xref: /openbmc/linux/drivers/base/power/main.c (revision d3964221)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 /*
44  * The entries in the dpm_list list are in a depth first order, simply
45  * because children are guaranteed to be discovered after parents, and
46  * are inserted at the back of the list on discovery.
47  *
48  * Since device_pm_add() may be called with a device lock held,
49  * we must never try to acquire a device lock while holding
50  * dpm_list_mutex.
51  */
52 
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58 
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62 
63 static int async_error;
64 
65 static const char *pm_verb(int event)
66 {
67 	switch (event) {
68 	case PM_EVENT_SUSPEND:
69 		return "suspend";
70 	case PM_EVENT_RESUME:
71 		return "resume";
72 	case PM_EVENT_FREEZE:
73 		return "freeze";
74 	case PM_EVENT_QUIESCE:
75 		return "quiesce";
76 	case PM_EVENT_HIBERNATE:
77 		return "hibernate";
78 	case PM_EVENT_THAW:
79 		return "thaw";
80 	case PM_EVENT_RESTORE:
81 		return "restore";
82 	case PM_EVENT_RECOVER:
83 		return "recover";
84 	default:
85 		return "(unknown PM event)";
86 	}
87 }
88 
89 /**
90  * device_pm_sleep_init - Initialize system suspend-related device fields.
91  * @dev: Device object being initialized.
92  */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 	dev->power.is_prepared = false;
96 	dev->power.is_suspended = false;
97 	dev->power.is_noirq_suspended = false;
98 	dev->power.is_late_suspended = false;
99 	init_completion(&dev->power.completion);
100 	complete_all(&dev->power.completion);
101 	dev->power.wakeup = NULL;
102 	INIT_LIST_HEAD(&dev->power.entry);
103 }
104 
105 /**
106  * device_pm_lock - Lock the list of active devices used by the PM core.
107  */
108 void device_pm_lock(void)
109 {
110 	mutex_lock(&dpm_list_mtx);
111 }
112 
113 /**
114  * device_pm_unlock - Unlock the list of active devices used by the PM core.
115  */
116 void device_pm_unlock(void)
117 {
118 	mutex_unlock(&dpm_list_mtx);
119 }
120 
121 /**
122  * device_pm_add - Add a device to the PM core's list of active devices.
123  * @dev: Device to add to the list.
124  */
125 void device_pm_add(struct device *dev)
126 {
127 	pr_debug("PM: Adding info for %s:%s\n",
128 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 	device_pm_check_callbacks(dev);
130 	mutex_lock(&dpm_list_mtx);
131 	if (dev->parent && dev->parent->power.is_prepared)
132 		dev_warn(dev, "parent %s should not be sleeping\n",
133 			dev_name(dev->parent));
134 	list_add_tail(&dev->power.entry, &dpm_list);
135 	dev->power.in_dpm_list = true;
136 	mutex_unlock(&dpm_list_mtx);
137 }
138 
139 /**
140  * device_pm_remove - Remove a device from the PM core's list of active devices.
141  * @dev: Device to be removed from the list.
142  */
143 void device_pm_remove(struct device *dev)
144 {
145 	pr_debug("PM: Removing info for %s:%s\n",
146 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 	complete_all(&dev->power.completion);
148 	mutex_lock(&dpm_list_mtx);
149 	list_del_init(&dev->power.entry);
150 	dev->power.in_dpm_list = false;
151 	mutex_unlock(&dpm_list_mtx);
152 	device_wakeup_disable(dev);
153 	pm_runtime_remove(dev);
154 	device_pm_check_callbacks(dev);
155 }
156 
157 /**
158  * device_pm_move_before - Move device in the PM core's list of active devices.
159  * @deva: Device to move in dpm_list.
160  * @devb: Device @deva should come before.
161  */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 	pr_debug("PM: Moving %s:%s before %s:%s\n",
165 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 	/* Delete deva from dpm_list and reinsert before devb. */
168 	list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170 
171 /**
172  * device_pm_move_after - Move device in the PM core's list of active devices.
173  * @deva: Device to move in dpm_list.
174  * @devb: Device @deva should come after.
175  */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 	pr_debug("PM: Moving %s:%s after %s:%s\n",
179 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 	/* Delete deva from dpm_list and reinsert after devb. */
182 	list_move(&deva->power.entry, &devb->power.entry);
183 }
184 
185 /**
186  * device_pm_move_last - Move device to end of the PM core's list of devices.
187  * @dev: Device to move in dpm_list.
188  */
189 void device_pm_move_last(struct device *dev)
190 {
191 	pr_debug("PM: Moving %s:%s to end of list\n",
192 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 	list_move_tail(&dev->power.entry, &dpm_list);
194 }
195 
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 	ktime_t calltime = 0;
199 
200 	if (pm_print_times_enabled) {
201 		pr_info("calling  %s+ @ %i, parent: %s\n",
202 			dev_name(dev), task_pid_nr(current),
203 			dev->parent ? dev_name(dev->parent) : "none");
204 		calltime = ktime_get();
205 	}
206 
207 	return calltime;
208 }
209 
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 				  int error, pm_message_t state,
212 				  const char *info)
213 {
214 	ktime_t rettime;
215 	s64 nsecs;
216 
217 	rettime = ktime_get();
218 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219 
220 	if (pm_print_times_enabled) {
221 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
222 			error, (unsigned long long)nsecs >> 10);
223 	}
224 }
225 
226 /**
227  * dpm_wait - Wait for a PM operation to complete.
228  * @dev: Device to wait for.
229  * @async: If unset, wait only if the device's power.async_suspend flag is set.
230  */
231 static void dpm_wait(struct device *dev, bool async)
232 {
233 	if (!dev)
234 		return;
235 
236 	if (async || (pm_async_enabled && dev->power.async_suspend))
237 		wait_for_completion(&dev->power.completion);
238 }
239 
240 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 {
242 	dpm_wait(dev, *((bool *)async_ptr));
243 	return 0;
244 }
245 
246 static void dpm_wait_for_children(struct device *dev, bool async)
247 {
248        device_for_each_child(dev, &async, dpm_wait_fn);
249 }
250 
251 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 {
253 	struct device_link *link;
254 	int idx;
255 
256 	idx = device_links_read_lock();
257 
258 	/*
259 	 * If the supplier goes away right after we've checked the link to it,
260 	 * we'll wait for its completion to change the state, but that's fine,
261 	 * because the only things that will block as a result are the SRCU
262 	 * callbacks freeing the link objects for the links in the list we're
263 	 * walking.
264 	 */
265 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
266 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
267 			dpm_wait(link->supplier, async);
268 
269 	device_links_read_unlock(idx);
270 }
271 
272 static void dpm_wait_for_superior(struct device *dev, bool async)
273 {
274 	dpm_wait(dev->parent, async);
275 	dpm_wait_for_suppliers(dev, async);
276 }
277 
278 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 {
280 	struct device_link *link;
281 	int idx;
282 
283 	idx = device_links_read_lock();
284 
285 	/*
286 	 * The status of a device link can only be changed from "dormant" by a
287 	 * probe, but that cannot happen during system suspend/resume.  In
288 	 * theory it can change to "dormant" at that time, but then it is
289 	 * reasonable to wait for the target device anyway (eg. if it goes
290 	 * away, it's better to wait for it to go away completely and then
291 	 * continue instead of trying to continue in parallel with its
292 	 * unregistration).
