xref: /openbmc/linux/drivers/base/power/main.c (revision d2168146)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35 
36 #include "../base.h"
37 #include "power.h"
38 
39 typedef int (*pm_callback_t)(struct device *);
40 
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50 
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56 
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60 
61 static int async_error;
62 
63 static char *pm_verb(int event)
64 {
65 	switch (event) {
66 	case PM_EVENT_SUSPEND:
67 		return "suspend";
68 	case PM_EVENT_RESUME:
69 		return "resume";
70 	case PM_EVENT_FREEZE:
71 		return "freeze";
72 	case PM_EVENT_QUIESCE:
73 		return "quiesce";
74 	case PM_EVENT_HIBERNATE:
75 		return "hibernate";
76 	case PM_EVENT_THAW:
77 		return "thaw";
78 	case PM_EVENT_RESTORE:
79 		return "restore";
80 	case PM_EVENT_RECOVER:
81 		return "recover";
82 	default:
83 		return "(unknown PM event)";
84 	}
85 }
86 
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93 	dev->power.is_prepared = false;
94 	dev->power.is_suspended = false;
95 	dev->power.is_noirq_suspended = false;
96 	dev->power.is_late_suspended = false;
97 	init_completion(&dev->power.completion);
98 	complete_all(&dev->power.completion);
99 	dev->power.wakeup = NULL;
100 	INIT_LIST_HEAD(&dev->power.entry);
101 }
102 
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108 	mutex_lock(&dpm_list_mtx);
109 }
110 
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116 	mutex_unlock(&dpm_list_mtx);
117 }
118 
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125 	pr_debug("PM: Adding info for %s:%s\n",
126 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127 	mutex_lock(&dpm_list_mtx);
128 	if (dev->parent && dev->parent->power.is_prepared)
129 		dev_warn(dev, "parent %s should not be sleeping\n",
130 			dev_name(dev->parent));
131 	list_add_tail(&dev->power.entry, &dpm_list);
132 	mutex_unlock(&dpm_list_mtx);
133 }
134 
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141 	pr_debug("PM: Removing info for %s:%s\n",
142 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143 	complete_all(&dev->power.completion);
144 	mutex_lock(&dpm_list_mtx);
145 	list_del_init(&dev->power.entry);
146 	mutex_unlock(&dpm_list_mtx);
147 	device_wakeup_disable(dev);
148 	pm_runtime_remove(dev);
149 }
150 
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158 	pr_debug("PM: Moving %s:%s before %s:%s\n",
159 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 	/* Delete deva from dpm_list and reinsert before devb. */
162 	list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164 
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172 	pr_debug("PM: Moving %s:%s after %s:%s\n",
173 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 	/* Delete deva from dpm_list and reinsert after devb. */
176 	list_move(&deva->power.entry, &devb->power.entry);
177 }
178 
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185 	pr_debug("PM: Moving %s:%s to end of list\n",
186 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 	list_move_tail(&dev->power.entry, &dpm_list);
188 }
189 
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192 	ktime_t calltime = ktime_set(0, 0);
193 
194 	if (pm_print_times_enabled) {
195 		pr_info("calling  %s+ @ %i, parent: %s\n",
196 			dev_name(dev), task_pid_nr(current),
197 			dev->parent ? dev_name(dev->parent) : "none");
198 		calltime = ktime_get();
199 	}
200 
201 	return calltime;
202 }
203 
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205 				  int error, pm_message_t state, char *info)
206 {
207 	ktime_t rettime;
208 	s64 nsecs;
209 
210 	rettime = ktime_get();
211 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212 
213 	if (pm_print_times_enabled) {
214 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215 			error, (unsigned long long)nsecs >> 10);
216 	}
217 }
218 
219 /**
220  * dpm_wait - Wait for a PM operation to complete.
221  * @dev: Device to wait for.
222  * @async: If unset, wait only if the device's power.async_suspend flag is set.
223  */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226 	if (!dev)
227 		return;
228 
229 	if (async || (pm_async_enabled && dev->power.async_suspend))
230 		wait_for_completion(&dev->power.completion);
231 }
232 
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235 	dpm_wait(dev, *((bool *)async_ptr));
236 	return 0;
237 }
238 
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241        device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243 
244 /**
245  * pm_op - Return the PM operation appropriate for given PM event.
