1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/cpuidle.h> 36 #include <linux/devfreq.h> 37 #include <linux/timer.h> 38 39 #include "../base.h" 40 #include "power.h" 41 42 typedef int (*pm_callback_t)(struct device *); 43 44 #define list_for_each_entry_rcu_locked(pos, head, member) \ 45 list_for_each_entry_rcu(pos, head, member, \ 46 device_links_read_lock_held()) 47 48 /* 49 * The entries in the dpm_list list are in a depth first order, simply 50 * because children are guaranteed to be discovered after parents, and 51 * are inserted at the back of the list on discovery. 52 * 53 * Since device_pm_add() may be called with a device lock held, 54 * we must never try to acquire a device lock while holding 55 * dpm_list_mutex. 56 */ 57 58 LIST_HEAD(dpm_list); 59 static LIST_HEAD(dpm_prepared_list); 60 static LIST_HEAD(dpm_suspended_list); 61 static LIST_HEAD(dpm_late_early_list); 62 static LIST_HEAD(dpm_noirq_list); 63 64 struct suspend_stats suspend_stats; 65 static DEFINE_MUTEX(dpm_list_mtx); 66 static pm_message_t pm_transition; 67 68 static int async_error; 69 70 static const char *pm_verb(int event) 71 { 72 switch (event) { 73 case PM_EVENT_SUSPEND: 74 return "suspend"; 75 case PM_EVENT_RESUME: 76 return "resume"; 77 case PM_EVENT_FREEZE: 78 return "freeze"; 79 case PM_EVENT_QUIESCE: 80 return "quiesce"; 81 case PM_EVENT_HIBERNATE: 82 return "hibernate"; 83 case PM_EVENT_THAW: 84 return "thaw"; 85 case PM_EVENT_RESTORE: 86 return "restore"; 87 case PM_EVENT_RECOVER: 88 return "recover"; 89 default: 90 return "(unknown PM event)"; 91 } 92 } 93 94 /** 95 * device_pm_sleep_init - Initialize system suspend-related device fields. 96 * @dev: Device object being initialized. 97 */ 98 void device_pm_sleep_init(struct device *dev) 99 { 100 dev->power.is_prepared = false; 101 dev->power.is_suspended = false; 102 dev->power.is_noirq_suspended = false; 103 dev->power.is_late_suspended = false; 104 init_completion(&dev->power.completion); 105 complete_all(&dev->power.completion); 106 dev->power.wakeup = NULL; 107 INIT_LIST_HEAD(&dev->power.entry); 108 } 109 110 /** 111 * device_pm_lock - Lock the list of active devices used by the PM core. 112 */ 113 void device_pm_lock(void) 114 { 115 mutex_lock(&dpm_list_mtx); 116 } 117 118 /** 119 * device_pm_unlock - Unlock the list of active devices used by the PM core. 120 */ 121 void device_pm_unlock(void) 122 { 123 mutex_unlock(&dpm_list_mtx); 124 } 125 126 /** 127 * device_pm_add - Add a device to the PM core's list of active devices. 128 * @dev: Device to add to the list. 129 */ 130 void device_pm_add(struct device *dev) 131 { 132 /* Skip PM setup/initialization. */ 133 if (device_pm_not_required(dev)) 134 return; 135 136 pr_debug("Adding info for %s:%s\n", 137 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 138 device_pm_check_callbacks(dev); 139 mutex_lock(&dpm_list_mtx); 140 if (dev->parent && dev->parent->power.is_prepared) 141 dev_warn(dev, "parent %s should not be sleeping\n", 142 dev_name(dev->parent)); 143 list_add_tail(&dev->power.entry, &dpm_list); 144 dev->power.in_dpm_list = true; 145 mutex_unlock(&dpm_list_mtx); 146 } 147 148 /** 149 * device_pm_remove - Remove a device from the PM core's list of active devices. 150 * @dev: Device to be removed from the list. 151 */ 152 void device_pm_remove(struct device *dev) 153 { 154 if (device_pm_not_required(dev)) 155 return; 156 157 pr_debug("Removing info for %s:%s\n", 158 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 159 complete_all(&dev->power.completion); 160 mutex_lock(&dpm_list_mtx); 161 list_del_init(&dev->power.entry); 162 dev->power.in_dpm_list = false; 163 mutex_unlock(&dpm_list_mtx); 164 device_wakeup_disable(dev); 165 pm_runtime_remove(dev); 166 device_pm_check_callbacks(dev); 167 } 168 169 /** 170 * device_pm_move_before - Move device in the PM core's list of active devices. 171 * @deva: Device to move in dpm_list. 172 * @devb: Device @deva should come before. 173 */ 174 void device_pm_move_before(struct device *deva, struct device *devb) 175 { 176 pr_debug("Moving %s:%s before %s:%s\n", 177 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 178 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 179 /* Delete deva from dpm_list and reinsert before devb. */ 180 list_move_tail(&deva->power.entry, &devb->power.entry); 181 } 182 183 /** 184 * device_pm_move_after - Move device in the PM core's list of active devices. 185 * @deva: Device to move in dpm_list. 186 * @devb: Device @deva should come after. 187 */ 188 void device_pm_move_after(struct device *deva, struct device *devb) 189 { 190 pr_debug("Moving %s:%s after %s:%s\n", 191 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 192 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 193 /* Delete deva from dpm_list and reinsert after devb. */ 194 list_move(&deva->power.entry, &devb->power.entry); 195 } 196 197 /** 198 * device_pm_move_last - Move device to end of the PM core's list of devices. 199 * @dev: Device to move in dpm_list. 200 */ 201 void device_pm_move_last(struct device *dev) 202 { 203 pr_debug("Moving %s:%s to end of list\n", 204 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 205 list_move_tail(&dev->power.entry, &dpm_list); 206 } 207 208 static ktime_t initcall_debug_start(struct device *dev, void *cb) 209 { 210 if (!pm_print_times_enabled) 211 return 0; 212 213 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 214 task_pid_nr(current), 215 dev->parent ? dev_name(dev->parent) : "none"); 216 return ktime_get(); 217 } 218 219 static void initcall_debug_report(struct device *dev, ktime_t calltime, 220 void *cb, int error) 221 { 222 ktime_t rettime; 223 s64 nsecs; 224 225 if (!pm_print_times_enabled) 226 return; 227 228 rettime = ktime_get(); 229 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 230 231 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 232 (unsigned long long)nsecs >> 10); 233 } 234 235 /** 236 * dpm_wait - Wait for a PM operation to complete. 237 * @dev: Device to wait for. 238 * @async: If unset, wait only if the device's power.async_suspend flag is set. 239 */ 240 static void dpm_wait(struct device *dev, bool async) 241 { 242 if (!dev) 243 return; 244 245 if (async || (pm_async_enabled && dev->power.async_suspend)) 246 wait_for_completion(&dev->power.completion); 247 } 248 249 static int dpm_wait_fn(struct device *dev, void *async_ptr) 250 { 251 dpm_wait(dev, *((bool *)async_ptr)); 252 return 0; 253 } 254 255 static void dpm_wait_for_children(struct device *dev, bool async) 256 { 257 device_for_each_child(dev, &async, dpm_wait_fn); 258 } 259 260 static void dpm_wait_for_suppliers(struct device *dev, bool async) 261 { 262 struct device_link *link; 263 int idx; 264 265 idx = device_links_read_lock(); 266 267 /* 268 * If the supplier goes away right after we've checked the link to it, 269 * we'll wait for its completion to change the state, but that's fine, 270 * because the only things that will block as a result are the SRCU 271 * callbacks freeing the link objects for the links in the list we're 272 * walking. 