM operation appropriate for given PM event. 342 * @ops: PM operations to choose from. 343 * @state: PM transition of the system being carried out. 344 */ 345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 346 { 347 switch (state.event) { 348 #ifdef CONFIG_SUSPEND 349 case PM_EVENT_SUSPEND: 350 return ops->suspend; 351 case PM_EVENT_RESUME: 352 return ops->resume; 353 #endif /* CONFIG_SUSPEND */ 354 #ifdef CONFIG_HIBERNATE_CALLBACKS 355 case PM_EVENT_FREEZE: 356 case PM_EVENT_QUIESCE: 357 return ops->freeze; 358 case PM_EVENT_HIBERNATE: 359 return ops->poweroff; 360 case PM_EVENT_THAW: 361 case PM_EVENT_RECOVER: 362 return ops->thaw; 363 case PM_EVENT_RESTORE: 364 return ops->restore; 365 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 366 } 367 368 return NULL; 369 } 370 371 /** 372 * pm_late_early_op - Return the PM operation appropriate for given PM event. 373 * @ops: PM operations to choose from. 374 * @state: PM transition of the system being carried out. 375 * 376 * Runtime PM is disabled for @dev while this function is being executed. 377 */ 378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 379 pm_message_t state) 380 { 381 switch (state.event) { 382 #ifdef CONFIG_SUSPEND 383 case PM_EVENT_SUSPEND: 384 return ops->suspend_late; 385 case PM_EVENT_RESUME: 386 return ops->resume_early; 387 #endif /* CONFIG_SUSPEND */ 388 #ifdef CONFIG_HIBERNATE_CALLBACKS 389 case PM_EVENT_FREEZE: 390 case PM_EVENT_QUIESCE: 391 return ops->freeze_late; 392 case PM_EVENT_HIBERNATE: 393 return ops->poweroff_late; 394 case PM_EVENT_THAW: 395 case PM_EVENT_RECOVER: 396 return ops->thaw_early; 397 case PM_EVENT_RESTORE: 398 return ops->restore_early; 399 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 400 } 401 402 return NULL; 403 } 404 405 /** 406 * pm_noirq_op - Return the PM operation appropriate for given PM event. 407 * @ops: PM operations to choose from. 408 * @state: PM transition of the system being carried out. 409 * 410 * The driver of @dev will not receive interrupts while this function is being 411 * executed. 412 */ 413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 414 { 415 switch (state.event) { 416 #ifdef CONFIG_SUSPEND 417 case PM_EVENT_SUSPEND: 418 return ops->suspend_noirq; 419 case PM_EVENT_RESUME: 420 return ops->resume_noirq; 421 #endif /* CONFIG_SUSPEND */ 422 #ifdef CONFIG_HIBERNATE_CALLBACKS 423 case PM_EVENT_FREEZE: 424 case PM_EVENT_QUIESCE: 425 return ops->freeze_noirq; 426 case PM_EVENT_HIBERNATE: 427 return ops->poweroff_noirq; 428 case PM_EVENT_THAW: 429 case PM_EVENT_RECOVER: 430 return ops->thaw_noirq; 431 case PM_EVENT_RESTORE: 432 return ops->restore_noirq; 433 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 434 } 435 436 return NULL; 437 } 438 439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 440 { 441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 443 ", may wakeup" : "", dev->power.driver_flags); 444 } 445 446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 447 int error) 448 { 449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 450 error); 451 } 452 453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 454 const char *info) 455 { 456 ktime_t calltime; 457 u64 usecs64; 458 int usecs; 459 460 calltime = ktime_get(); 461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 462 do_div(usecs64, NSEC_PER_USEC); 463 usecs = usecs64; 464 if (usecs == 0) 465 usecs = 1; 466 467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 468 info ?: "", info ? " " : "", pm_verb(state.event), 469 error ? "aborted" : "complete", 470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 471 } 472 473 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 474 pm_message_t state, const char *info) 475 { 476 ktime_t calltime; 477 int error; 478 479 if (!cb) 480 return 0; 481 482 calltime = initcall_debug_start(dev, cb); 483 484 pm_dev_dbg(dev, state, info); 485 trace_device_pm_callback_start(dev, info, state.event); 486 error = cb(dev); 487 trace_device_pm_callback_end(dev, error); 488 suspend_report_result(dev, cb, error); 489 490 initcall_debug_report(dev, calltime, cb, error); 491 492 return error; 493 } 494 495 #ifdef CONFIG_DPM_WATCHDOG 496 struct dpm_watchdog { 497 struct device *dev; 498 struct task_struct *tsk; 499 struct timer_list timer; 500 }; 501 502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 503 struct dpm_watchdog wd 504 505 /** 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 507 * @t: The timer that PM watchdog depends on. 508 * 509 * Called when a driver has timed out suspending or resuming. 510 * There's not much we can do here to recover so panic() to 511 * capture a crash-dump in pstore. 512 */ 513 static void dpm_watchdog_handler(struct timer_list *t) 514 { 515 struct dpm_watchdog *wd = from_timer(wd, t, timer); 516 517 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 518 show_stack(wd->tsk, NULL, KERN_EMERG); 519 panic("%s %s: unrecoverable failure\n", 520 dev_driver_string(wd->dev), dev_name(wd->dev)); 521 } 522 523 /** 524 * dpm_watchdog_set - Enable pm watchdog for given device. 525 * @wd: Watchdog. Must be allocated on the stack. 526 * @dev: Device to handle. 527 */ 528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 529 { 530 struct timer_list *timer = &wd->timer; 531 532 wd->dev = dev; 533 wd->tsk = current; 534 535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 536 /* use same timeout value for both suspend and resume */ 537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 538 add_timer(timer); 539 } 540 541 /** 542 * dpm_watchdog_clear - Disable suspend/resume watchdog. 543 * @wd: Watchdog to disable. 