293 	 */
294 	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
295 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
296 			dpm_wait(link->consumer, async);
297 
298 	device_links_read_unlock(idx);
299 }
300 
301 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 {
303 	dpm_wait_for_children(dev, async);
304 	dpm_wait_for_consumers(dev, async);
305 }
306 
307 /**
308  * pm_op - Return the PM operation appropriate for given PM event.
309  * @ops: PM operations to choose from.
310  * @state: PM transition of the system being carried out.
311  */
312 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 {
314 	switch (state.event) {
315 #ifdef CONFIG_SUSPEND
316 	case PM_EVENT_SUSPEND:
317 		return ops->suspend;
318 	case PM_EVENT_RESUME:
319 		return ops->resume;
320 #endif /* CONFIG_SUSPEND */
321 #ifdef CONFIG_HIBERNATE_CALLBACKS
322 	case PM_EVENT_FREEZE:
323 	case PM_EVENT_QUIESCE:
324 		return ops->freeze;
325 	case PM_EVENT_HIBERNATE:
326 		return ops->poweroff;
327 	case PM_EVENT_THAW:
328 	case PM_EVENT_RECOVER:
329 		return ops->thaw;
330 		break;
331 	case PM_EVENT_RESTORE:
332 		return ops->restore;
333 #endif /* CONFIG_HIBERNATE_CALLBACKS */
334 	}
335 
336 	return NULL;
337 }
338 
339 /**
340  * pm_late_early_op - Return the PM operation appropriate for given PM event.
341  * @ops: PM operations to choose from.
342  * @state: PM transition of the system being carried out.
343  *
344  * Runtime PM is disabled for @dev while this function is being executed.
345  */
346 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
347 				      pm_message_t state)
348 {
349 	switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 	case PM_EVENT_SUSPEND:
352 		return ops->suspend_late;
353 	case PM_EVENT_RESUME:
354 		return ops->resume_early;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 	case PM_EVENT_FREEZE:
358 	case PM_EVENT_QUIESCE:
359 		return ops->freeze_late;
360 	case PM_EVENT_HIBERNATE:
361 		return ops->poweroff_late;
362 	case PM_EVENT_THAW:
363 	case PM_EVENT_RECOVER:
364 		return ops->thaw_early;
365 	case PM_EVENT_RESTORE:
366 		return ops->restore_early;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 	}
369 
370 	return NULL;
371 }
372 
373 /**
374  * pm_noirq_op - Return the PM operation appropriate for given PM event.
375  * @ops: PM operations to choose from.
376  * @state: PM transition of the system being carried out.
377  *
378  * The driver of @dev will not receive interrupts while this function is being
379  * executed.
380  */
381 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 {
383 	switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 	case PM_EVENT_SUSPEND:
386 		return ops->suspend_noirq;
387 	case PM_EVENT_RESUME:
388 		return ops->resume_noirq;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 	case PM_EVENT_FREEZE:
392 	case PM_EVENT_QUIESCE:
393 		return ops->freeze_noirq;
394 	case PM_EVENT_HIBERNATE:
395 		return ops->poweroff_noirq;
396 	case PM_EVENT_THAW:
397 	case PM_EVENT_RECOVER:
398 		return ops->thaw_noirq;
399 	case PM_EVENT_RESTORE:
400 		return ops->restore_noirq;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 	}
403 
404 	return NULL;
405 }
406 
407 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 {
409 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
410 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
411 		", may wakeup" : "");
412 }
413 
414 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
415 			int error)
416 {
417 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
418 		dev_name(dev), pm_verb(state.event), info, error);
419 }
420 
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
422 			  const char *info)
423 {
424 	ktime_t calltime;
425 	u64 usecs64;
426 	int usecs;
427 
428 	calltime = ktime_get();
429 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
430 	do_div(usecs64, NSEC_PER_USEC);
431 	usecs = usecs64;
432 	if (usecs == 0)
433 		usecs = 1;
434 
435 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
436 		  info ?: "", info ? " " : "", pm_verb(state.event),
437 		  error ? "aborted" : "complete",
438 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
439 }
440 
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 			    pm_message_t state, const char *info)
443 {
444 	ktime_t calltime;
445 	int error;
446 
447 	if (!cb)
448 		return 0;
449 
450 	calltime = initcall_debug_start(dev);
451 
452 	pm_dev_dbg(dev, state, info);
453 	trace_device_pm_callback_start(dev, info, state.event);
454 	error = cb(dev);
455 	trace_device_pm_callback_end(dev, error);
456 	suspend_report_result(cb, error);
457 
458 	initcall_debug_report(dev, calltime, error, state, info);
459 
460 	return error;
461 }
462 
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 	struct device		*dev;
466 	struct task_struct	*tsk;
467 	struct timer_list	timer;
468 };
469 
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 	struct dpm_watchdog wd
472 
473 /**
474  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475  * @data: Watchdog object address.
476  *
477  * Called when a driver has timed out suspending or resuming.
478  * There's not much we can do here to recover so panic() to
479  * capture a crash-dump in pstore.
480  */
481 static void dpm_watchdog_handler(struct timer_list *t)
482 {
483 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
484 
485 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 	show_stack(wd->tsk, NULL);
487 	panic("%s %s: unrecoverable failure\n",
488 		dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490 
491 /**
492  * dpm_watchdog_set - Enable pm watchdog for given device.
493  * @wd: Watchdog. Must be allocated on the stack.
494  * @dev: Device to handle.
495  */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 	struct timer_list *timer = &wd->timer;
499 
500 	wd->dev = dev;
501 	wd->tsk = current;
502 
503 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
504 	/* use same timeout value for both suspend and resume */
505 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 	add_timer(timer);
507 }
508 
509 /**
510  * dpm_watchdog_clear - Disable suspend/resume watchdog.
511  * @wd: Watchdog to disable.
512  */
513 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
514 {
515 	struct timer_list *timer = &wd->timer;
516 
517 	del_timer_sync(timer);
518 	destroy_timer_on_stack(timer);
519 }
520 #else
521 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
522 #define dpm_watchdog_set(x, y)
523 #define dpm_watchdog_clear(x)
524 #endif
525 
526 /*------------------------- Resume routines -------------------------*/
527 
528 /**
529  * device_resume_noirq - Execute an "early resume" callback for given device.
530  * @dev: Device to handle.
531  * @state: PM transition of the system being carried out.
532  * @async: If true, the device is being resumed asynchronously.
533  *
534  * The driver of @dev will not receive interrupts while this function is being
535  * executed.