273 */ 274 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 275 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 276 dpm_wait(link->supplier, async); 277 278 device_links_read_unlock(idx); 279 } 280 281 static bool dpm_wait_for_superior(struct device *dev, bool async) 282 { 283 struct device *parent; 284 285 /* 286 * If the device is resumed asynchronously and the parent's callback 287 * deletes both the device and the parent itself, the parent object may 288 * be freed while this function is running, so avoid that by reference 289 * counting the parent once more unless the device has been deleted 290 * already (in which case return right away). 291 */ 292 mutex_lock(&dpm_list_mtx); 293 294 if (!device_pm_initialized(dev)) { 295 mutex_unlock(&dpm_list_mtx); 296 return false; 297 } 298 299 parent = get_device(dev->parent); 300 301 mutex_unlock(&dpm_list_mtx); 302 303 dpm_wait(parent, async); 304 put_device(parent); 305 306 dpm_wait_for_suppliers(dev, async); 307 308 /* 309 * If the parent's callback has deleted the device, attempting to resume 310 * it would be invalid, so avoid doing that then. 311 */ 312 return device_pm_initialized(dev); 313 } 314 315 static void dpm_wait_for_consumers(struct device *dev, bool async) 316 { 317 struct device_link *link; 318 int idx; 319 320 idx = device_links_read_lock(); 321 322 /* 323 * The status of a device link can only be changed from "dormant" by a 324 * probe, but that cannot happen during system suspend/resume. In 325 * theory it can change to "dormant" at that time, but then it is 326 * reasonable to wait for the target device anyway (eg. if it goes 327 * away, it's better to wait for it to go away completely and then 328 * continue instead of trying to continue in parallel with its 329 * unregistration). 330 */ 331 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 332 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 333 dpm_wait(link->consumer, async); 334 335 device_links_read_unlock(idx); 336 } 337 338 static void dpm_wait_for_subordinate(struct device *dev, bool async) 339 { 340 dpm_wait_for_children(dev, async); 341 dpm_wait_for_consumers(dev, async); 342 } 343 344 /** 345 * pm_op - Return the PM operation appropriate for given PM event. 346 * @ops: PM operations to choose from. 347 * @state: PM transition of the system being carried out. 348 */ 349 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 350 { 351 switch (state.event) { 352 #ifdef CONFIG_SUSPEND 353 case PM_EVENT_SUSPEND: 354 return ops->suspend; 355 case PM_EVENT_RESUME: 356 return ops->resume; 357 #endif /* CONFIG_SUSPEND */ 358 #ifdef CONFIG_HIBERNATE_CALLBACKS 359 case PM_EVENT_FREEZE: 360 case PM_EVENT_QUIESCE: 361 return ops->freeze; 362 case PM_EVENT_HIBERNATE: 363 return ops->poweroff; 364 case PM_EVENT_THAW: 365 case PM_EVENT_RECOVER: 366 return ops->thaw; 367 case PM_EVENT_RESTORE: 368 return ops->restore; 369 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 370 } 371 372 return NULL; 373 } 374 375 /** 376 * pm_late_early_op - Return the PM operation appropriate for given PM event. 377 * @ops: PM operations to choose from. 378 * @state: PM transition of the system being carried out. 379 * 380 * Runtime PM is disabled for @dev while this function is being executed. 381 */ 382 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 383 pm_message_t state) 384 { 385 switch (state.event) { 386 #ifdef CONFIG_SUSPEND 387 case PM_EVENT_SUSPEND: 388 return ops->suspend_late; 389 case PM_EVENT_RESUME: 390 return ops->resume_early; 391 #endif /* CONFIG_SUSPEND */ 392 #ifdef CONFIG_HIBERNATE_CALLBACKS 393 case PM_EVENT_FREEZE: 394 case PM_EVENT_QUIESCE: 395 return ops->freeze_late; 396 case PM_EVENT_HIBERNATE: 397 return ops->poweroff_late; 398 case PM_EVENT_THAW: 399 case PM_EVENT_RECOVER: 400 return ops->thaw_early; 401 case PM_EVENT_RESTORE: 402 return ops->restore_early; 403 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 404 } 405 406 return NULL; 407 } 408 409 /** 410 * pm_noirq_op - Return the PM operation appropriate for given PM event. 411 * @ops: PM operations to choose from. 412 * @state: PM transition of the system being carried out. 413 * 414 * The driver of @dev will not receive interrupts while this function is being 415 * executed. 416 */ 417 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 418 { 419 switch (state.event) { 420 #ifdef CONFIG_SUSPEND 421 case PM_EVENT_SUSPEND: 422 return ops->suspend_noirq; 423 case PM_EVENT_RESUME: 424 return ops->resume_noirq; 425 #endif /* CONFIG_SUSPEND */ 426 #ifdef CONFIG_HIBERNATE_CALLBACKS 427 case PM_EVENT_FREEZE: 428 case PM_EVENT_QUIESCE: 429 return ops->freeze_noirq; 430 case PM_EVENT_HIBERNATE: 431 return ops->poweroff_noirq; 432 case PM_EVENT_THAW: 433 case PM_EVENT_RECOVER: 434 return ops->thaw_noirq; 435 case PM_EVENT_RESTORE: 436 return ops->restore_noirq; 437 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 438 } 439 440 return NULL; 441 } 442 443 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 444 { 445 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 446 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 447 ", may wakeup" : "", dev->power.driver_flags); 448 } 449 450 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 451 int error) 452 { 453 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 454 error); 455 } 456 457 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 458 const char *info) 459 { 460 ktime_t calltime; 461 u64 usecs64; 462 int usecs; 463 464 calltime = ktime_get(); 465 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 466 do_div(usecs64, NSEC_PER_USEC); 467 usecs = usecs64; 468 if (usecs == 0) 469 usecs = 1; 470 471 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 472 info ?: "", info ? " " : "", pm_verb(state.event), 473 error ? "aborted" : "complete", 474 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 475 } 476 477 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 478 pm_message_t state, const char *info) 479 { 480 ktime_t calltime; 481 int error; 482 483 if (!cb) 484 return 0; 485 486 calltime = initcall_debug_start(dev, cb); 487 488 pm_dev_dbg(dev, state, info); 489 trace_device_pm_callback_start(dev, info, state.event); 490 error = cb(dev); 491 trace_device_pm_callback_end(dev, error); 492 suspend_report_result(cb, error); 493 494 initcall_debug_report(dev, calltime, cb, error); 495 496 return error; 497 } 498 499 #ifdef CONFIG_DPM_WATCHDOG 500 struct dpm_watchdog { 501 struct device *dev; 502 struct task_struct *tsk; 503 struct timer_list timer; 504 }; 505 506 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 507 struct dpm_watchdog wd 508 509 /** 510 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 511 * @t: The timer that PM watchdog depends on. 512 * 513 * Called when a driver has timed out suspending or resuming. 