544 */ 545 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 546 { 547 struct timer_list *timer = &wd->timer; 548 549 del_timer_sync(timer); 550 destroy_timer_on_stack(timer); 551 } 552 #else 553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 554 #define dpm_watchdog_set(x, y) 555 #define dpm_watchdog_clear(x) 556 #endif 557 558 /*------------------------- Resume routines -------------------------*/ 559 560 /** 561 * dev_pm_skip_resume - System-wide device resume optimization check. 562 * @dev: Target device. 563 * 564 * Return: 565 * - %false if the transition under way is RESTORE. 566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 567 * - The logical negation of %power.must_resume otherwise (that is, when the 568 * transition under way is RESUME). 569 */ 570 bool dev_pm_skip_resume(struct device *dev) 571 { 572 if (pm_transition.event == PM_EVENT_RESTORE) 573 return false; 574 575 if (pm_transition.event == PM_EVENT_THAW) 576 return dev_pm_skip_suspend(dev); 577 578 return !dev->power.must_resume; 579 } 580 581 /** 582 * device_resume_noirq - Execute a "noirq resume" callback for given device. 583 * @dev: Device to handle. 584 * @state: PM transition of the system being carried out. 585 * @async: If true, the device is being resumed asynchronously. 586 * 587 * The driver of @dev will not receive interrupts while this function is being 588 * executed. 589 */ 590 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 591 { 592 pm_callback_t callback = NULL; 593 const char *info = NULL; 594 bool skip_resume; 595 int error = 0; 596 597 TRACE_DEVICE(dev); 598 TRACE_RESUME(0); 599 600 if (dev->power.syscore || dev->power.direct_complete) 601 goto Out; 602 603 if (!dev->power.is_noirq_suspended) 604 goto Out; 605 606 if (!dpm_wait_for_superior(dev, async)) 607 goto Out; 608 609 skip_resume = dev_pm_skip_resume(dev); 610 /* 611 * If the driver callback is skipped below or by the middle layer 612 * callback and device_resume_early() also skips the driver callback for 613 * this device later, it needs to appear as "suspended" to PM-runtime, 614 * so change its status accordingly. 615 * 616 * Otherwise, the device is going to be resumed, so set its PM-runtime 617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 618 * to avoid confusing drivers that don't use it. 619 */ 620 if (skip_resume) 621 pm_runtime_set_suspended(dev); 622 else if (dev_pm_skip_suspend(dev)) 623 pm_runtime_set_active(dev); 624 625 if (dev->pm_domain) { 626 info = "noirq power domain "; 627 callback = pm_noirq_op(&dev->pm_domain->ops, state); 628 } else if (dev->type && dev->type->pm) { 629 info = "noirq type "; 630 callback = pm_noirq_op(dev->type->pm, state); 631 } else if (dev->class && dev->class->pm) { 632 info = "noirq class "; 633 callback = pm_noirq_op(dev->class->pm, state); 634 } else if (dev->bus && dev->bus->pm) { 635 info = "noirq bus "; 636 callback = pm_noirq_op(dev->bus->pm, state); 637 } 638 if (callback) 639 goto Run; 640 641 if (skip_resume) 642 goto Skip; 643 644 if (dev->driver && dev->driver->pm) { 645 info = "noirq driver "; 646 callback = pm_noirq_op(dev->driver->pm, state); 647 } 648 649 Run: 650 error = dpm_run_callback(callback, dev, state, info); 651 652 Skip: 653 dev->power.is_noirq_suspended = false; 654 655 Out: 656 complete_all(&dev->power.completion); 657 TRACE_RESUME(error); 658 return error; 659 } 660 661 static bool is_async(struct device *dev) 662 { 663 return dev->power.async_suspend && pm_async_enabled 664 && !pm_trace_is_enabled(); 665 } 666 667 static bool dpm_async_fn(struct device *dev, async_func_t func) 668 { 669 reinit_completion(&dev->power.completion); 670 671 if (is_async(dev)) { 672 get_device(dev); 673 async_schedule_dev(func, dev); 674 return true; 675 } 676 677 return false; 678 } 679 680 static void async_resume_noirq(void *data, async_cookie_t cookie) 681 { 682 struct device *dev = (struct device *)data; 683 int error; 684 685 error = device_resume_noirq(dev, pm_transition, true); 686 if (error) 687 pm_dev_err(dev, pm_transition, " async", error); 688 689 put_device(dev); 690 } 691 692 static void dpm_noirq_resume_devices(pm_message_t state) 693 { 694 struct device *dev; 695 ktime_t starttime = ktime_get(); 696 697 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 698 mutex_lock(&dpm_list_mtx); 699 pm_transition = state; 700 701 /* 702 * Advanced the async threads upfront, 703 * in case the starting of async threads is 704 * delayed by non-async resuming devices. 705 */ 706 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 707 dpm_async_fn(dev, async_resume_noirq); 708 709 while (!list_empty(&dpm_noirq_list)) { 710 dev = to_device(dpm_noirq_list.next); 711 get_device(dev); 712 list_move_tail(&dev->power.entry, &dpm_late_early_list); 713 714 mutex_unlock(&dpm_list_mtx); 715 716 if (!is_async(dev)) { 717 int error; 718 719 error = device_resume_noirq(dev, state, false); 720 if (error) { 721 suspend_stats.failed_resume_noirq++; 722 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 723 dpm_save_failed_dev(dev_name(dev)); 724 pm_dev_err(dev, state, " noirq", error); 725 } 726 } 727 728 put_device(dev); 729 730 mutex_lock(&dpm_list_mtx); 731 } 732 mutex_unlock(&dpm_list_mtx); 733 async_synchronize_full(); 734 dpm_show_time(starttime, state, 0, "noirq"); 735 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 736 } 737 738 /** 739 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 740 * @state: PM transition of the system being carried out. 741 * 742 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 743 * allow device drivers' interrupt handlers to be called. 744 */ 745 void dpm_resume_noirq(pm_message_t state) 746 { 747 dpm_noirq_resume_devices(state); 748 749 resume_device_irqs(); 750 device_wakeup_disarm_wake_irqs(); 751 } 752 753 /** 754 * device_resume_early - Execute an "early resume" callback for given device. 755 * @dev: Device to handle. 756 * @state: PM transition of the system being carried out. 757 * @async: If true, the device is being resumed asynchronously. 