536  */
537 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
538 {
539 	pm_callback_t callback = NULL;
540 	const char *info = NULL;
541 	int error = 0;
542 
543 	TRACE_DEVICE(dev);
544 	TRACE_RESUME(0);
545 
546 	if (dev->power.syscore || dev->power.direct_complete)
547 		goto Out;
548 
549 	if (!dev->power.is_noirq_suspended)
550 		goto Out;
551 
552 	dpm_wait_for_superior(dev, async);
553 
554 	if (dev->pm_domain) {
555 		info = "noirq power domain ";
556 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
557 	} else if (dev->type && dev->type->pm) {
558 		info = "noirq type ";
559 		callback = pm_noirq_op(dev->type->pm, state);
560 	} else if (dev->class && dev->class->pm) {
561 		info = "noirq class ";
562 		callback = pm_noirq_op(dev->class->pm, state);
563 	} else if (dev->bus && dev->bus->pm) {
564 		info = "noirq bus ";
565 		callback = pm_noirq_op(dev->bus->pm, state);
566 	}
567 
568 	if (!callback && dev->driver && dev->driver->pm) {
569 		info = "noirq driver ";
570 		callback = pm_noirq_op(dev->driver->pm, state);
571 	}
572 
573 	error = dpm_run_callback(callback, dev, state, info);
574 	dev->power.is_noirq_suspended = false;
575 
576  Out:
577 	complete_all(&dev->power.completion);
578 	TRACE_RESUME(error);
579 	return error;
580 }
581 
582 static bool is_async(struct device *dev)
583 {
584 	return dev->power.async_suspend && pm_async_enabled
585 		&& !pm_trace_is_enabled();
586 }
587 
588 static void async_resume_noirq(void *data, async_cookie_t cookie)
589 {
590 	struct device *dev = (struct device *)data;
591 	int error;
592 
593 	error = device_resume_noirq(dev, pm_transition, true);
594 	if (error)
595 		pm_dev_err(dev, pm_transition, " async", error);
596 
597 	put_device(dev);
598 }
599 
600 void dpm_noirq_resume_devices(pm_message_t state)
601 {
602 	struct device *dev;
603 	ktime_t starttime = ktime_get();
604 
605 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
606 	mutex_lock(&dpm_list_mtx);
607 	pm_transition = state;
608 
609 	/*
610 	 * Advanced the async threads upfront,
611 	 * in case the starting of async threads is
612 	 * delayed by non-async resuming devices.
613 	 */
614 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
615 		reinit_completion(&dev->power.completion);
616 		if (is_async(dev)) {
617 			get_device(dev);
618 			async_schedule(async_resume_noirq, dev);
619 		}
620 	}
621 
622 	while (!list_empty(&dpm_noirq_list)) {
623 		dev = to_device(dpm_noirq_list.next);
624 		get_device(dev);
625 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
626 		mutex_unlock(&dpm_list_mtx);
627 
628 		if (!is_async(dev)) {
629 			int error;
630 
631 			error = device_resume_noirq(dev, state, false);
632 			if (error) {
633 				suspend_stats.failed_resume_noirq++;
634 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
635 				dpm_save_failed_dev(dev_name(dev));
636 				pm_dev_err(dev, state, " noirq", error);
637 			}
638 		}
639 
640 		mutex_lock(&dpm_list_mtx);
641 		put_device(dev);
642 	}
643 	mutex_unlock(&dpm_list_mtx);
644 	async_synchronize_full();
645 	dpm_show_time(starttime, state, 0, "noirq");
646 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
647 }
648 
649 void dpm_noirq_end(void)
650 {
651 	resume_device_irqs();
652 	device_wakeup_disarm_wake_irqs();
653 	cpuidle_resume();
654 }
655 
656 /**
657  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
658  * @state: PM transition of the system being carried out.
659  *
660  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
661  * allow device drivers' interrupt handlers to be called.
662  */
663 void dpm_resume_noirq(pm_message_t state)
664 {
665 	dpm_noirq_resume_devices(state);
666 	dpm_noirq_end();
667 }
668 
669 /**
670  * device_resume_early - Execute an "early resume" callback for given device.
671  * @dev: Device to handle.
672  * @state: PM transition of the system being carried out.
673  * @async: If true, the device is being resumed asynchronously.
674  *
675  * Runtime PM is disabled for @dev while this function is being executed.
676  */
677 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
678 {
679 	pm_callback_t callback = NULL;
680 	const char *info = NULL;
681 	int error = 0;
682 
683 	TRACE_DEVICE(dev);
684 	TRACE_RESUME(0);
685 
686 	if (dev->power.syscore || dev->power.direct_complete)
687 		goto Out;
688 
689 	if (!dev->power.is_late_suspended)
690 		goto Out;
691 
692 	dpm_wait_for_superior(dev, async);
693 
694 	if (dev->pm_domain) {
695 		info = "early power domain ";
696 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
697 	} else if (dev->type && dev->type->pm) {
698 		info = "early type ";
699 		callback = pm_late_early_op(dev->type->pm, state);
700 	} else if (dev->class && dev->class->pm) {
701 		info = "early class ";
702 		callback = pm_late_early_op(dev->class->pm, state);
703 	} else if (dev->bus && dev->bus->pm) {
704 		info = "early bus ";
705 		callback = pm_late_early_op(dev->bus->pm, state);
706 	}
707 
708 	if (!callback && dev->driver && dev->driver->pm) {
709 		info = "early driver ";
710 		callback = pm_late_early_op(dev->driver->pm, state);
711 	}
712 
713 	error = dpm_run_callback(callback, dev, state, info);
714 	dev->power.is_late_suspended = false;
715 
716  Out:
717 	TRACE_RESUME(error);
718 
719 	pm_runtime_enable(dev);
720 	complete_all(&dev->power.completion);
721 	return error;
722 }
723 
724 static void async_resume_early(void *data, async_cookie_t cookie)
725 {
726 	struct device *dev = (struct device *)data;
727 	int error;
728 
729 	error = device_resume_early(dev, pm_transition, true);
730 	if (error)
731 		pm_dev_err(dev, pm_transition, " async", error);
732 
733 	put_device(dev);
734 }
735 
736 /**
737  * dpm_resume_early - Execute "early resume" callbacks for all devices.
738  * @state: PM transition of the system being carried out.
739  */
740 void dpm_resume_early(pm_message_t state)
741 {
742 	struct device *dev;
743 	ktime_t starttime = ktime_get();
744 
745 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
746 	mutex_lock(&dpm_list_mtx);
747 	pm_transition = state;
748 
749 	/*
750 	 * Advanced the async threads upfront,
751 	 * in case the starting of async threads is
752 	 * delayed by non-async resuming devices.