514 * There's not much we can do here to recover so panic() to 515 * capture a crash-dump in pstore. 516 */ 517 static void dpm_watchdog_handler(struct timer_list *t) 518 { 519 struct dpm_watchdog *wd = from_timer(wd, t, timer); 520 521 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 522 show_stack(wd->tsk, NULL, KERN_EMERG); 523 panic("%s %s: unrecoverable failure\n", 524 dev_driver_string(wd->dev), dev_name(wd->dev)); 525 } 526 527 /** 528 * dpm_watchdog_set - Enable pm watchdog for given device. 529 * @wd: Watchdog. Must be allocated on the stack. 530 * @dev: Device to handle. 531 */ 532 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 533 { 534 struct timer_list *timer = &wd->timer; 535 536 wd->dev = dev; 537 wd->tsk = current; 538 539 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 540 /* use same timeout value for both suspend and resume */ 541 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 542 add_timer(timer); 543 } 544 545 /** 546 * dpm_watchdog_clear - Disable suspend/resume watchdog. 547 * @wd: Watchdog to disable. 548 */ 549 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 550 { 551 struct timer_list *timer = &wd->timer; 552 553 del_timer_sync(timer); 554 destroy_timer_on_stack(timer); 555 } 556 #else 557 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 558 #define dpm_watchdog_set(x, y) 559 #define dpm_watchdog_clear(x) 560 #endif 561 562 /*------------------------- Resume routines -------------------------*/ 563 564 /** 565 * dev_pm_skip_resume - System-wide device resume optimization check. 566 * @dev: Target device. 567 * 568 * Return: 569 * - %false if the transition under way is RESTORE. 570 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 571 * - The logical negation of %power.must_resume otherwise (that is, when the 572 * transition under way is RESUME). 573 */ 574 bool dev_pm_skip_resume(struct device *dev) 575 { 576 if (pm_transition.event == PM_EVENT_RESTORE) 577 return false; 578 579 if (pm_transition.event == PM_EVENT_THAW) 580 return dev_pm_skip_suspend(dev); 581 582 return !dev->power.must_resume; 583 } 584 585 /** 586 * device_resume_noirq - Execute a "noirq resume" callback for given device. 587 * @dev: Device to handle. 588 * @state: PM transition of the system being carried out. 589 * @async: If true, the device is being resumed asynchronously. 590 * 591 * The driver of @dev will not receive interrupts while this function is being 592 * executed. 593 */ 594 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 595 { 596 pm_callback_t callback = NULL; 597 const char *info = NULL; 598 bool skip_resume; 599 int error = 0; 600 601 TRACE_DEVICE(dev); 602 TRACE_RESUME(0); 603 604 if (dev->power.syscore || dev->power.direct_complete) 605 goto Out; 606 607 if (!dev->power.is_noirq_suspended) 608 goto Out; 609 610 if (!dpm_wait_for_superior(dev, async)) 611 goto Out; 612 613 skip_resume = dev_pm_skip_resume(dev); 614 /* 615 * If the driver callback is skipped below or by the middle layer 616 * callback and device_resume_early() also skips the driver callback for 617 * this device later, it needs to appear as "suspended" to PM-runtime, 618 * so change its status accordingly. 619 * 620 * Otherwise, the device is going to be resumed, so set its PM-runtime 621 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 622 * to avoid confusing drivers that don't use it. 623 */ 624 if (skip_resume) 625 pm_runtime_set_suspended(dev); 626 else if (dev_pm_skip_suspend(dev)) 627 pm_runtime_set_active(dev); 628 629 if (dev->pm_domain) { 630 info = "noirq power domain "; 631 callback = pm_noirq_op(&dev->pm_domain->ops, state); 632 } else if (dev->type && dev->type->pm) { 633 info = "noirq type "; 634 callback = pm_noirq_op(dev->type->pm, state); 635 } else if (dev->class && dev->class->pm) { 636 info = "noirq class "; 637 callback = pm_noirq_op(dev->class->pm, state); 638 } else if (dev->bus && dev->bus->pm) { 639 info = "noirq bus "; 640 callback = pm_noirq_op(dev->bus->pm, state); 641 } 642 if (callback) 643 goto Run; 644 645 if (skip_resume) 646 goto Skip; 647 648 if (dev->driver && dev->driver->pm) { 649 info = "noirq driver "; 650 callback = pm_noirq_op(dev->driver->pm, state); 651 } 652 653 Run: 654 error = dpm_run_callback(callback, dev, state, info); 655 656 Skip: 657 dev->power.is_noirq_suspended = false; 658 659 Out: 660 complete_all(&dev->power.completion); 661 TRACE_RESUME(error); 662 return error; 663 } 664 665 static bool is_async(struct device *dev) 666 { 667 return dev->power.async_suspend && pm_async_enabled 668 && !pm_trace_is_enabled(); 669 } 670 671 static bool dpm_async_fn(struct device *dev, async_func_t func) 672 { 673 reinit_completion(&dev->power.completion); 674 675 if (is_async(dev)) { 676 get_device(dev); 677 async_schedule_dev(func, dev); 678 return true; 679 } 680 681 return false; 682 } 683 684 static void async_resume_noirq(void *data, async_cookie_t cookie) 685 { 686 struct device *dev = (struct device *)data; 687 int error; 688 689 error = device_resume_noirq(dev, pm_transition, true); 690 if (error) 691 pm_dev_err(dev, pm_transition, " async", error); 692 693 put_device(dev); 694 } 695 696 static void dpm_noirq_resume_devices(pm_message_t state) 697 { 698 struct device *dev; 699 ktime_t starttime = ktime_get(); 700 701 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 702 mutex_lock(&dpm_list_mtx); 703 pm_transition = state; 704 705 /* 706 * Advanced the async threads upfront, 707 * in case the starting of async threads is 708 * delayed by non-async resuming devices. 709 */ 710 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 711 dpm_async_fn(dev, async_resume_noirq); 712 713 while (!list_empty(&dpm_noirq_list)) { 714 dev = to_device(dpm_noirq_list.next); 715 get_device(dev); 716 list_move_tail(&dev->power.entry, &dpm_late_early_list); 717 mutex_unlock(&dpm_list_mtx); 718 719 if (!is_async(dev)) { 720 int error; 721 722 error = device_resume_noirq(dev, state, false); 723 if (error) { 724 suspend_stats.failed_resume_noirq++; 725 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 726 dpm_save_failed_dev(dev_name(dev)); 727 pm_dev_err(dev, state, " noirq", error); 728 } 729 } 730 731 mutex_lock(&dpm_list_mtx); 732 put_device(dev); 733 } 734 mutex_unlock(&dpm_list_mtx); 735 async_synchronize_full(); 736 dpm_show_time(starttime, state, 0, "noirq"); 737 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 738 } 739 740 /** 741 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 742 * @state: PM transition of the system being carried out. 743 * 744 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 745 * allow device drivers' interrupt handlers to be called. 746 */ 747 void dpm_resume_noirq(pm_message_t state) 748 { 749 dpm_noirq_resume_devices(state); 750 751 resume_device_irqs(); 752 device_wakeup_disarm_wake_irqs(); 753 754 cpuidle_resume(); 755 } 756 757 /** 758 * device_resume_early - Execute an "early resume" callback for given device. 