758 * 759 * Runtime PM is disabled for @dev while this function is being executed. 760 */ 761 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 762 { 763 pm_callback_t callback = NULL; 764 const char *info = NULL; 765 int error = 0; 766 767 TRACE_DEVICE(dev); 768 TRACE_RESUME(0); 769 770 if (dev->power.syscore || dev->power.direct_complete) 771 goto Out; 772 773 if (!dev->power.is_late_suspended) 774 goto Out; 775 776 if (!dpm_wait_for_superior(dev, async)) 777 goto Out; 778 779 if (dev->pm_domain) { 780 info = "early power domain "; 781 callback = pm_late_early_op(&dev->pm_domain->ops, state); 782 } else if (dev->type && dev->type->pm) { 783 info = "early type "; 784 callback = pm_late_early_op(dev->type->pm, state); 785 } else if (dev->class && dev->class->pm) { 786 info = "early class "; 787 callback = pm_late_early_op(dev->class->pm, state); 788 } else if (dev->bus && dev->bus->pm) { 789 info = "early bus "; 790 callback = pm_late_early_op(dev->bus->pm, state); 791 } 792 if (callback) 793 goto Run; 794 795 if (dev_pm_skip_resume(dev)) 796 goto Skip; 797 798 if (dev->driver && dev->driver->pm) { 799 info = "early driver "; 800 callback = pm_late_early_op(dev->driver->pm, state); 801 } 802 803 Run: 804 error = dpm_run_callback(callback, dev, state, info); 805 806 Skip: 807 dev->power.is_late_suspended = false; 808 809 Out: 810 TRACE_RESUME(error); 811 812 pm_runtime_enable(dev); 813 complete_all(&dev->power.completion); 814 return error; 815 } 816 817 static void async_resume_early(void *data, async_cookie_t cookie) 818 { 819 struct device *dev = (struct device *)data; 820 int error; 821 822 error = device_resume_early(dev, pm_transition, true); 823 if (error) 824 pm_dev_err(dev, pm_transition, " async", error); 825 826 put_device(dev); 827 } 828 829 /** 830 * dpm_resume_early - Execute "early resume" callbacks for all devices. 831 * @state: PM transition of the system being carried out. 832 */ 833 void dpm_resume_early(pm_message_t state) 834 { 835 struct device *dev; 836 ktime_t starttime = ktime_get(); 837 838 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 839 mutex_lock(&dpm_list_mtx); 840 pm_transition = state; 841 842 /* 843 * Advanced the async threads upfront, 844 * in case the starting of async threads is 845 * delayed by non-async resuming devices. 846 */ 847 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 848 dpm_async_fn(dev, async_resume_early); 849 850 while (!list_empty(&dpm_late_early_list)) { 851 dev = to_device(dpm_late_early_list.next); 852 get_device(dev); 853 list_move_tail(&dev->power.entry, &dpm_suspended_list); 854 855 mutex_unlock(&dpm_list_mtx); 856 857 if (!is_async(dev)) { 858 int error; 859 860 error = device_resume_early(dev, state, false); 861 if (error) { 862 suspend_stats.failed_resume_early++; 863 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 864 dpm_save_failed_dev(dev_name(dev)); 865 pm_dev_err(dev, state, " early", error); 866 } 867 } 868 869 put_device(dev); 870 871 mutex_lock(&dpm_list_mtx); 872 } 873 mutex_unlock(&dpm_list_mtx); 874 async_synchronize_full(); 875 dpm_show_time(starttime, state, 0, "early"); 876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 877 } 878 879 /** 880 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 881 * @state: PM transition of the system being carried out. 882 */ 883 void dpm_resume_start(pm_message_t state) 884 { 885 dpm_resume_noirq(state); 886 dpm_resume_early(state); 887 } 888 EXPORT_SYMBOL_GPL(dpm_resume_start); 889 890 /** 891 * device_resume - Execute "resume" callbacks for given device. 892 * @dev: Device to handle. 893 * @state: PM transition of the system being carried out. 894 * @async: If true, the device is being resumed asynchronously. 895 */ 896 static int device_resume(struct device *dev, pm_message_t state, bool async) 897 { 898 pm_callback_t callback = NULL; 899 const char *info = NULL; 900 int error = 0; 901 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 902 903 TRACE_DEVICE(dev); 904 TRACE_RESUME(0); 905 906 if (dev->power.syscore) 907 goto Complete; 908 909 if (dev->power.direct_complete) { 910 /* Match the pm_runtime_disable() in __device_suspend(). */ 911 pm_runtime_enable(dev); 912 goto Complete; 913 } 914 915 if (!dpm_wait_for_superior(dev, async)) 916 goto Complete; 917 918 dpm_watchdog_set(&wd, dev); 919 device_lock(dev); 920 921 /* 922 * This is a fib. But we'll allow new children to be added below 923 * a resumed device, even if the device hasn't been completed yet. 924 */ 925 dev->power.is_prepared = false; 926 927 if (!dev->power.is_suspended) 928 goto Unlock; 929 930 if (dev->pm_domain) { 931 info = "power domain "; 932 callback = pm_op(&dev->pm_domain->ops, state); 933 goto Driver; 934 } 935 936 if (dev->type && dev->type->pm) { 937 info = "type "; 938 callback = pm_op(dev->type->pm, state); 939 goto Driver; 940 } 941 942 if (dev->class && dev->class->pm) { 943 info = "class "; 944 callback = pm_op(dev->class->pm, state); 945 goto Driver; 946 } 947 948 if (dev->bus) { 949 if (dev->bus->pm) { 950 info = "bus "; 951 callback = pm_op(dev->bus->pm, state); 952 } else if (dev->bus->resume) { 953 info = "legacy bus "; 954 callback = dev->bus->resume; 955 goto End; 956 } 957 } 958 959 Driver: 960 if (!callback && dev->driver && dev->driver->pm) { 961 info = "driver "; 962 callback = pm_op(dev->driver->pm, state); 963 } 964 965 End: 966 error = dpm_run_callback(callback, dev, state, info); 967 dev->power.is_suspended = false; 968 969 Unlock: 970 device_unlock(dev); 971 dpm_watchdog_clear(&wd); 972 973 Complete: 974 complete_all(&dev->power.completion); 975 976 TRACE_RESUME(error); 977 978 return error; 979 } 980 981 static void async_resume(void *data, async_cookie_t cookie) 982 { 983 struct device *dev = (struct device *)data; 984 int error; 985 986 error = device_resume(dev, pm_transition, true); 987 if (error) 988 pm_dev_err(dev, pm_transition, " async", error); 989 put_device(dev); 990 } 991 992 /** 993 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 994 * @state: PM transition of the system being carried out. 995 * 996 * Execute the appropriate "resume" callback for all devices whose status 997 * indicates that they are suspended. 