753 	 */
754 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
755 		reinit_completion(&dev->power.completion);
756 		if (is_async(dev)) {
757 			get_device(dev);
758 			async_schedule(async_resume_early, dev);
759 		}
760 	}
761 
762 	while (!list_empty(&dpm_late_early_list)) {
763 		dev = to_device(dpm_late_early_list.next);
764 		get_device(dev);
765 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
766 		mutex_unlock(&dpm_list_mtx);
767 
768 		if (!is_async(dev)) {
769 			int error;
770 
771 			error = device_resume_early(dev, state, false);
772 			if (error) {
773 				suspend_stats.failed_resume_early++;
774 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
775 				dpm_save_failed_dev(dev_name(dev));
776 				pm_dev_err(dev, state, " early", error);
777 			}
778 		}
779 		mutex_lock(&dpm_list_mtx);
780 		put_device(dev);
781 	}
782 	mutex_unlock(&dpm_list_mtx);
783 	async_synchronize_full();
784 	dpm_show_time(starttime, state, 0, "early");
785 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
786 }
787 
788 /**
789  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
790  * @state: PM transition of the system being carried out.
791  */
792 void dpm_resume_start(pm_message_t state)
793 {
794 	dpm_resume_noirq(state);
795 	dpm_resume_early(state);
796 }
797 EXPORT_SYMBOL_GPL(dpm_resume_start);
798 
799 /**
800  * device_resume - Execute "resume" callbacks for given device.
801  * @dev: Device to handle.
802  * @state: PM transition of the system being carried out.
803  * @async: If true, the device is being resumed asynchronously.
804  */
805 static int device_resume(struct device *dev, pm_message_t state, bool async)
806 {
807 	pm_callback_t callback = NULL;
808 	const char *info = NULL;
809 	int error = 0;
810 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
811 
812 	TRACE_DEVICE(dev);
813 	TRACE_RESUME(0);
814 
815 	if (dev->power.syscore)
816 		goto Complete;
817 
818 	if (dev->power.direct_complete) {
819 		/* Match the pm_runtime_disable() in __device_suspend(). */
820 		pm_runtime_enable(dev);
821 		goto Complete;
822 	}
823 
824 	dpm_wait_for_superior(dev, async);
825 	dpm_watchdog_set(&wd, dev);
826 	device_lock(dev);
827 
828 	/*
829 	 * This is a fib.  But we'll allow new children to be added below
830 	 * a resumed device, even if the device hasn't been completed yet.
831 	 */
832 	dev->power.is_prepared = false;
833 
834 	if (!dev->power.is_suspended)
835 		goto Unlock;
836 
837 	if (dev->pm_domain) {
838 		info = "power domain ";
839 		callback = pm_op(&dev->pm_domain->ops, state);
840 		goto Driver;
841 	}
842 
843 	if (dev->type && dev->type->pm) {
844 		info = "type ";
845 		callback = pm_op(dev->type->pm, state);
846 		goto Driver;
847 	}
848 
849 	if (dev->class) {
850 		if (dev->class->pm) {
851 			info = "class ";
852 			callback = pm_op(dev->class->pm, state);
853 			goto Driver;
854 		} else if (dev->class->resume) {
855 			info = "legacy class ";
856 			callback = dev->class->resume;
857 			goto End;
858 		}
859 	}
860 
861 	if (dev->bus) {
862 		if (dev->bus->pm) {
863 			info = "bus ";
864 			callback = pm_op(dev->bus->pm, state);
865 		} else if (dev->bus->resume) {
866 			info = "legacy bus ";
867 			callback = dev->bus->resume;
868 			goto End;
869 		}
870 	}
871 
872  Driver:
873 	if (!callback && dev->driver && dev->driver->pm) {
874 		info = "driver ";
875 		callback = pm_op(dev->driver->pm, state);
876 	}
877 
878  End:
879 	error = dpm_run_callback(callback, dev, state, info);
880 	dev->power.is_suspended = false;
881 
882  Unlock:
883 	device_unlock(dev);
884 	dpm_watchdog_clear(&wd);
885 
886  Complete:
887 	complete_all(&dev->power.completion);
888 
889 	TRACE_RESUME(error);
890 
891 	return error;
892 }
893 
894 static void async_resume(void *data, async_cookie_t cookie)
895 {
896 	struct device *dev = (struct device *)data;
897 	int error;
898 
899 	error = device_resume(dev, pm_transition, true);
900 	if (error)
901 		pm_dev_err(dev, pm_transition, " async", error);
902 	put_device(dev);
903 }
904 
905 /**
906  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
907  * @state: PM transition of the system being carried out.
908  *
909  * Execute the appropriate "resume" callback for all devices whose status
910  * indicates that they are suspended.
911  */
912 void dpm_resume(pm_message_t state)
913 {
914 	struct device *dev;
915 	ktime_t starttime = ktime_get();
916 
917 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
918 	might_sleep();
919 
920 	mutex_lock(&dpm_list_mtx);
921 	pm_transition = state;
922 	async_error = 0;
923 
924 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
925 		reinit_completion(&dev->power.completion);
926 		if (is_async(dev)) {
927 			get_device(dev);
928 			async_schedule(async_resume, dev);
929 		}
930 	}
931 
932 	while (!list_empty(&dpm_suspended_list)) {
933 		dev = to_device(dpm_suspended_list.next);
934 		get_device(dev);
935 		if (!is_async(dev)) {
936 			int error;
937 
938 			mutex_unlock(&dpm_list_mtx);
939 
940 			error = device_resume(dev, state, false);
941 			if (error) {
942 				suspend_stats.failed_resume++;
943 				dpm_save_failed_step(SUSPEND_RESUME);
944 				dpm_save_failed_dev(dev_name(dev));
945 				pm_dev_err(dev, state, "", error);
946 			}
947 
948 			mutex_lock(&dpm_list_mtx);
949 		}
950 		if (!list_empty(&dev->power.entry))
951 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
952 		put_device(dev);
953 	}
954 	mutex_unlock(&dpm_list_mtx);
955 	async_synchronize_full();
956 	dpm_show_time(starttime, state, 0, NULL);
957 
958 	cpufreq_resume();
959 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
960 }
961 
962 /**
963  * device_complete - Complete a PM transition for given device.
964  * @dev: Device to handle.
965  * @state: PM transition of the system being carried out.
966  */
967 static void device_complete(struct device *dev, pm_message_t state)
968 {
969 	void (*callback)(struct device *) = NULL;
970 	const char *info = NULL;
971 
972 	if (dev->power.syscore)
973 		return;
974 
975 	device_lock(dev);
976 
977 	if (dev->pm_domain) {
978 		info = "completing power domain ";
979 		callback = dev->pm_domain->ops.complete;
980 	} else if (dev->type && dev->type->pm) {
981 		info = "completing type ";
982 		callback = dev->type->pm->complete;
983 	} else if (dev->class && dev->class->pm) {
984 		info = "completing class ";
985 		callback = dev->class->pm->complete;
986 	} else if (dev->bus && dev->bus->pm) {
987 		info = "completing bus ";
988 		callback = dev->bus->pm->complete;
989 	}
990 
991 	if (!callback && dev->driver && dev->driver->pm) {
992 		info = "completing driver ";
993 		callback = dev->driver->pm->complete;
994 	}
995 
996 	if (callback) {
997 		pm_dev_dbg(dev, state, info);
998 		callback(dev);
999 	}
1000 
1001 	device_unlock(dev);
1002 
1003 	pm_runtime_put(dev);
1004 }
1005 
1006 /**
1007  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1008  * @state: PM transition of the system being carried out.