759 * @dev: Device to handle. 760 * @state: PM transition of the system being carried out. 761 * @async: If true, the device is being resumed asynchronously. 762 * 763 * Runtime PM is disabled for @dev while this function is being executed. 764 */ 765 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 766 { 767 pm_callback_t callback = NULL; 768 const char *info = NULL; 769 int error = 0; 770 771 TRACE_DEVICE(dev); 772 TRACE_RESUME(0); 773 774 if (dev->power.syscore || dev->power.direct_complete) 775 goto Out; 776 777 if (!dev->power.is_late_suspended) 778 goto Out; 779 780 if (!dpm_wait_for_superior(dev, async)) 781 goto Out; 782 783 if (dev->pm_domain) { 784 info = "early power domain "; 785 callback = pm_late_early_op(&dev->pm_domain->ops, state); 786 } else if (dev->type && dev->type->pm) { 787 info = "early type "; 788 callback = pm_late_early_op(dev->type->pm, state); 789 } else if (dev->class && dev->class->pm) { 790 info = "early class "; 791 callback = pm_late_early_op(dev->class->pm, state); 792 } else if (dev->bus && dev->bus->pm) { 793 info = "early bus "; 794 callback = pm_late_early_op(dev->bus->pm, state); 795 } 796 if (callback) 797 goto Run; 798 799 if (dev_pm_skip_resume(dev)) 800 goto Skip; 801 802 if (dev->driver && dev->driver->pm) { 803 info = "early driver "; 804 callback = pm_late_early_op(dev->driver->pm, state); 805 } 806 807 Run: 808 error = dpm_run_callback(callback, dev, state, info); 809 810 Skip: 811 dev->power.is_late_suspended = false; 812 813 Out: 814 TRACE_RESUME(error); 815 816 pm_runtime_enable(dev); 817 complete_all(&dev->power.completion); 818 return error; 819 } 820 821 static void async_resume_early(void *data, async_cookie_t cookie) 822 { 823 struct device *dev = (struct device *)data; 824 int error; 825 826 error = device_resume_early(dev, pm_transition, true); 827 if (error) 828 pm_dev_err(dev, pm_transition, " async", error); 829 830 put_device(dev); 831 } 832 833 /** 834 * dpm_resume_early - Execute "early resume" callbacks for all devices. 835 * @state: PM transition of the system being carried out. 836 */ 837 void dpm_resume_early(pm_message_t state) 838 { 839 struct device *dev; 840 ktime_t starttime = ktime_get(); 841 842 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 843 mutex_lock(&dpm_list_mtx); 844 pm_transition = state; 845 846 /* 847 * Advanced the async threads upfront, 848 * in case the starting of async threads is 849 * delayed by non-async resuming devices. 850 */ 851 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 852 dpm_async_fn(dev, async_resume_early); 853 854 while (!list_empty(&dpm_late_early_list)) { 855 dev = to_device(dpm_late_early_list.next); 856 get_device(dev); 857 list_move_tail(&dev->power.entry, &dpm_suspended_list); 858 mutex_unlock(&dpm_list_mtx); 859 860 if (!is_async(dev)) { 861 int error; 862 863 error = device_resume_early(dev, state, false); 864 if (error) { 865 suspend_stats.failed_resume_early++; 866 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 867 dpm_save_failed_dev(dev_name(dev)); 868 pm_dev_err(dev, state, " early", error); 869 } 870 } 871 mutex_lock(&dpm_list_mtx); 872 put_device(dev); 873 } 874 mutex_unlock(&dpm_list_mtx); 875 async_synchronize_full(); 876 dpm_show_time(starttime, state, 0, "early"); 877 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 878 } 879 880 /** 881 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 882 * @state: PM transition of the system being carried out. 883 */ 884 void dpm_resume_start(pm_message_t state) 885 { 886 dpm_resume_noirq(state); 887 dpm_resume_early(state); 888 } 889 EXPORT_SYMBOL_GPL(dpm_resume_start); 890 891 /** 892 * device_resume - Execute "resume" callbacks for given device. 893 * @dev: Device to handle. 894 * @state: PM transition of the system being carried out. 895 * @async: If true, the device is being resumed asynchronously. 896 */ 897 static int device_resume(struct device *dev, pm_message_t state, bool async) 898 { 899 pm_callback_t callback = NULL; 900 const char *info = NULL; 901 int error = 0; 902 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 903 904 TRACE_DEVICE(dev); 905 TRACE_RESUME(0); 906 907 if (dev->power.syscore) 908 goto Complete; 909 910 if (dev->power.direct_complete) { 911 /* Match the pm_runtime_disable() in __device_suspend(). */ 912 pm_runtime_enable(dev); 913 goto Complete; 914 } 915 916 if (!dpm_wait_for_superior(dev, async)) 917 goto Complete; 918 919 dpm_watchdog_set(&wd, dev); 920 device_lock(dev); 921 922 /* 923 * This is a fib. But we'll allow new children to be added below 924 * a resumed device, even if the device hasn't been completed yet. 925 */ 926 dev->power.is_prepared = false; 927 928 if (!dev->power.is_suspended) 929 goto Unlock; 930 931 if (dev->pm_domain) { 932 info = "power domain "; 933 callback = pm_op(&dev->pm_domain->ops, state); 934 goto Driver; 935 } 936 937 if (dev->type && dev->type->pm) { 938 info = "type "; 939 callback = pm_op(dev->type->pm, state); 940 goto Driver; 941 } 942 943 if (dev->class && dev->class->pm) { 944 info = "class "; 945 callback = pm_op(dev->class->pm, state); 946 goto Driver; 947 } 948 949 if (dev->bus) { 950 if (dev->bus->pm) { 951 info = "bus "; 952 callback = pm_op(dev->bus->pm, state); 953 } else if (dev->bus->resume) { 954 info = "legacy bus "; 955 callback = dev->bus->resume; 956 goto End; 957 } 958 } 959 960 Driver: 961 if (!callback && dev->driver && dev->driver->pm) { 962 info = "driver "; 963 callback = pm_op(dev->driver->pm, state); 964 } 965 966 End: 967 error = dpm_run_callback(callback, dev, state, info); 968 dev->power.is_suspended = false; 969 970 Unlock: 971 device_unlock(dev); 972 dpm_watchdog_clear(&wd); 973 974 Complete: 975 complete_all(&dev->power.completion); 976 977 TRACE_RESUME(error); 978 979 return error; 980 } 981 982 static void async_resume(void *data, async_cookie_t cookie) 983 { 984 struct device *dev = (struct device *)data; 985 int error; 986 987 error = device_resume(dev, pm_transition, true); 988 if (error) 989 pm_dev_err(dev, pm_transition, " async", error); 990 put_device(dev); 991 } 992 993 /** 994 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 995 * @state: PM transition of the system being carried out. 996 * 997 * Execute the appropriate "resume" callback for all devices whose status 998 * indicates that they are suspended. 