998 */ 999 void dpm_resume(pm_message_t state) 1000 { 1001 struct device *dev; 1002 ktime_t starttime = ktime_get(); 1003 1004 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1005 might_sleep(); 1006 1007 mutex_lock(&dpm_list_mtx); 1008 pm_transition = state; 1009 async_error = 0; 1010 1011 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1012 dpm_async_fn(dev, async_resume); 1013 1014 while (!list_empty(&dpm_suspended_list)) { 1015 dev = to_device(dpm_suspended_list.next); 1016 get_device(dev); 1017 if (!is_async(dev)) { 1018 int error; 1019 1020 mutex_unlock(&dpm_list_mtx); 1021 1022 error = device_resume(dev, state, false); 1023 if (error) { 1024 suspend_stats.failed_resume++; 1025 dpm_save_failed_step(SUSPEND_RESUME); 1026 dpm_save_failed_dev(dev_name(dev)); 1027 pm_dev_err(dev, state, "", error); 1028 } 1029 1030 mutex_lock(&dpm_list_mtx); 1031 } 1032 if (!list_empty(&dev->power.entry)) 1033 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1034 1035 mutex_unlock(&dpm_list_mtx); 1036 1037 put_device(dev); 1038 1039 mutex_lock(&dpm_list_mtx); 1040 } 1041 mutex_unlock(&dpm_list_mtx); 1042 async_synchronize_full(); 1043 dpm_show_time(starttime, state, 0, NULL); 1044 1045 cpufreq_resume(); 1046 devfreq_resume(); 1047 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1048 } 1049 1050 /** 1051 * device_complete - Complete a PM transition for given device. 1052 * @dev: Device to handle. 1053 * @state: PM transition of the system being carried out. 1054 */ 1055 static void device_complete(struct device *dev, pm_message_t state) 1056 { 1057 void (*callback)(struct device *) = NULL; 1058 const char *info = NULL; 1059 1060 if (dev->power.syscore) 1061 goto out; 1062 1063 device_lock(dev); 1064 1065 if (dev->pm_domain) { 1066 info = "completing power domain "; 1067 callback = dev->pm_domain->ops.complete; 1068 } else if (dev->type && dev->type->pm) { 1069 info = "completing type "; 1070 callback = dev->type->pm->complete; 1071 } else if (dev->class && dev->class->pm) { 1072 info = "completing class "; 1073 callback = dev->class->pm->complete; 1074 } else if (dev->bus && dev->bus->pm) { 1075 info = "completing bus "; 1076 callback = dev->bus->pm->complete; 1077 } 1078 1079 if (!callback && dev->driver && dev->driver->pm) { 1080 info = "completing driver "; 1081 callback = dev->driver->pm->complete; 1082 } 1083 1084 if (callback) { 1085 pm_dev_dbg(dev, state, info); 1086 callback(dev); 1087 } 1088 1089 device_unlock(dev); 1090 1091 out: 1092 pm_runtime_put(dev); 1093 } 1094 1095 /** 1096 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1097 * @state: PM transition of the system being carried out. 1098 * 1099 * Execute the ->complete() callbacks for all devices whose PM status is not 1100 * DPM_ON (this allows new devices to be registered). 1101 */ 1102 void dpm_complete(pm_message_t state) 1103 { 1104 struct list_head list; 1105 1106 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1107 might_sleep(); 1108 1109 INIT_LIST_HEAD(&list); 1110 mutex_lock(&dpm_list_mtx); 1111 while (!list_empty(&dpm_prepared_list)) { 1112 struct device *dev = to_device(dpm_prepared_list.prev); 1113 1114 get_device(dev); 1115 dev->power.is_prepared = false; 1116 list_move(&dev->power.entry, &list); 1117 1118 mutex_unlock(&dpm_list_mtx); 1119 1120 trace_device_pm_callback_start(dev, "", state.event); 1121 device_complete(dev, state); 1122 trace_device_pm_callback_end(dev, 0); 1123 1124 put_device(dev); 1125 1126 mutex_lock(&dpm_list_mtx); 1127 } 1128 list_splice(&list, &dpm_list); 1129 mutex_unlock(&dpm_list_mtx); 1130 1131 /* Allow device probing and trigger re-probing of deferred devices */ 1132 device_unblock_probing(); 1133 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1134 } 1135 1136 /** 1137 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1138 * @state: PM transition of the system being carried out. 1139 * 1140 * Execute "resume" callbacks for all devices and complete the PM transition of 1141 * the system. 1142 */ 1143 void dpm_resume_end(pm_message_t state) 1144 { 1145 dpm_resume(state); 1146 dpm_complete(state); 1147 } 1148 EXPORT_SYMBOL_GPL(dpm_resume_end); 1149 1150 1151 /*------------------------- Suspend routines -------------------------*/ 1152 1153 /** 1154 * resume_event - Return a "resume" message for given "suspend" sleep state. 1155 * @sleep_state: PM message representing a sleep state. 1156 * 1157 * Return a PM message representing the resume event corresponding to given 1158 * sleep state. 1159 */ 1160 static pm_message_t resume_event(pm_message_t sleep_state) 1161 { 1162 switch (sleep_state.event) { 1163 case PM_EVENT_SUSPEND: 1164 return PMSG_RESUME; 1165 case PM_EVENT_FREEZE: 1166 case PM_EVENT_QUIESCE: 1167 return PMSG_RECOVER; 1168 case PM_EVENT_HIBERNATE: 1169 return PMSG_RESTORE; 1170 } 1171 return PMSG_ON; 1172 } 1173 1174 static void dpm_superior_set_must_resume(struct device *dev) 1175 { 1176 struct device_link *link; 1177 int idx; 1178 1179 if (dev->parent) 1180 dev->parent->power.must_resume = true; 1181 1182 idx = device_links_read_lock(); 1183 1184 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1185 link->supplier->power.must_resume = true; 1186 1187 device_links_read_unlock(idx); 1188 } 1189 1190 /** 1191 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1192 * @dev: Device to handle. 1193 * @state: PM transition of the system being carried out. 1194 * @async: If true, the device is being suspended asynchronously. 