1009  *
1010  * Execute the ->complete() callbacks for all devices whose PM status is not
1011  * DPM_ON (this allows new devices to be registered).
1012  */
1013 void dpm_complete(pm_message_t state)
1014 {
1015 	struct list_head list;
1016 
1017 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1018 	might_sleep();
1019 
1020 	INIT_LIST_HEAD(&list);
1021 	mutex_lock(&dpm_list_mtx);
1022 	while (!list_empty(&dpm_prepared_list)) {
1023 		struct device *dev = to_device(dpm_prepared_list.prev);
1024 
1025 		get_device(dev);
1026 		dev->power.is_prepared = false;
1027 		list_move(&dev->power.entry, &list);
1028 		mutex_unlock(&dpm_list_mtx);
1029 
1030 		trace_device_pm_callback_start(dev, "", state.event);
1031 		device_complete(dev, state);
1032 		trace_device_pm_callback_end(dev, 0);
1033 
1034 		mutex_lock(&dpm_list_mtx);
1035 		put_device(dev);
1036 	}
1037 	list_splice(&list, &dpm_list);
1038 	mutex_unlock(&dpm_list_mtx);
1039 
1040 	/* Allow device probing and trigger re-probing of deferred devices */
1041 	device_unblock_probing();
1042 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1043 }
1044 
1045 /**
1046  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1047  * @state: PM transition of the system being carried out.
1048  *
1049  * Execute "resume" callbacks for all devices and complete the PM transition of
1050  * the system.
1051  */
1052 void dpm_resume_end(pm_message_t state)
1053 {
1054 	dpm_resume(state);
1055 	dpm_complete(state);
1056 }
1057 EXPORT_SYMBOL_GPL(dpm_resume_end);
1058 
1059 
1060 /*------------------------- Suspend routines -------------------------*/
1061 
1062 /**
1063  * resume_event - Return a "resume" message for given "suspend" sleep state.
1064  * @sleep_state: PM message representing a sleep state.
1065  *
1066  * Return a PM message representing the resume event corresponding to given
1067  * sleep state.
1068  */
1069 static pm_message_t resume_event(pm_message_t sleep_state)
1070 {
1071 	switch (sleep_state.event) {
1072 	case PM_EVENT_SUSPEND:
1073 		return PMSG_RESUME;
1074 	case PM_EVENT_FREEZE:
1075 	case PM_EVENT_QUIESCE:
1076 		return PMSG_RECOVER;
1077 	case PM_EVENT_HIBERNATE:
1078 		return PMSG_RESTORE;
1079 	}
1080 	return PMSG_ON;
1081 }
1082 
1083 /**
1084  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1085  * @dev: Device to handle.
1086  * @state: PM transition of the system being carried out.
1087  * @async: If true, the device is being suspended asynchronously.
1088  *
1089  * The driver of @dev will not receive interrupts while this function is being
1090  * executed.
1091  */
1092 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1093 {
1094 	pm_callback_t callback = NULL;
1095 	const char *info = NULL;
1096 	int error = 0;
1097 
1098 	TRACE_DEVICE(dev);
1099 	TRACE_SUSPEND(0);
1100 
1101 	dpm_wait_for_subordinate(dev, async);
1102 
1103 	if (async_error)
1104 		goto Complete;
1105 
1106 	if (pm_wakeup_pending()) {
1107 		async_error = -EBUSY;
1108 		goto Complete;
1109 	}
1110 
1111 	if (dev->power.syscore || dev->power.direct_complete)
1112 		goto Complete;
1113 
1114 	if (dev->pm_domain) {
1115 		info = "noirq power domain ";
1116 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1117 	} else if (dev->type && dev->type->pm) {
1118 		info = "noirq type ";
1119 		callback = pm_noirq_op(dev->type->pm, state);
1120 	} else if (dev->class && dev->class->pm) {
1121 		info = "noirq class ";
1122 		callback = pm_noirq_op(dev->class->pm, state);
1123 	} else if (dev->bus && dev->bus->pm) {
1124 		info = "noirq bus ";
1125 		callback = pm_noirq_op(dev->bus->pm, state);
1126 	}
1127 
1128 	if (!callback && dev->driver && dev->driver->pm) {
1129 		info = "noirq driver ";
1130 		callback = pm_noirq_op(dev->driver->pm, state);
1131 	}
1132 
1133 	error = dpm_run_callback(callback, dev, state, info);
1134 	if (!error)
1135 		dev->power.is_noirq_suspended = true;
1136 	else
1137 		async_error = error;
1138 
1139 Complete:
1140 	complete_all(&dev->power.completion);
1141 	TRACE_SUSPEND(error);
1142 	return error;
1143 }
1144 
1145 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1146 {
1147 	struct device *dev = (struct device *)data;
1148 	int error;
1149 
1150 	error = __device_suspend_noirq(dev, pm_transition, true);
1151 	if (error) {
1152 		dpm_save_failed_dev(dev_name(dev));
1153 		pm_dev_err(dev, pm_transition, " async", error);
1154 	}
1155 
1156 	put_device(dev);
1157 }
1158 
1159 static int device_suspend_noirq(struct device *dev)
1160 {
1161 	reinit_completion(&dev->power.completion);
1162 
1163 	if (is_async(dev)) {
1164 		get_device(dev);
1165 		async_schedule(async_suspend_noirq, dev);
1166 		return 0;
1167 	}
1168 	return __device_suspend_noirq(dev, pm_transition, false);
1169 }
1170 
1171 void dpm_noirq_begin(void)
1172 {
1173 	cpuidle_pause();
1174 	device_wakeup_arm_wake_irqs();
1175 	suspend_device_irqs();
1176 }
1177 
1178 int dpm_noirq_suspend_devices(pm_message_t state)
1179 {
1180 	ktime_t starttime = ktime_get();
1181 	int error = 0;
1182 
1183 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1184 	mutex_lock(&dpm_list_mtx);
1185 	pm_transition = state;
1186 	async_error = 0;
1187 
1188 	while (!list_empty(&dpm_late_early_list)) {
1189 		struct device *dev = to_device(dpm_late_early_list.prev);
1190 
1191 		get_device(dev);
1192 		mutex_unlock(&dpm_list_mtx);
1193 
1194 		error = device_suspend_noirq(dev);
1195 
1196 		mutex_lock(&dpm_list_mtx);
1197 		if (error) {
1198 			pm_dev_err(dev, state, " noirq", error);
1199 			dpm_save_failed_dev(dev_name(dev));
1200 			put_device(dev);
1201 			break;
1202 		}
1203 		if (!list_empty(&dev->power.entry))
1204 			list_move(&dev->power.entry, &dpm_noirq_list);
1205 		put_device(dev);
1206 
1207 		if (async_error)
1208 			break;
1209 	}
1210 	mutex_unlock(&dpm_list_mtx);
1211 	async_synchronize_full();
1212 	if (!error)
1213 		error = async_error;
1214 
1215 	if (error) {
1216 		suspend_stats.failed_suspend_noirq++;
1217 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1218 	}
1219 	dpm_show_time(starttime, state, error, "noirq");
1220 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1221 	return error;
1222 }
1223 
1224 /**
1225  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1226  * @state: PM transition of the system being carried out.