999 */ 1000 void dpm_resume(pm_message_t state) 1001 { 1002 struct device *dev; 1003 ktime_t starttime = ktime_get(); 1004 1005 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1006 might_sleep(); 1007 1008 mutex_lock(&dpm_list_mtx); 1009 pm_transition = state; 1010 async_error = 0; 1011 1012 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1013 dpm_async_fn(dev, async_resume); 1014 1015 while (!list_empty(&dpm_suspended_list)) { 1016 dev = to_device(dpm_suspended_list.next); 1017 get_device(dev); 1018 if (!is_async(dev)) { 1019 int error; 1020 1021 mutex_unlock(&dpm_list_mtx); 1022 1023 error = device_resume(dev, state, false); 1024 if (error) { 1025 suspend_stats.failed_resume++; 1026 dpm_save_failed_step(SUSPEND_RESUME); 1027 dpm_save_failed_dev(dev_name(dev)); 1028 pm_dev_err(dev, state, "", error); 1029 } 1030 1031 mutex_lock(&dpm_list_mtx); 1032 } 1033 if (!list_empty(&dev->power.entry)) 1034 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1035 put_device(dev); 1036 } 1037 mutex_unlock(&dpm_list_mtx); 1038 async_synchronize_full(); 1039 dpm_show_time(starttime, state, 0, NULL); 1040 1041 cpufreq_resume(); 1042 devfreq_resume(); 1043 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1044 } 1045 1046 /** 1047 * device_complete - Complete a PM transition for given device. 1048 * @dev: Device to handle. 1049 * @state: PM transition of the system being carried out. 1050 */ 1051 static void device_complete(struct device *dev, pm_message_t state) 1052 { 1053 void (*callback)(struct device *) = NULL; 1054 const char *info = NULL; 1055 1056 if (dev->power.syscore) 1057 return; 1058 1059 device_lock(dev); 1060 1061 if (dev->pm_domain) { 1062 info = "completing power domain "; 1063 callback = dev->pm_domain->ops.complete; 1064 } else if (dev->type && dev->type->pm) { 1065 info = "completing type "; 1066 callback = dev->type->pm->complete; 1067 } else if (dev->class && dev->class->pm) { 1068 info = "completing class "; 1069 callback = dev->class->pm->complete; 1070 } else if (dev->bus && dev->bus->pm) { 1071 info = "completing bus "; 1072 callback = dev->bus->pm->complete; 1073 } 1074 1075 if (!callback && dev->driver && dev->driver->pm) { 1076 info = "completing driver "; 1077 callback = dev->driver->pm->complete; 1078 } 1079 1080 if (callback) { 1081 pm_dev_dbg(dev, state, info); 1082 callback(dev); 1083 } 1084 1085 device_unlock(dev); 1086 1087 pm_runtime_put(dev); 1088 } 1089 1090 /** 1091 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1092 * @state: PM transition of the system being carried out. 1093 * 1094 * Execute the ->complete() callbacks for all devices whose PM status is not 1095 * DPM_ON (this allows new devices to be registered). 1096 */ 1097 void dpm_complete(pm_message_t state) 1098 { 1099 struct list_head list; 1100 1101 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1102 might_sleep(); 1103 1104 INIT_LIST_HEAD(&list); 1105 mutex_lock(&dpm_list_mtx); 1106 while (!list_empty(&dpm_prepared_list)) { 1107 struct device *dev = to_device(dpm_prepared_list.prev); 1108 1109 get_device(dev); 1110 dev->power.is_prepared = false; 1111 list_move(&dev->power.entry, &list); 1112 mutex_unlock(&dpm_list_mtx); 1113 1114 trace_device_pm_callback_start(dev, "", state.event); 1115 device_complete(dev, state); 1116 trace_device_pm_callback_end(dev, 0); 1117 1118 mutex_lock(&dpm_list_mtx); 1119 put_device(dev); 1120 } 1121 list_splice(&list, &dpm_list); 1122 mutex_unlock(&dpm_list_mtx); 1123 1124 /* Allow device probing and trigger re-probing of deferred devices */ 1125 device_unblock_probing(); 1126 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1127 } 1128 1129 /** 1130 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1131 * @state: PM transition of the system being carried out. 1132 * 1133 * Execute "resume" callbacks for all devices and complete the PM transition of 1134 * the system. 1135 */ 1136 void dpm_resume_end(pm_message_t state) 1137 { 1138 dpm_resume(state); 1139 dpm_complete(state); 1140 } 1141 EXPORT_SYMBOL_GPL(dpm_resume_end); 1142 1143 1144 /*------------------------- Suspend routines -------------------------*/ 1145 1146 /** 1147 * resume_event - Return a "resume" message for given "suspend" sleep state. 1148 * @sleep_state: PM message representing a sleep state. 1149 * 1150 * Return a PM message representing the resume event corresponding to given 1151 * sleep state. 1152 */ 1153 static pm_message_t resume_event(pm_message_t sleep_state) 1154 { 1155 switch (sleep_state.event) { 1156 case PM_EVENT_SUSPEND: 1157 return PMSG_RESUME; 1158 case PM_EVENT_FREEZE: 1159 case PM_EVENT_QUIESCE: 1160 return PMSG_RECOVER; 1161 case PM_EVENT_HIBERNATE: 1162 return PMSG_RESTORE; 1163 } 1164 return PMSG_ON; 1165 } 1166 1167 static void dpm_superior_set_must_resume(struct device *dev) 1168 { 1169 struct device_link *link; 1170 int idx; 1171 1172 if (dev->parent) 1173 dev->parent->power.must_resume = true; 1174 1175 idx = device_links_read_lock(); 1176 1177 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1178 link->supplier->power.must_resume = true; 1179 1180 device_links_read_unlock(idx); 1181 } 1182 1183 /** 1184 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1185 * @dev: Device to handle. 1186 * @state: PM transition of the system being carried out. 1187 * @async: If true, the device is being suspended asynchronously. 1188 * 1189 * The driver of @dev will not receive interrupts while this function is being 1190 * executed. 1191 */ 1192 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1193 { 1194 pm_callback_t callback = NULL; 1195 const char *info = NULL; 1196 int error = 0; 1197 1198 TRACE_DEVICE(dev); 1199 TRACE_SUSPEND(0); 1200 1201 dpm_wait_for_subordinate(dev, async); 1202 1203 if (async_error) 1204 goto Complete; 1205 1206 if (dev->power.syscore || dev->power.direct_complete) 1207 goto Complete; 1208 1209 if (dev->pm_domain) { 1210 info = "noirq power domain "; 1211 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1212 } else if (dev->type && dev->type->pm) { 1213 info = "noirq type "; 1214 callback = pm_noirq_op(dev->type->pm, state); 1215 } else if (dev->class && dev->class->pm) { 1216 info = "noirq class "; 1217 callback = pm_noirq_op(dev->class->pm, state); 1218 } else if (dev->bus && dev->bus->pm) { 1219 info = "noirq bus "; 1220 callback = pm_noirq_op(dev->bus->pm, state); 1221 } 1222 if (callback) 1223 goto Run; 1224 1225 if (dev_pm_skip_suspend(dev)) 1226 goto Skip; 1227 1228 if (dev->driver && dev->driver->pm) { 1229 info = "noirq driver "; 1230 callback = pm_noirq_op(dev->driver->pm, state); 1231 } 1232 1233 Run: 1234 error = dpm_run_callback(callback, dev, state, info); 1235 if (error) { 1236 async_error = error; 1237 goto Complete; 1238 } 1239 1240 Skip: 1241 dev->power.is_noirq_suspended = true; 1242 1243 /* 1244 * Skipping the resume of devices that were in use right before the 1245 * system suspend (as indicated by their PM-runtime usage counters) 1246 * would be suboptimal. Also resume them if doing that is not allowed 1247 * to be skipped. 