1195 * 1196 * The driver of @dev will not receive interrupts while this function is being 1197 * executed. 1198 */ 1199 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1200 { 1201 pm_callback_t callback = NULL; 1202 const char *info = NULL; 1203 int error = 0; 1204 1205 TRACE_DEVICE(dev); 1206 TRACE_SUSPEND(0); 1207 1208 dpm_wait_for_subordinate(dev, async); 1209 1210 if (async_error) 1211 goto Complete; 1212 1213 if (dev->power.syscore || dev->power.direct_complete) 1214 goto Complete; 1215 1216 if (dev->pm_domain) { 1217 info = "noirq power domain "; 1218 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1219 } else if (dev->type && dev->type->pm) { 1220 info = "noirq type "; 1221 callback = pm_noirq_op(dev->type->pm, state); 1222 } else if (dev->class && dev->class->pm) { 1223 info = "noirq class "; 1224 callback = pm_noirq_op(dev->class->pm, state); 1225 } else if (dev->bus && dev->bus->pm) { 1226 info = "noirq bus "; 1227 callback = pm_noirq_op(dev->bus->pm, state); 1228 } 1229 if (callback) 1230 goto Run; 1231 1232 if (dev_pm_skip_suspend(dev)) 1233 goto Skip; 1234 1235 if (dev->driver && dev->driver->pm) { 1236 info = "noirq driver "; 1237 callback = pm_noirq_op(dev->driver->pm, state); 1238 } 1239 1240 Run: 1241 error = dpm_run_callback(callback, dev, state, info); 1242 if (error) { 1243 async_error = error; 1244 goto Complete; 1245 } 1246 1247 Skip: 1248 dev->power.is_noirq_suspended = true; 1249 1250 /* 1251 * Skipping the resume of devices that were in use right before the 1252 * system suspend (as indicated by their PM-runtime usage counters) 1253 * would be suboptimal. Also resume them if doing that is not allowed 1254 * to be skipped. 1255 */ 1256 if (atomic_read(&dev->power.usage_count) > 1 || 1257 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1258 dev->power.may_skip_resume)) 1259 dev->power.must_resume = true; 1260 1261 if (dev->power.must_resume) 1262 dpm_superior_set_must_resume(dev); 1263 1264 Complete: 1265 complete_all(&dev->power.completion); 1266 TRACE_SUSPEND(error); 1267 return error; 1268 } 1269 1270 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1271 { 1272 struct device *dev = (struct device *)data; 1273 int error; 1274 1275 error = __device_suspend_noirq(dev, pm_transition, true); 1276 if (error) { 1277 dpm_save_failed_dev(dev_name(dev)); 1278 pm_dev_err(dev, pm_transition, " async", error); 1279 } 1280 1281 put_device(dev); 1282 } 1283 1284 static int device_suspend_noirq(struct device *dev) 1285 { 1286 if (dpm_async_fn(dev, async_suspend_noirq)) 1287 return 0; 1288 1289 return __device_suspend_noirq(dev, pm_transition, false); 1290 } 1291 1292 static int dpm_noirq_suspend_devices(pm_message_t state) 1293 { 1294 ktime_t starttime = ktime_get(); 1295 int error = 0; 1296 1297 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1298 mutex_lock(&dpm_list_mtx); 1299 pm_transition = state; 1300 async_error = 0; 1301 1302 while (!list_empty(&dpm_late_early_list)) { 1303 struct device *dev = to_device(dpm_late_early_list.prev); 1304 1305 get_device(dev); 1306 mutex_unlock(&dpm_list_mtx); 1307 1308 error = device_suspend_noirq(dev); 1309 1310 mutex_lock(&dpm_list_mtx); 1311 1312 if (error) { 1313 pm_dev_err(dev, state, " noirq", error); 1314 dpm_save_failed_dev(dev_name(dev)); 1315 } else if (!list_empty(&dev->power.entry)) { 1316 list_move(&dev->power.entry, &dpm_noirq_list); 1317 } 1318 1319 mutex_unlock(&dpm_list_mtx); 1320 1321 put_device(dev); 1322 1323 mutex_lock(&dpm_list_mtx); 1324 1325 if (error || async_error) 1326 break; 1327 } 1328 mutex_unlock(&dpm_list_mtx); 1329 async_synchronize_full(); 1330 if (!error) 1331 error = async_error; 1332 1333 if (error) { 1334 suspend_stats.failed_suspend_noirq++; 1335 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1336 } 1337 dpm_show_time(starttime, state, error, "noirq"); 1338 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1339 return error; 1340 } 1341 1342 /** 1343 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1344 * @state: PM transition of the system being carried out. 1345 * 1346 * Prevent device drivers' interrupt handlers from being called and invoke 1347 * "noirq" suspend callbacks for all non-sysdev devices. 1348 */ 1349 int dpm_suspend_noirq(pm_message_t state) 1350 { 1351 int ret; 1352 1353 device_wakeup_arm_wake_irqs(); 1354 suspend_device_irqs(); 1355 1356 ret = dpm_noirq_suspend_devices(state); 1357 if (ret) 1358 dpm_resume_noirq(resume_event(state)); 1359 1360 return ret; 1361 } 1362 1363 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1364 { 1365 struct device *parent = dev->parent; 1366 1367 if (!parent) 1368 return; 1369 1370 spin_lock_irq(&parent->power.lock); 1371 1372 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1373 parent->power.wakeup_path = true; 1374 1375 spin_unlock_irq(&parent->power.lock); 1376 } 1377 1378 /** 1379 * __device_suspend_late - Execute a "late suspend" callback for given device. 1380 * @dev: Device to handle. 1381 * @state: PM transition of the system being carried out. 1382 * @async: If true, the device is being suspended asynchronously. 1383 * 1384 * Runtime PM is disabled for @dev while this function is being executed. 