1227  *
1228  * Prevent device drivers' interrupt handlers from being called and invoke
1229  * "noirq" suspend callbacks for all non-sysdev devices.
1230  */
1231 int dpm_suspend_noirq(pm_message_t state)
1232 {
1233 	int ret;
1234 
1235 	dpm_noirq_begin();
1236 	ret = dpm_noirq_suspend_devices(state);
1237 	if (ret)
1238 		dpm_resume_noirq(resume_event(state));
1239 
1240 	return ret;
1241 }
1242 
1243 /**
1244  * device_suspend_late - Execute a "late suspend" callback for given device.
1245  * @dev: Device to handle.
1246  * @state: PM transition of the system being carried out.
1247  * @async: If true, the device is being suspended asynchronously.
1248  *
1249  * Runtime PM is disabled for @dev while this function is being executed.
1250  */
1251 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1252 {
1253 	pm_callback_t callback = NULL;
1254 	const char *info = NULL;
1255 	int error = 0;
1256 
1257 	TRACE_DEVICE(dev);
1258 	TRACE_SUSPEND(0);
1259 
1260 	__pm_runtime_disable(dev, false);
1261 
1262 	dpm_wait_for_subordinate(dev, async);
1263 
1264 	if (async_error)
1265 		goto Complete;
1266 
1267 	if (pm_wakeup_pending()) {
1268 		async_error = -EBUSY;
1269 		goto Complete;
1270 	}
1271 
1272 	if (dev->power.syscore || dev->power.direct_complete)
1273 		goto Complete;
1274 
1275 	if (dev->pm_domain) {
1276 		info = "late power domain ";
1277 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1278 	} else if (dev->type && dev->type->pm) {
1279 		info = "late type ";
1280 		callback = pm_late_early_op(dev->type->pm, state);
1281 	} else if (dev->class && dev->class->pm) {
1282 		info = "late class ";
1283 		callback = pm_late_early_op(dev->class->pm, state);
1284 	} else if (dev->bus && dev->bus->pm) {
1285 		info = "late bus ";
1286 		callback = pm_late_early_op(dev->bus->pm, state);
1287 	}
1288 
1289 	if (!callback && dev->driver && dev->driver->pm) {
1290 		info = "late driver ";
1291 		callback = pm_late_early_op(dev->driver->pm, state);
1292 	}
1293 
1294 	error = dpm_run_callback(callback, dev, state, info);
1295 	if (!error)
1296 		dev->power.is_late_suspended = true;
1297 	else
1298 		async_error = error;
1299 
1300 Complete:
1301 	TRACE_SUSPEND(error);
1302 	complete_all(&dev->power.completion);
1303 	return error;
1304 }
1305 
1306 static void async_suspend_late(void *data, async_cookie_t cookie)
1307 {
1308 	struct device *dev = (struct device *)data;
1309 	int error;
1310 
1311 	error = __device_suspend_late(dev, pm_transition, true);
1312 	if (error) {
1313 		dpm_save_failed_dev(dev_name(dev));
1314 		pm_dev_err(dev, pm_transition, " async", error);
1315 	}
1316 	put_device(dev);
1317 }
1318 
1319 static int device_suspend_late(struct device *dev)
1320 {
1321 	reinit_completion(&dev->power.completion);
1322 
1323 	if (is_async(dev)) {
1324 		get_device(dev);
1325 		async_schedule(async_suspend_late, dev);
1326 		return 0;
1327 	}
1328 
1329 	return __device_suspend_late(dev, pm_transition, false);
1330 }
1331 
1332 /**
1333  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1334  * @state: PM transition of the system being carried out.
1335  */
1336 int dpm_suspend_late(pm_message_t state)
1337 {
1338 	ktime_t starttime = ktime_get();
1339 	int error = 0;
1340 
1341 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1342 	mutex_lock(&dpm_list_mtx);
1343 	pm_transition = state;
1344 	async_error = 0;
1345 
1346 	while (!list_empty(&dpm_suspended_list)) {
1347 		struct device *dev = to_device(dpm_suspended_list.prev);
1348 
1349 		get_device(dev);
1350 		mutex_unlock(&dpm_list_mtx);
1351 
1352 		error = device_suspend_late(dev);
1353 
1354 		mutex_lock(&dpm_list_mtx);
1355 		if (!list_empty(&dev->power.entry))
1356 			list_move(&dev->power.entry, &dpm_late_early_list);
1357 
1358 		if (error) {
1359 			pm_dev_err(dev, state, " late", error);
1360 			dpm_save_failed_dev(dev_name(dev));
1361 			put_device(dev);
1362 			break;
1363 		}
1364 		put_device(dev);
1365 
1366 		if (async_error)
1367 			break;
1368 	}
1369 	mutex_unlock(&dpm_list_mtx);
1370 	async_synchronize_full();
1371 	if (!error)
1372 		error = async_error;
1373 	if (error) {
1374 		suspend_stats.failed_suspend_late++;
1375 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1376 		dpm_resume_early(resume_event(state));
1377 	}
1378 	dpm_show_time(starttime, state, error, "late");
1379 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1380 	return error;
1381 }
1382 
1383 /**
1384  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1385  * @state: PM transition of the system being carried out.
1386  */
1387 int dpm_suspend_end(pm_message_t state)
1388 {
1389 	int error = dpm_suspend_late(state);
1390 	if (error)
1391 		return error;
1392 
1393 	error = dpm_suspend_noirq(state);
1394 	if (error) {
1395 		dpm_resume_early(resume_event(state));
1396 		return error;
1397 	}
1398 
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1402 
1403 /**
1404  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1405  * @dev: Device to suspend.
1406  * @state: PM transition of the system being carried out.
1407  * @cb: Suspend callback to execute.
1408  * @info: string description of caller.
1409  */
1410 static int legacy_suspend(struct device *dev, pm_message_t state,
1411 			  int (*cb)(struct device *dev, pm_message_t state),
1412 			  const char *info)
1413 {
1414 	int error;
1415 	ktime_t calltime;
1416 
1417 	calltime = initcall_debug_start(dev);
1418 
1419 	trace_device_pm_callback_start(dev, info, state.event);
1420 	error = cb(dev, state);
1421 	trace_device_pm_callback_end(dev, error);
1422 	suspend_report_result(cb, error);
1423 
1424 	initcall_debug_report(dev, calltime, error, state, info);
1425 
1426 	return error;
1427 }
1428 
1429 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1430 {
1431 	struct device_link *link;
1432 	int idx;
1433 
1434 	idx = device_links_read_lock();
1435 
1436 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1437 		spin_lock_irq(&link->supplier->power.lock);
1438 		link->supplier->power.direct_complete = false;
1439 		spin_unlock_irq(&link->supplier->power.lock);
1440 	}
1441 
1442 	device_links_read_unlock(idx);
1443 }
1444 
1445 /**
1446  * device_suspend - Execute "suspend" callbacks for given device.