1248 */ 1249 if (atomic_read(&dev->power.usage_count) > 1 || 1250 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1251 dev->power.may_skip_resume)) 1252 dev->power.must_resume = true; 1253 1254 if (dev->power.must_resume) 1255 dpm_superior_set_must_resume(dev); 1256 1257 Complete: 1258 complete_all(&dev->power.completion); 1259 TRACE_SUSPEND(error); 1260 return error; 1261 } 1262 1263 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1264 { 1265 struct device *dev = (struct device *)data; 1266 int error; 1267 1268 error = __device_suspend_noirq(dev, pm_transition, true); 1269 if (error) { 1270 dpm_save_failed_dev(dev_name(dev)); 1271 pm_dev_err(dev, pm_transition, " async", error); 1272 } 1273 1274 put_device(dev); 1275 } 1276 1277 static int device_suspend_noirq(struct device *dev) 1278 { 1279 if (dpm_async_fn(dev, async_suspend_noirq)) 1280 return 0; 1281 1282 return __device_suspend_noirq(dev, pm_transition, false); 1283 } 1284 1285 static int dpm_noirq_suspend_devices(pm_message_t state) 1286 { 1287 ktime_t starttime = ktime_get(); 1288 int error = 0; 1289 1290 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1291 mutex_lock(&dpm_list_mtx); 1292 pm_transition = state; 1293 async_error = 0; 1294 1295 while (!list_empty(&dpm_late_early_list)) { 1296 struct device *dev = to_device(dpm_late_early_list.prev); 1297 1298 get_device(dev); 1299 mutex_unlock(&dpm_list_mtx); 1300 1301 error = device_suspend_noirq(dev); 1302 1303 mutex_lock(&dpm_list_mtx); 1304 if (error) { 1305 pm_dev_err(dev, state, " noirq", error); 1306 dpm_save_failed_dev(dev_name(dev)); 1307 put_device(dev); 1308 break; 1309 } 1310 if (!list_empty(&dev->power.entry)) 1311 list_move(&dev->power.entry, &dpm_noirq_list); 1312 put_device(dev); 1313 1314 if (async_error) 1315 break; 1316 } 1317 mutex_unlock(&dpm_list_mtx); 1318 async_synchronize_full(); 1319 if (!error) 1320 error = async_error; 1321 1322 if (error) { 1323 suspend_stats.failed_suspend_noirq++; 1324 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1325 } 1326 dpm_show_time(starttime, state, error, "noirq"); 1327 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1328 return error; 1329 } 1330 1331 /** 1332 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1333 * @state: PM transition of the system being carried out. 1334 * 1335 * Prevent device drivers' interrupt handlers from being called and invoke 1336 * "noirq" suspend callbacks for all non-sysdev devices. 1337 */ 1338 int dpm_suspend_noirq(pm_message_t state) 1339 { 1340 int ret; 1341 1342 cpuidle_pause(); 1343 1344 device_wakeup_arm_wake_irqs(); 1345 suspend_device_irqs(); 1346 1347 ret = dpm_noirq_suspend_devices(state); 1348 if (ret) 1349 dpm_resume_noirq(resume_event(state)); 1350 1351 return ret; 1352 } 1353 1354 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1355 { 1356 struct device *parent = dev->parent; 1357 1358 if (!parent) 1359 return; 1360 1361 spin_lock_irq(&parent->power.lock); 1362 1363 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1364 parent->power.wakeup_path = true; 1365 1366 spin_unlock_irq(&parent->power.lock); 1367 } 1368 1369 /** 1370 * __device_suspend_late - Execute a "late suspend" callback for given device. 1371 * @dev: Device to handle. 1372 * @state: PM transition of the system being carried out. 1373 * @async: If true, the device is being suspended asynchronously. 1374 * 1375 * Runtime PM is disabled for @dev while this function is being executed. 1376 */ 1377 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1378 { 1379 pm_callback_t callback = NULL; 1380 const char *info = NULL; 1381 int error = 0; 1382 1383 TRACE_DEVICE(dev); 1384 TRACE_SUSPEND(0); 1385 1386 __pm_runtime_disable(dev, false); 1387 1388 dpm_wait_for_subordinate(dev, async); 1389 1390 if (async_error) 1391 goto Complete; 1392 1393 if (pm_wakeup_pending()) { 1394 async_error = -EBUSY; 1395 goto Complete; 1396 } 1397 1398 if (dev->power.syscore || dev->power.direct_complete) 1399 goto Complete; 1400 1401 if (dev->pm_domain) { 1402 info = "late power domain "; 1403 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1404 } else if (dev->type && dev->type->pm) { 1405 info = "late type "; 1406 callback = pm_late_early_op(dev->type->pm, state); 1407 } else if (dev->class && dev->class->pm) { 1408 info = "late class "; 1409 callback = pm_late_early_op(dev->class->pm, state); 1410 } else if (dev->bus && dev->bus->pm) { 1411 info = "late bus "; 1412 callback = pm_late_early_op(dev->bus->pm, state); 1413 } 1414 if (callback) 1415 goto Run; 1416 1417 if (dev_pm_skip_suspend(dev)) 1418 goto Skip; 1419 1420 if (dev->driver && dev->driver->pm) { 1421 info = "late driver "; 1422 callback = pm_late_early_op(dev->driver->pm, state); 1423 } 1424 1425 Run: 1426 error = dpm_run_callback(callback, dev, state, info); 1427 if (error) { 1428 async_error = error; 1429 goto Complete; 1430 } 1431 dpm_propagate_wakeup_to_parent(dev); 1432 1433 Skip: 1434 dev->power.is_late_suspended = true; 1435 1436 Complete: 1437 TRACE_SUSPEND(error); 1438 complete_all(&dev->power.completion); 1439 return error; 1440 } 1441 1442 static void async_suspend_late(void *data, async_cookie_t cookie) 1443 { 1444 struct device *dev = (struct device *)data; 1445 int error; 1446 1447 error = __device_suspend_late(dev, pm_transition, true); 1448 if (error) { 1449 dpm_save_failed_dev(dev_name(dev)); 1450 pm_dev_err(dev, pm_transition, " async", error); 1451 } 1452 put_device(dev); 1453 } 1454 1455 static int device_suspend_late(struct device *dev) 1456 { 1457 if (dpm_async_fn(dev, async_suspend_late)) 1458 return 0; 1459 1460 return __device_suspend_late(dev, pm_transition, false); 1461 } 1462 1463 /** 1464 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1465 * @state: PM transition of the system being carried out. 1466 */ 1467 int dpm_suspend_late(pm_message_t state) 1468 { 1469 ktime_t starttime = ktime_get(); 1470 int error = 0; 1471 1472 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1473 mutex_lock(&dpm_list_mtx); 1474 pm_transition = state; 1475 async_error = 0; 1476 1477 while (!list_empty(&dpm_suspended_list)) { 1478 struct device *dev = to_device(dpm_suspended_list.prev); 1479 1480 get_device(dev); 1481 mutex_unlock(&dpm_list_mtx); 1482 1483 error = device_suspend_late(dev); 1484 1485 mutex_lock(&dpm_list_mtx); 1486 if (!list_empty(&dev->power.entry)) 1487 list_move(&dev->power.entry, &dpm_late_early_list); 1488 1489 if (error) { 1490 pm_dev_err(dev, state, " late", error); 1491 dpm_save_failed_dev(dev_name(dev)); 1492 put_device(dev); 1493 break; 1494 } 1495 put_device(dev); 1496 1497 if (async_error) 1498 break; 1499 } 1500 mutex_unlock(&dpm_list_mtx); 1501 async_synchronize_full(); 1502 if (!error) 1503 error = async_error; 1504 if (error) { 1505 suspend_stats.failed_suspend_late++; 1506 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1507 dpm_resume_early(resume_event(state)); 1508 } 1509 dpm_show_time(starttime, state, error, "late"); 1510 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1511 return error; 1512 } 1513 1514 /** 1515 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1516 * @state: PM transition of the system being carried out. 1517 */ 1518 int dpm_suspend_end(pm_message_t state) 1519 { 1520 ktime_t starttime = ktime_get(); 1521 int error; 1522 1523 error = dpm_suspend_late(state); 1524 if (error) 1525 goto out; 1526 1527 error = dpm_suspend_noirq(state); 1528 if (error) 1529 dpm_resume_early(resume_event(state)); 1530 1531 out: 1532 dpm_show_time(starttime, state, error, "end"); 1533 return error; 1534 } 1535 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1536 1537 /** 1538 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1539 * @dev: Device to suspend. 