1385 */ 1386 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1387 { 1388 pm_callback_t callback = NULL; 1389 const char *info = NULL; 1390 int error = 0; 1391 1392 TRACE_DEVICE(dev); 1393 TRACE_SUSPEND(0); 1394 1395 __pm_runtime_disable(dev, false); 1396 1397 dpm_wait_for_subordinate(dev, async); 1398 1399 if (async_error) 1400 goto Complete; 1401 1402 if (pm_wakeup_pending()) { 1403 async_error = -EBUSY; 1404 goto Complete; 1405 } 1406 1407 if (dev->power.syscore || dev->power.direct_complete) 1408 goto Complete; 1409 1410 if (dev->pm_domain) { 1411 info = "late power domain "; 1412 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1413 } else if (dev->type && dev->type->pm) { 1414 info = "late type "; 1415 callback = pm_late_early_op(dev->type->pm, state); 1416 } else if (dev->class && dev->class->pm) { 1417 info = "late class "; 1418 callback = pm_late_early_op(dev->class->pm, state); 1419 } else if (dev->bus && dev->bus->pm) { 1420 info = "late bus "; 1421 callback = pm_late_early_op(dev->bus->pm, state); 1422 } 1423 if (callback) 1424 goto Run; 1425 1426 if (dev_pm_skip_suspend(dev)) 1427 goto Skip; 1428 1429 if (dev->driver && dev->driver->pm) { 1430 info = "late driver "; 1431 callback = pm_late_early_op(dev->driver->pm, state); 1432 } 1433 1434 Run: 1435 error = dpm_run_callback(callback, dev, state, info); 1436 if (error) { 1437 async_error = error; 1438 goto Complete; 1439 } 1440 dpm_propagate_wakeup_to_parent(dev); 1441 1442 Skip: 1443 dev->power.is_late_suspended = true; 1444 1445 Complete: 1446 TRACE_SUSPEND(error); 1447 complete_all(&dev->power.completion); 1448 return error; 1449 } 1450 1451 static void async_suspend_late(void *data, async_cookie_t cookie) 1452 { 1453 struct device *dev = (struct device *)data; 1454 int error; 1455 1456 error = __device_suspend_late(dev, pm_transition, true); 1457 if (error) { 1458 dpm_save_failed_dev(dev_name(dev)); 1459 pm_dev_err(dev, pm_transition, " async", error); 1460 } 1461 put_device(dev); 1462 } 1463 1464 static int device_suspend_late(struct device *dev) 1465 { 1466 if (dpm_async_fn(dev, async_suspend_late)) 1467 return 0; 1468 1469 return __device_suspend_late(dev, pm_transition, false); 1470 } 1471 1472 /** 1473 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1474 * @state: PM transition of the system being carried out. 1475 */ 1476 int dpm_suspend_late(pm_message_t state) 1477 { 1478 ktime_t starttime = ktime_get(); 1479 int error = 0; 1480 1481 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1482 wake_up_all_idle_cpus(); 1483 mutex_lock(&dpm_list_mtx); 1484 pm_transition = state; 1485 async_error = 0; 1486 1487 while (!list_empty(&dpm_suspended_list)) { 1488 struct device *dev = to_device(dpm_suspended_list.prev); 1489 1490 get_device(dev); 1491 1492 mutex_unlock(&dpm_list_mtx); 1493 1494 error = device_suspend_late(dev); 1495 1496 mutex_lock(&dpm_list_mtx); 1497 1498 if (!list_empty(&dev->power.entry)) 1499 list_move(&dev->power.entry, &dpm_late_early_list); 1500 1501 if (error) { 1502 pm_dev_err(dev, state, " late", error); 1503 dpm_save_failed_dev(dev_name(dev)); 1504 } 1505 1506 mutex_unlock(&dpm_list_mtx); 1507 1508 put_device(dev); 1509 1510 mutex_lock(&dpm_list_mtx); 1511 1512 if (error || async_error) 1513 break; 1514 } 1515 mutex_unlock(&dpm_list_mtx); 1516 async_synchronize_full(); 1517 if (!error) 1518 error = async_error; 1519 if (error) { 1520 suspend_stats.failed_suspend_late++; 1521 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1522 dpm_resume_early(resume_event(state)); 1523 } 1524 dpm_show_time(starttime, state, error, "late"); 1525 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1526 return error; 1527 } 1528 1529 /** 1530 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1531 * @state: PM transition of the system being carried out. 1532 */ 1533 int dpm_suspend_end(pm_message_t state) 1534 { 1535 ktime_t starttime = ktime_get(); 1536 int error; 1537 1538 error = dpm_suspend_late(state); 1539 if (error) 1540 goto out; 1541 1542 error = dpm_suspend_noirq(state); 1543 if (error) 1544 dpm_resume_early(resume_event(state)); 1545 1546 out: 1547 dpm_show_time(starttime, state, error, "end"); 1548 return error; 1549 } 1550 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1551 1552 /** 1553 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1554 * @dev: Device to suspend. 1555 * @state: PM transition of the system being carried out. 1556 * @cb: Suspend callback to execute. 1557 * @info: string description of caller. 1558 */ 1559 static int legacy_suspend(struct device *dev, pm_message_t state, 1560 int (*cb)(struct device *dev, pm_message_t state), 1561 const char *info) 1562 { 1563 int error; 1564 ktime_t calltime; 1565 1566 calltime = initcall_debug_start(dev, cb); 1567 1568 trace_device_pm_callback_start(dev, info, state.event); 1569 error = cb(dev, state); 1570 trace_device_pm_callback_end(dev, error); 1571 suspend_report_result(dev, cb, error); 1572 1573 initcall_debug_report(dev, calltime, cb, error); 1574 1575 return error; 1576 } 1577 1578 static void dpm_clear_superiors_direct_complete(struct device *dev) 1579 { 1580 struct device_link *link; 1581 int idx; 1582 1583 if (dev->parent) { 1584 spin_lock_irq(&dev->parent->power.lock); 1585 dev->parent->power.direct_complete = false; 1586 spin_unlock_irq(&dev->parent->power.lock); 1587 } 1588 1589 idx = device_links_read_lock(); 1590 1591 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1592 spin_lock_irq(&link->supplier->power.lock); 1593 link->supplier->power.direct_complete = false; 1594 spin_unlock_irq(&link->supplier->power.lock); 1595 } 1596 1597 device_links_read_unlock(idx); 1598 } 1599 1600 /** 1601 * __device_suspend - Execute "suspend" callbacks for given device. 1602 * @dev: Device to handle. 1603 * @state: PM transition of the system being carried out. 1604 * @async: If true, the device is being suspended asynchronously. 1605 */ 1606 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1607 { 1608 pm_callback_t callback = NULL; 1609 const char *info = NULL; 1610 int error = 0; 1611 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1612 1613 TRACE_DEVICE(dev); 1614 TRACE_SUSPEND(0); 1615 1616 dpm_wait_for_subordinate(dev, async); 1617 1618 if (async_error) { 1619 dev->power.direct_complete = false; 1620 goto Complete; 1621 } 1622 1623 /* 1624 * Wait for possible runtime PM transitions of the device in progress 1625 * to complete and if there's a runtime resume request pending for it, 1626 * resume it before proceeding with invoking the system-wide suspend 1627 * callbacks for it. 1628 * 1629 * If the system-wide suspend callbacks below change the configuration 1630 * of the device, they must disable runtime PM for it or otherwise 1631 * ensure that its runtime-resume callbacks will not be confused by that 1632 * change in case they are invoked going forward. 