1447  * @dev: Device to handle.
1448  * @state: PM transition of the system being carried out.
1449  * @async: If true, the device is being suspended asynchronously.
1450  */
1451 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1452 {
1453 	pm_callback_t callback = NULL;
1454 	const char *info = NULL;
1455 	int error = 0;
1456 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1457 
1458 	TRACE_DEVICE(dev);
1459 	TRACE_SUSPEND(0);
1460 
1461 	dpm_wait_for_subordinate(dev, async);
1462 
1463 	if (async_error)
1464 		goto Complete;
1465 
1466 	/*
1467 	 * If a device configured to wake up the system from sleep states
1468 	 * has been suspended at run time and there's a resume request pending
1469 	 * for it, this is equivalent to the device signaling wakeup, so the
1470 	 * system suspend operation should be aborted.
1471 	 */
1472 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1473 		pm_wakeup_event(dev, 0);
1474 
1475 	if (pm_wakeup_pending()) {
1476 		async_error = -EBUSY;
1477 		goto Complete;
1478 	}
1479 
1480 	if (dev->power.syscore)
1481 		goto Complete;
1482 
1483 	if (dev->power.direct_complete) {
1484 		if (pm_runtime_status_suspended(dev)) {
1485 			pm_runtime_disable(dev);
1486 			if (pm_runtime_status_suspended(dev))
1487 				goto Complete;
1488 
1489 			pm_runtime_enable(dev);
1490 		}
1491 		dev->power.direct_complete = false;
1492 	}
1493 
1494 	dpm_watchdog_set(&wd, dev);
1495 	device_lock(dev);
1496 
1497 	if (dev->pm_domain) {
1498 		info = "power domain ";
1499 		callback = pm_op(&dev->pm_domain->ops, state);
1500 		goto Run;
1501 	}
1502 
1503 	if (dev->type && dev->type->pm) {
1504 		info = "type ";
1505 		callback = pm_op(dev->type->pm, state);
1506 		goto Run;
1507 	}
1508 
1509 	if (dev->class) {
1510 		if (dev->class->pm) {
1511 			info = "class ";
1512 			callback = pm_op(dev->class->pm, state);
1513 			goto Run;
1514 		} else if (dev->class->suspend) {
1515 			pm_dev_dbg(dev, state, "legacy class ");
1516 			error = legacy_suspend(dev, state, dev->class->suspend,
1517 						"legacy class ");
1518 			goto End;
1519 		}
1520 	}
1521 
1522 	if (dev->bus) {
1523 		if (dev->bus->pm) {
1524 			info = "bus ";
1525 			callback = pm_op(dev->bus->pm, state);
1526 		} else if (dev->bus->suspend) {
1527 			pm_dev_dbg(dev, state, "legacy bus ");
1528 			error = legacy_suspend(dev, state, dev->bus->suspend,
1529 						"legacy bus ");
1530 			goto End;
1531 		}
1532 	}
1533 
1534  Run:
1535 	if (!callback && dev->driver && dev->driver->pm) {
1536 		info = "driver ";
1537 		callback = pm_op(dev->driver->pm, state);
1538 	}
1539 
1540 	error = dpm_run_callback(callback, dev, state, info);
1541 
1542  End:
1543 	if (!error) {
1544 		struct device *parent = dev->parent;
1545 
1546 		dev->power.is_suspended = true;
1547 		if (parent) {
1548 			spin_lock_irq(&parent->power.lock);
1549 
1550 			dev->parent->power.direct_complete = false;
1551 			if (dev->power.wakeup_path
1552 			    && !dev->parent->power.ignore_children)
1553 				dev->parent->power.wakeup_path = true;
1554 
1555 			spin_unlock_irq(&parent->power.lock);
1556 		}
1557 		dpm_clear_suppliers_direct_complete(dev);
1558 	}
1559 
1560 	device_unlock(dev);
1561 	dpm_watchdog_clear(&wd);
1562 
1563  Complete:
1564 	if (error)
1565 		async_error = error;
1566 
1567 	complete_all(&dev->power.completion);
1568 	TRACE_SUSPEND(error);
1569 	return error;
1570 }
1571 
1572 static void async_suspend(void *data, async_cookie_t cookie)
1573 {
1574 	struct device *dev = (struct device *)data;
1575 	int error;
1576 
1577 	error = __device_suspend(dev, pm_transition, true);
1578 	if (error) {
1579 		dpm_save_failed_dev(dev_name(dev));
1580 		pm_dev_err(dev, pm_transition, " async", error);
1581 	}
1582 
1583 	put_device(dev);
1584 }
1585 
1586 static int device_suspend(struct device *dev)
1587 {
1588 	reinit_completion(&dev->power.completion);
1589 
1590 	if (is_async(dev)) {
1591 		get_device(dev);
1592 		async_schedule(async_suspend, dev);
1593 		return 0;
1594 	}
1595 
1596 	return __device_suspend(dev, pm_transition, false);
1597 }
1598 
1599 /**
1600  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1601  * @state: PM transition of the system being carried out.
1602  */
1603 int dpm_suspend(pm_message_t state)
1604 {
1605 	ktime_t starttime = ktime_get();
1606 	int error = 0;
1607 
1608 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1609 	might_sleep();
1610 
1611 	cpufreq_suspend();
1612 
1613 	mutex_lock(&dpm_list_mtx);
1614 	pm_transition = state;
1615 	async_error = 0;
1616 	while (!list_empty(&dpm_prepared_list)) {
1617 		struct device *dev = to_device(dpm_prepared_list.prev);
1618 
1619 		get_device(dev);
1620 		mutex_unlock(&dpm_list_mtx);
1621 
1622 		error = device_suspend(dev);
1623 
1624 		mutex_lock(&dpm_list_mtx);
1625 		if (error) {
1626 			pm_dev_err(dev, state, "", error);
1627 			dpm_save_failed_dev(dev_name(dev));
1628 			put_device(dev);
1629 			break;
1630 		}
1631 		if (!list_empty(&dev->power.entry))
1632 			list_move(&dev->power.entry, &dpm_suspended_list);
1633 		put_device(dev);
1634 		if (async_error)
1635 			break;
1636 	}
1637 	mutex_unlock(&dpm_list_mtx);
1638 	async_synchronize_full();
1639 	if (!error)
1640 		error = async_error;
1641 	if (error) {
1642 		suspend_stats.failed_suspend++;
1643 		dpm_save_failed_step(SUSPEND_SUSPEND);
1644 	}
1645 	dpm_show_time(starttime, state, error, NULL);
1646 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1647 	return error;
1648 }
1649 
1650 /**
1651  * device_prepare - Prepare a device for system power transition.
1652  * @dev: Device to handle.
1653  * @state: PM transition of the system being carried out.