1540 * @state: PM transition of the system being carried out. 1541 * @cb: Suspend callback to execute. 1542 * @info: string description of caller. 1543 */ 1544 static int legacy_suspend(struct device *dev, pm_message_t state, 1545 int (*cb)(struct device *dev, pm_message_t state), 1546 const char *info) 1547 { 1548 int error; 1549 ktime_t calltime; 1550 1551 calltime = initcall_debug_start(dev, cb); 1552 1553 trace_device_pm_callback_start(dev, info, state.event); 1554 error = cb(dev, state); 1555 trace_device_pm_callback_end(dev, error); 1556 suspend_report_result(cb, error); 1557 1558 initcall_debug_report(dev, calltime, cb, error); 1559 1560 return error; 1561 } 1562 1563 static void dpm_clear_superiors_direct_complete(struct device *dev) 1564 { 1565 struct device_link *link; 1566 int idx; 1567 1568 if (dev->parent) { 1569 spin_lock_irq(&dev->parent->power.lock); 1570 dev->parent->power.direct_complete = false; 1571 spin_unlock_irq(&dev->parent->power.lock); 1572 } 1573 1574 idx = device_links_read_lock(); 1575 1576 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1577 spin_lock_irq(&link->supplier->power.lock); 1578 link->supplier->power.direct_complete = false; 1579 spin_unlock_irq(&link->supplier->power.lock); 1580 } 1581 1582 device_links_read_unlock(idx); 1583 } 1584 1585 /** 1586 * __device_suspend - Execute "suspend" callbacks for given device. 1587 * @dev: Device to handle. 1588 * @state: PM transition of the system being carried out. 1589 * @async: If true, the device is being suspended asynchronously. 1590 */ 1591 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1592 { 1593 pm_callback_t callback = NULL; 1594 const char *info = NULL; 1595 int error = 0; 1596 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1597 1598 TRACE_DEVICE(dev); 1599 TRACE_SUSPEND(0); 1600 1601 dpm_wait_for_subordinate(dev, async); 1602 1603 if (async_error) { 1604 dev->power.direct_complete = false; 1605 goto Complete; 1606 } 1607 1608 /* 1609 * Wait for possible runtime PM transitions of the device in progress 1610 * to complete and if there's a runtime resume request pending for it, 1611 * resume it before proceeding with invoking the system-wide suspend 1612 * callbacks for it. 1613 * 1614 * If the system-wide suspend callbacks below change the configuration 1615 * of the device, they must disable runtime PM for it or otherwise 1616 * ensure that its runtime-resume callbacks will not be confused by that 1617 * change in case they are invoked going forward. 1618 */ 1619 pm_runtime_barrier(dev); 1620 1621 if (pm_wakeup_pending()) { 1622 dev->power.direct_complete = false; 1623 async_error = -EBUSY; 1624 goto Complete; 1625 } 1626 1627 if (dev->power.syscore) 1628 goto Complete; 1629 1630 /* Avoid direct_complete to let wakeup_path propagate. */ 1631 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1632 dev->power.direct_complete = false; 1633 1634 if (dev->power.direct_complete) { 1635 if (pm_runtime_status_suspended(dev)) { 1636 pm_runtime_disable(dev); 1637 if (pm_runtime_status_suspended(dev)) { 1638 pm_dev_dbg(dev, state, "direct-complete "); 1639 goto Complete; 1640 } 1641 1642 pm_runtime_enable(dev); 1643 } 1644 dev->power.direct_complete = false; 1645 } 1646 1647 dev->power.may_skip_resume = true; 1648 dev->power.must_resume = false; 1649 1650 dpm_watchdog_set(&wd, dev); 1651 device_lock(dev); 1652 1653 if (dev->pm_domain) { 1654 info = "power domain "; 1655 callback = pm_op(&dev->pm_domain->ops, state); 1656 goto Run; 1657 } 1658 1659 if (dev->type && dev->type->pm) { 1660 info = "type "; 1661 callback = pm_op(dev->type->pm, state); 1662 goto Run; 1663 } 1664 1665 if (dev->class && dev->class->pm) { 1666 info = "class "; 1667 callback = pm_op(dev->class->pm, state); 1668 goto Run; 1669 } 1670 1671 if (dev->bus) { 1672 if (dev->bus->pm) { 1673 info = "bus "; 1674 callback = pm_op(dev->bus->pm, state); 1675 } else if (dev->bus->suspend) { 1676 pm_dev_dbg(dev, state, "legacy bus "); 1677 error = legacy_suspend(dev, state, dev->bus->suspend, 1678 "legacy bus "); 1679 goto End; 1680 } 1681 } 1682 1683 Run: 1684 if (!callback && dev->driver && dev->driver->pm) { 1685 info = "driver "; 1686 callback = pm_op(dev->driver->pm, state); 1687 } 1688 1689 error = dpm_run_callback(callback, dev, state, info); 1690 1691 End: 1692 if (!error) { 1693 dev->power.is_suspended = true; 1694 if (device_may_wakeup(dev)) 1695 dev->power.wakeup_path = true; 1696 1697 dpm_propagate_wakeup_to_parent(dev); 1698 dpm_clear_superiors_direct_complete(dev); 1699 } 1700 1701 device_unlock(dev); 1702 dpm_watchdog_clear(&wd); 1703 1704 Complete: 1705 if (error) 1706 async_error = error; 1707 1708 complete_all(&dev->power.completion); 1709 TRACE_SUSPEND(error); 1710 return error; 1711 } 1712 1713 static void async_suspend(void *data, async_cookie_t cookie) 1714 { 1715 struct device *dev = (struct device *)data; 1716 int error; 1717 1718 error = __device_suspend(dev, pm_transition, true); 1719 if (error) { 1720 dpm_save_failed_dev(dev_name(dev)); 1721 pm_dev_err(dev, pm_transition, " async", error); 1722 } 1723 1724 put_device(dev); 1725 } 1726 1727 static int device_suspend(struct device *dev) 1728 { 1729 if (dpm_async_fn(dev, async_suspend)) 1730 return 0; 1731 1732 return __device_suspend(dev, pm_transition, false); 1733 } 1734 1735 /** 1736 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1737 * @state: PM transition of the system being carried out. 1738 */ 1739 int dpm_suspend(pm_message_t state) 1740 { 1741 ktime_t starttime = ktime_get(); 1742 int error = 0; 1743 1744 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1745 might_sleep(); 1746 1747 devfreq_suspend(); 1748 cpufreq_suspend(); 1749 1750 mutex_lock(&dpm_list_mtx); 1751 pm_transition = state; 1752 async_error = 0; 1753 while (!list_empty(&dpm_prepared_list)) { 1754 struct device *dev = to_device(dpm_prepared_list.prev); 1755 1756 get_device(dev); 1757 mutex_unlock(&dpm_list_mtx); 1758 1759 error = device_suspend(dev); 1760 1761 mutex_lock(&dpm_list_mtx); 1762 if (error) { 1763 pm_dev_err(dev, state, "", error); 1764 dpm_save_failed_dev(dev_name(dev)); 1765 put_device(dev); 1766 break; 1767 } 1768 if (!list_empty(&dev->power.entry)) 1769 list_move(&dev->power.entry, &dpm_suspended_list); 1770 put_device(dev); 1771 if (async_error) 1772 break; 1773 } 1774 mutex_unlock(&dpm_list_mtx); 1775 async_synchronize_full(); 1776 if (!error) 1777 error = async_error; 1778 if (error) { 1779 suspend_stats.failed_suspend++; 1780 dpm_save_failed_step(SUSPEND_SUSPEND); 1781 } 1782 dpm_show_time(starttime, state, error, NULL); 1783 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1784 return error; 1785 } 1786 1787 /** 1788 * device_prepare - Prepare a device for system power transition. 