1633 */ 1634 pm_runtime_barrier(dev); 1635 1636 if (pm_wakeup_pending()) { 1637 dev->power.direct_complete = false; 1638 async_error = -EBUSY; 1639 goto Complete; 1640 } 1641 1642 if (dev->power.syscore) 1643 goto Complete; 1644 1645 /* Avoid direct_complete to let wakeup_path propagate. */ 1646 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1647 dev->power.direct_complete = false; 1648 1649 if (dev->power.direct_complete) { 1650 if (pm_runtime_status_suspended(dev)) { 1651 pm_runtime_disable(dev); 1652 if (pm_runtime_status_suspended(dev)) { 1653 pm_dev_dbg(dev, state, "direct-complete "); 1654 goto Complete; 1655 } 1656 1657 pm_runtime_enable(dev); 1658 } 1659 dev->power.direct_complete = false; 1660 } 1661 1662 dev->power.may_skip_resume = true; 1663 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1664 1665 dpm_watchdog_set(&wd, dev); 1666 device_lock(dev); 1667 1668 if (dev->pm_domain) { 1669 info = "power domain "; 1670 callback = pm_op(&dev->pm_domain->ops, state); 1671 goto Run; 1672 } 1673 1674 if (dev->type && dev->type->pm) { 1675 info = "type "; 1676 callback = pm_op(dev->type->pm, state); 1677 goto Run; 1678 } 1679 1680 if (dev->class && dev->class->pm) { 1681 info = "class "; 1682 callback = pm_op(dev->class->pm, state); 1683 goto Run; 1684 } 1685 1686 if (dev->bus) { 1687 if (dev->bus->pm) { 1688 info = "bus "; 1689 callback = pm_op(dev->bus->pm, state); 1690 } else if (dev->bus->suspend) { 1691 pm_dev_dbg(dev, state, "legacy bus "); 1692 error = legacy_suspend(dev, state, dev->bus->suspend, 1693 "legacy bus "); 1694 goto End; 1695 } 1696 } 1697 1698 Run: 1699 if (!callback && dev->driver && dev->driver->pm) { 1700 info = "driver "; 1701 callback = pm_op(dev->driver->pm, state); 1702 } 1703 1704 error = dpm_run_callback(callback, dev, state, info); 1705 1706 End: 1707 if (!error) { 1708 dev->power.is_suspended = true; 1709 if (device_may_wakeup(dev)) 1710 dev->power.wakeup_path = true; 1711 1712 dpm_propagate_wakeup_to_parent(dev); 1713 dpm_clear_superiors_direct_complete(dev); 1714 } 1715 1716 device_unlock(dev); 1717 dpm_watchdog_clear(&wd); 1718 1719 Complete: 1720 if (error) 1721 async_error = error; 1722 1723 complete_all(&dev->power.completion); 1724 TRACE_SUSPEND(error); 1725 return error; 1726 } 1727 1728 static void async_suspend(void *data, async_cookie_t cookie) 1729 { 1730 struct device *dev = (struct device *)data; 1731 int error; 1732 1733 error = __device_suspend(dev, pm_transition, true); 1734 if (error) { 1735 dpm_save_failed_dev(dev_name(dev)); 1736 pm_dev_err(dev, pm_transition, " async", error); 1737 } 1738 1739 put_device(dev); 1740 } 1741 1742 static int device_suspend(struct device *dev) 1743 { 1744 if (dpm_async_fn(dev, async_suspend)) 1745 return 0; 1746 1747 return __device_suspend(dev, pm_transition, false); 1748 } 1749 1750 /** 1751 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1752 * @state: PM transition of the system being carried out. 1753 */ 1754 int dpm_suspend(pm_message_t state) 1755 { 1756 ktime_t starttime = ktime_get(); 1757 int error = 0; 1758 1759 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1760 might_sleep(); 1761 1762 devfreq_suspend(); 1763 cpufreq_suspend(); 1764 1765 mutex_lock(&dpm_list_mtx); 1766 pm_transition = state; 1767 async_error = 0; 1768 while (!list_empty(&dpm_prepared_list)) { 1769 struct device *dev = to_device(dpm_prepared_list.prev); 1770 1771 get_device(dev); 1772 1773 mutex_unlock(&dpm_list_mtx); 1774 1775 error = device_suspend(dev); 1776 1777 mutex_lock(&dpm_list_mtx); 1778 1779 if (error) { 1780 pm_dev_err(dev, state, "", error); 1781 dpm_save_failed_dev(dev_name(dev)); 1782 } else if (!list_empty(&dev->power.entry)) { 1783 list_move(&dev->power.entry, &dpm_suspended_list); 1784 } 1785 1786 mutex_unlock(&dpm_list_mtx); 1787 1788 put_device(dev); 1789 1790 mutex_lock(&dpm_list_mtx); 1791 1792 if (error || async_error) 1793 break; 1794 } 1795 mutex_unlock(&dpm_list_mtx); 1796 async_synchronize_full(); 1797 if (!error) 1798 error = async_error; 1799 if (error) { 1800 suspend_stats.failed_suspend++; 1801 dpm_save_failed_step(SUSPEND_SUSPEND); 1802 } 1803 dpm_show_time(starttime, state, error, NULL); 1804 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1805 return error; 1806 } 1807 1808 /** 1809 * device_prepare - Prepare a device for system power transition. 1810 * @dev: Device to handle. 1811 * @state: PM transition of the system being carried out. 1812 * 1813 * Execute the ->prepare() callback(s) for given device. No new children of the 1814 * device may be registered after this function has returned. 1815 */ 1816 static int device_prepare(struct device *dev, pm_message_t state) 1817 { 1818 int (*callback)(struct device *) = NULL; 1819 int ret = 0; 1820 1821 /* 1822 * If a device's parent goes into runtime suspend at the wrong time, 1823 * it won't be possible to resume the device. To prevent this we 1824 * block runtime suspend here, during the prepare phase, and allow 1825 * it again during the complete phase. 