1654  *
1655  * Execute the ->prepare() callback(s) for given device.  No new children of the
1656  * device may be registered after this function has returned.
1657  */
1658 static int device_prepare(struct device *dev, pm_message_t state)
1659 {
1660 	int (*callback)(struct device *) = NULL;
1661 	int ret = 0;
1662 
1663 	if (dev->power.syscore)
1664 		return 0;
1665 
1666 	/*
1667 	 * If a device's parent goes into runtime suspend at the wrong time,
1668 	 * it won't be possible to resume the device.  To prevent this we
1669 	 * block runtime suspend here, during the prepare phase, and allow
1670 	 * it again during the complete phase.
1671 	 */
1672 	pm_runtime_get_noresume(dev);
1673 
1674 	device_lock(dev);
1675 
1676 	dev->power.wakeup_path = device_may_wakeup(dev);
1677 
1678 	if (dev->power.no_pm_callbacks) {
1679 		ret = 1;	/* Let device go direct_complete */
1680 		goto unlock;
1681 	}
1682 
1683 	if (dev->pm_domain)
1684 		callback = dev->pm_domain->ops.prepare;
1685 	else if (dev->type && dev->type->pm)
1686 		callback = dev->type->pm->prepare;
1687 	else if (dev->class && dev->class->pm)
1688 		callback = dev->class->pm->prepare;
1689 	else if (dev->bus && dev->bus->pm)
1690 		callback = dev->bus->pm->prepare;
1691 
1692 	if (!callback && dev->driver && dev->driver->pm)
1693 		callback = dev->driver->pm->prepare;
1694 
1695 	if (callback)
1696 		ret = callback(dev);
1697 
1698 unlock:
1699 	device_unlock(dev);
1700 
1701 	if (ret < 0) {
1702 		suspend_report_result(callback, ret);
1703 		pm_runtime_put(dev);
1704 		return ret;
1705 	}
1706 	/*
1707 	 * A positive return value from ->prepare() means "this device appears
1708 	 * to be runtime-suspended and its state is fine, so if it really is
1709 	 * runtime-suspended, you can leave it in that state provided that you
1710 	 * will do the same thing with all of its descendants".  This only
1711 	 * applies to suspend transitions, however.
1712 	 */
1713 	spin_lock_irq(&dev->power.lock);
1714 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1715 	spin_unlock_irq(&dev->power.lock);
1716 	return 0;
1717 }
1718 
1719 /**
1720  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1721  * @state: PM transition of the system being carried out.
1722  *
1723  * Execute the ->prepare() callback(s) for all devices.
1724  */
1725 int dpm_prepare(pm_message_t state)
1726 {
1727 	int error = 0;
1728 
1729 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1730 	might_sleep();
1731 
1732 	/*
1733 	 * Give a chance for the known devices to complete their probes, before
1734 	 * disable probing of devices. This sync point is important at least
1735 	 * at boot time + hibernation restore.
1736 	 */
1737 	wait_for_device_probe();
1738 	/*
1739 	 * It is unsafe if probing of devices will happen during suspend or
1740 	 * hibernation and system behavior will be unpredictable in this case.
1741 	 * So, let's prohibit device's probing here and defer their probes
1742 	 * instead. The normal behavior will be restored in dpm_complete().
1743 	 */
1744 	device_block_probing();
1745 
1746 	mutex_lock(&dpm_list_mtx);
1747 	while (!list_empty(&dpm_list)) {
1748 		struct device *dev = to_device(dpm_list.next);
1749 
1750 		get_device(dev);
1751 		mutex_unlock(&dpm_list_mtx);
1752 
1753 		trace_device_pm_callback_start(dev, "", state.event);
1754 		error = device_prepare(dev, state);
1755 		trace_device_pm_callback_end(dev, error);
1756 
1757 		mutex_lock(&dpm_list_mtx);
1758 		if (error) {
1759 			if (error == -EAGAIN) {
1760 				put_device(dev);
1761 				error = 0;
1762 				continue;
1763 			}
1764 			printk(KERN_INFO "PM: Device %s not prepared "
1765 				"for power transition: code %d\n",
1766 				dev_name(dev), error);
1767 			put_device(dev);
1768 			break;
1769 		}
1770 		dev->power.is_prepared = true;
1771 		if (!list_empty(&dev->power.entry))
1772 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1773 		put_device(dev);
1774 	}
1775 	mutex_unlock(&dpm_list_mtx);
1776 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1777 	return error;
1778 }
1779 
1780 /**
1781  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1782  * @state: PM transition of the system being carried out.
1783  *
1784  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1785  * callbacks for them.
1786  */
1787 int dpm_suspend_start(pm_message_t state)
1788 {
1789 	int error;
1790 
1791 	error = dpm_prepare(state);
1792 	if (error) {
1793 		suspend_stats.failed_prepare++;
1794 		dpm_save_failed_step(SUSPEND_PREPARE);
1795 	} else
1796 		error = dpm_suspend(state);
1797 	return error;
1798 }
1799 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1800 
1801 void __suspend_report_result(const char *function, void *fn, int ret)
1802 {
1803 	if (ret)
1804 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1805 }
1806 EXPORT_SYMBOL_GPL(__suspend_report_result);
1807 
1808 /**
1809  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1810  * @dev: Device to wait for.
1811  * @subordinate: Device that needs to wait for @dev.
1812  */
1813 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1814 {
1815 	dpm_wait(dev, subordinate->power.async_suspend);
1816 	return async_error;
1817 }
1818 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1819 
1820 /**
1821  * dpm_for_each_dev - device iterator.
1822  * @data: data for the callback.
1823  * @fn: function to be called for each device.
1824  *
1825  * Iterate over devices in dpm_list, and call @fn for each device,
1826  * passing it @data.
1827  */
1828 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1829 {
1830 	struct device *dev;
1831 
1832 	if (!fn)
1833 		return;
1834 
1835 	device_pm_lock();
1836 	list_for_each_entry(dev, &dpm_list, power.entry)
1837 		fn(dev, data);
1838 	device_pm_unlock();
1839 }
1840 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1841 
1842 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1843 {
1844 	if (!ops)
1845 		return true;
1846 
1847 	return !ops->prepare &&
1848 	       !ops->suspend &&
1849 	       !ops->suspend_late &&
1850 	       !ops->suspend_noirq &&
1851 	       !ops->resume_noirq &&
1852 	       !ops->resume_early &&
1853 	       !ops->resume &&
1854 	       !ops->complete;
1855 }
1856 
1857 void device_pm_check_callbacks(struct device *dev)
1858 {
1859 	spin_lock_irq(&dev->power.lock);
1860 	dev->power.no_pm_callbacks =
1861 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1862 		 !dev->bus->suspend && !dev->bus->resume)) &&
1863 		(!dev->class || (pm_ops_is_empty(dev->class->pm) &&
1864 		 !dev->class->suspend && !dev->class->resume)) &&
1865 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1866 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1867 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1868 		 !dev->driver->suspend && !dev->driver->resume));
1869 	spin_unlock_irq(&dev->power.lock);
1870 }
1871