1789 * @dev: Device to handle. 1790 * @state: PM transition of the system being carried out. 1791 * 1792 * Execute the ->prepare() callback(s) for given device. No new children of the 1793 * device may be registered after this function has returned. 1794 */ 1795 static int device_prepare(struct device *dev, pm_message_t state) 1796 { 1797 int (*callback)(struct device *) = NULL; 1798 int ret = 0; 1799 1800 if (dev->power.syscore) 1801 return 0; 1802 1803 /* 1804 * If a device's parent goes into runtime suspend at the wrong time, 1805 * it won't be possible to resume the device. To prevent this we 1806 * block runtime suspend here, during the prepare phase, and allow 1807 * it again during the complete phase. 1808 */ 1809 pm_runtime_get_noresume(dev); 1810 1811 device_lock(dev); 1812 1813 dev->power.wakeup_path = false; 1814 1815 if (dev->power.no_pm_callbacks) 1816 goto unlock; 1817 1818 if (dev->pm_domain) 1819 callback = dev->pm_domain->ops.prepare; 1820 else if (dev->type && dev->type->pm) 1821 callback = dev->type->pm->prepare; 1822 else if (dev->class && dev->class->pm) 1823 callback = dev->class->pm->prepare; 1824 else if (dev->bus && dev->bus->pm) 1825 callback = dev->bus->pm->prepare; 1826 1827 if (!callback && dev->driver && dev->driver->pm) 1828 callback = dev->driver->pm->prepare; 1829 1830 if (callback) 1831 ret = callback(dev); 1832 1833 unlock: 1834 device_unlock(dev); 1835 1836 if (ret < 0) { 1837 suspend_report_result(callback, ret); 1838 pm_runtime_put(dev); 1839 return ret; 1840 } 1841 /* 1842 * A positive return value from ->prepare() means "this device appears 1843 * to be runtime-suspended and its state is fine, so if it really is 1844 * runtime-suspended, you can leave it in that state provided that you 1845 * will do the same thing with all of its descendants". This only 1846 * applies to suspend transitions, however. 1847 */ 1848 spin_lock_irq(&dev->power.lock); 1849 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1850 (ret > 0 || dev->power.no_pm_callbacks) && 1851 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1852 spin_unlock_irq(&dev->power.lock); 1853 return 0; 1854 } 1855 1856 /** 1857 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1858 * @state: PM transition of the system being carried out. 1859 * 1860 * Execute the ->prepare() callback(s) for all devices. 1861 */ 1862 int dpm_prepare(pm_message_t state) 1863 { 1864 int error = 0; 1865 1866 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1867 might_sleep(); 1868 1869 /* 1870 * Give a chance for the known devices to complete their probes, before 1871 * disable probing of devices. This sync point is important at least 1872 * at boot time + hibernation restore. 1873 */ 1874 wait_for_device_probe(); 1875 /* 1876 * It is unsafe if probing of devices will happen during suspend or 1877 * hibernation and system behavior will be unpredictable in this case. 1878 * So, let's prohibit device's probing here and defer their probes 1879 * instead. The normal behavior will be restored in dpm_complete(). 1880 */ 1881 device_block_probing(); 1882 1883 mutex_lock(&dpm_list_mtx); 1884 while (!list_empty(&dpm_list)) { 1885 struct device *dev = to_device(dpm_list.next); 1886 1887 get_device(dev); 1888 mutex_unlock(&dpm_list_mtx); 1889 1890 trace_device_pm_callback_start(dev, "", state.event); 1891 error = device_prepare(dev, state); 1892 trace_device_pm_callback_end(dev, error); 1893 1894 mutex_lock(&dpm_list_mtx); 1895 if (error) { 1896 if (error == -EAGAIN) { 1897 put_device(dev); 1898 error = 0; 1899 continue; 1900 } 1901 dev_info(dev, "not prepared for power transition: code %d\n", 1902 error); 1903 put_device(dev); 1904 break; 1905 } 1906 dev->power.is_prepared = true; 1907 if (!list_empty(&dev->power.entry)) 1908 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1909 put_device(dev); 1910 } 1911 mutex_unlock(&dpm_list_mtx); 1912 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1913 return error; 1914 } 1915 1916 /** 1917 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1918 * @state: PM transition of the system being carried out. 1919 * 1920 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1921 * callbacks for them. 1922 */ 1923 int dpm_suspend_start(pm_message_t state) 1924 { 1925 ktime_t starttime = ktime_get(); 1926 int error; 1927 1928 error = dpm_prepare(state); 1929 if (error) { 1930 suspend_stats.failed_prepare++; 1931 dpm_save_failed_step(SUSPEND_PREPARE); 1932 } else 1933 error = dpm_suspend(state); 1934 dpm_show_time(starttime, state, error, "start"); 1935 return error; 1936 } 1937 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1938 1939 void __suspend_report_result(const char *function, void *fn, int ret) 1940 { 1941 if (ret) 1942 pr_err("%s(): %pS returns %d\n", function, fn, ret); 1943 } 1944 EXPORT_SYMBOL_GPL(__suspend_report_result); 1945 1946 /** 1947 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1948 * @subordinate: Device that needs to wait for @dev. 1949 * @dev: Device to wait for. 1950 */ 1951 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1952 { 1953 dpm_wait(dev, subordinate->power.async_suspend); 1954 return async_error; 1955 } 1956 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1957 1958 /** 1959 * dpm_for_each_dev - device iterator. 1960 * @data: data for the callback. 1961 * @fn: function to be called for each device. 1962 * 1963 * Iterate over devices in dpm_list, and call @fn for each device, 1964 * passing it @data. 1965 */ 1966 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1967 { 1968 struct device *dev; 1969 1970 if (!fn) 1971 return; 1972 1973 device_pm_lock(); 1974 list_for_each_entry(dev, &dpm_list, power.entry) 1975 fn(dev, data); 1976 device_pm_unlock(); 1977 } 1978 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1979 1980 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 1981 { 1982 if (!ops) 1983 return true; 1984 1985 return !ops->prepare && 1986 !ops->suspend && 1987 !ops->suspend_late && 1988 !ops->suspend_noirq && 1989 !ops->resume_noirq && 1990 !ops->resume_early && 1991 !ops->resume && 1992 !ops->complete; 1993 } 1994 1995 void device_pm_check_callbacks(struct device *dev) 1996 { 1997 spin_lock_irq(&dev->power.lock); 1998 dev->power.no_pm_callbacks = 1999 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2000 !dev->bus->suspend && !dev->bus->resume)) && 2001 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2002 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2003 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2004 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2005 !dev->driver->suspend && !dev->driver->resume)); 2006 spin_unlock_irq(&dev->power.lock); 2007 } 2008 2009 bool dev_pm_skip_suspend(struct device *dev) 2010 { 2011 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2012 pm_runtime_status_suspended(dev); 2013 } 2014