1826 */ 1827 pm_runtime_get_noresume(dev); 1828 1829 if (dev->power.syscore) 1830 return 0; 1831 1832 device_lock(dev); 1833 1834 dev->power.wakeup_path = false; 1835 1836 if (dev->power.no_pm_callbacks) 1837 goto unlock; 1838 1839 if (dev->pm_domain) 1840 callback = dev->pm_domain->ops.prepare; 1841 else if (dev->type && dev->type->pm) 1842 callback = dev->type->pm->prepare; 1843 else if (dev->class && dev->class->pm) 1844 callback = dev->class->pm->prepare; 1845 else if (dev->bus && dev->bus->pm) 1846 callback = dev->bus->pm->prepare; 1847 1848 if (!callback && dev->driver && dev->driver->pm) 1849 callback = dev->driver->pm->prepare; 1850 1851 if (callback) 1852 ret = callback(dev); 1853 1854 unlock: 1855 device_unlock(dev); 1856 1857 if (ret < 0) { 1858 suspend_report_result(dev, callback, ret); 1859 pm_runtime_put(dev); 1860 return ret; 1861 } 1862 /* 1863 * A positive return value from ->prepare() means "this device appears 1864 * to be runtime-suspended and its state is fine, so if it really is 1865 * runtime-suspended, you can leave it in that state provided that you 1866 * will do the same thing with all of its descendants". This only 1867 * applies to suspend transitions, however. 1868 */ 1869 spin_lock_irq(&dev->power.lock); 1870 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1871 (ret > 0 || dev->power.no_pm_callbacks) && 1872 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1873 spin_unlock_irq(&dev->power.lock); 1874 return 0; 1875 } 1876 1877 /** 1878 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1879 * @state: PM transition of the system being carried out. 1880 * 1881 * Execute the ->prepare() callback(s) for all devices. 1882 */ 1883 int dpm_prepare(pm_message_t state) 1884 { 1885 int error = 0; 1886 1887 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1888 might_sleep(); 1889 1890 /* 1891 * Give a chance for the known devices to complete their probes, before 1892 * disable probing of devices. This sync point is important at least 1893 * at boot time + hibernation restore. 1894 */ 1895 wait_for_device_probe(); 1896 /* 1897 * It is unsafe if probing of devices will happen during suspend or 1898 * hibernation and system behavior will be unpredictable in this case. 1899 * So, let's prohibit device's probing here and defer their probes 1900 * instead. The normal behavior will be restored in dpm_complete(). 1901 */ 1902 device_block_probing(); 1903 1904 mutex_lock(&dpm_list_mtx); 1905 while (!list_empty(&dpm_list) && !error) { 1906 struct device *dev = to_device(dpm_list.next); 1907 1908 get_device(dev); 1909 1910 mutex_unlock(&dpm_list_mtx); 1911 1912 trace_device_pm_callback_start(dev, "", state.event); 1913 error = device_prepare(dev, state); 1914 trace_device_pm_callback_end(dev, error); 1915 1916 mutex_lock(&dpm_list_mtx); 1917 1918 if (!error) { 1919 dev->power.is_prepared = true; 1920 if (!list_empty(&dev->power.entry)) 1921 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1922 } else if (error == -EAGAIN) { 1923 error = 0; 1924 } else { 1925 dev_info(dev, "not prepared for power transition: code %d\n", 1926 error); 1927 } 1928 1929 mutex_unlock(&dpm_list_mtx); 1930 1931 put_device(dev); 1932 1933 mutex_lock(&dpm_list_mtx); 1934 } 1935 mutex_unlock(&dpm_list_mtx); 1936 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1937 return error; 1938 } 1939 1940 /** 1941 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1942 * @state: PM transition of the system being carried out. 1943 * 1944 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1945 * callbacks for them. 1946 */ 1947 int dpm_suspend_start(pm_message_t state) 1948 { 1949 ktime_t starttime = ktime_get(); 1950 int error; 1951 1952 error = dpm_prepare(state); 1953 if (error) { 1954 suspend_stats.failed_prepare++; 1955 dpm_save_failed_step(SUSPEND_PREPARE); 1956 } else 1957 error = dpm_suspend(state); 1958 dpm_show_time(starttime, state, error, "start"); 1959 return error; 1960 } 1961 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1962 1963 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret) 1964 { 1965 if (ret) 1966 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret); 1967 } 1968 EXPORT_SYMBOL_GPL(__suspend_report_result); 1969 1970 /** 1971 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1972 * @subordinate: Device that needs to wait for @dev. 1973 * @dev: Device to wait for. 1974 */ 1975 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1976 { 1977 dpm_wait(dev, subordinate->power.async_suspend); 1978 return async_error; 1979 } 1980 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1981 1982 /** 1983 * dpm_for_each_dev - device iterator. 1984 * @data: data for the callback. 1985 * @fn: function to be called for each device. 1986 * 1987 * Iterate over devices in dpm_list, and call @fn for each device, 1988 * passing it @data. 1989 */ 1990 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1991 { 1992 struct device *dev; 1993 1994 if (!fn) 1995 return; 1996 1997 device_pm_lock(); 1998 list_for_each_entry(dev, &dpm_list, power.entry) 1999 fn(dev, data); 2000 device_pm_unlock(); 2001 } 2002 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 2003 2004 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 2005 { 2006 if (!ops) 2007 return true; 2008 2009 return !ops->prepare && 2010 !ops->suspend && 2011 !ops->suspend_late && 2012 !ops->suspend_noirq && 2013 !ops->resume_noirq && 2014 !ops->resume_early && 2015 !ops->resume && 2016 !ops->complete; 2017 } 2018 2019 void device_pm_check_callbacks(struct device *dev) 2020 { 2021 unsigned long flags; 2022 2023 spin_lock_irqsave(&dev->power.lock, flags); 2024 dev->power.no_pm_callbacks = 2025 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2026 !dev->bus->suspend && !dev->bus->resume)) && 2027 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2028 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2029 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2030 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2031 !dev->driver->suspend && !dev->driver->resume)); 2032 spin_unlock_irqrestore(&dev->power.lock, flags); 2033 } 2034 2035 bool dev_pm_skip_suspend(struct device *dev) 2036 { 2037 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2038 pm_runtime_status_suspended(dev); 2039 } 2040