246  * @ops: PM operations to choose from.
247  * @state: PM transition of the system being carried out.
248  */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251 	switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253 	case PM_EVENT_SUSPEND:
254 		return ops->suspend;
255 	case PM_EVENT_RESUME:
256 		return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259 	case PM_EVENT_FREEZE:
260 	case PM_EVENT_QUIESCE:
261 		return ops->freeze;
262 	case PM_EVENT_HIBERNATE:
263 		return ops->poweroff;
264 	case PM_EVENT_THAW:
265 	case PM_EVENT_RECOVER:
266 		return ops->thaw;
267 		break;
268 	case PM_EVENT_RESTORE:
269 		return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271 	}
272 
273 	return NULL;
274 }
275 
276 /**
277  * pm_late_early_op - Return the PM operation appropriate for given PM event.
278  * @ops: PM operations to choose from.
279  * @state: PM transition of the system being carried out.
280  *
281  * Runtime PM is disabled for @dev while this function is being executed.
282  */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284 				      pm_message_t state)
285 {
286 	switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288 	case PM_EVENT_SUSPEND:
289 		return ops->suspend_late;
290 	case PM_EVENT_RESUME:
291 		return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294 	case PM_EVENT_FREEZE:
295 	case PM_EVENT_QUIESCE:
296 		return ops->freeze_late;
297 	case PM_EVENT_HIBERNATE:
298 		return ops->poweroff_late;
299 	case PM_EVENT_THAW:
300 	case PM_EVENT_RECOVER:
301 		return ops->thaw_early;
302 	case PM_EVENT_RESTORE:
303 		return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305 	}
306 
307 	return NULL;
308 }
309 
310 /**
311  * pm_noirq_op - Return the PM operation appropriate for given PM event.
312  * @ops: PM operations to choose from.
313  * @state: PM transition of the system being carried out.
314  *
315  * The driver of @dev will not receive interrupts while this function is being
316  * executed.
317  */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320 	switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322 	case PM_EVENT_SUSPEND:
323 		return ops->suspend_noirq;
324 	case PM_EVENT_RESUME:
325 		return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328 	case PM_EVENT_FREEZE:
329 	case PM_EVENT_QUIESCE:
330 		return ops->freeze_noirq;
331 	case PM_EVENT_HIBERNATE:
332 		return ops->poweroff_noirq;
333 	case PM_EVENT_THAW:
334 	case PM_EVENT_RECOVER:
335 		return ops->thaw_noirq;
336 	case PM_EVENT_RESTORE:
337 		return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339 	}
340 
341 	return NULL;
342 }
343 
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348 		", may wakeup" : "");
349 }
350 
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352 			int error)
353 {
354 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355 		dev_name(dev), pm_verb(state.event), info, error);
356 }
357 
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360 	ktime_t calltime;
361 	u64 usecs64;
362 	int usecs;
363 
364 	calltime = ktime_get();
365 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366 	do_div(usecs64, NSEC_PER_USEC);
367 	usecs = usecs64;
368 	if (usecs == 0)
369 		usecs = 1;
370 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371 		info ?: "", info ? " " : "", pm_verb(state.event),
372 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374 
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376 			    pm_message_t state, char *info)
377 {
378 	ktime_t calltime;
379 	int error;
380 
381 	if (!cb)
382 		return 0;
383 
384 	calltime = initcall_debug_start(dev);
385 
386 	pm_dev_dbg(dev, state, info);
387 	trace_device_pm_callback_start(dev, info, state.event);
388 	error = cb(dev);
389 	trace_device_pm_callback_end(dev, error);
390 	suspend_report_result(cb, error);
391 
392 	initcall_debug_report(dev, calltime, error, state, info);
393 
394 	return error;
395 }
396 
397 #ifdef CONFIG_DPM_WATCHDOG
398 struct dpm_watchdog {
399 	struct device		*dev;
400 	struct task_struct	*tsk;
401 	struct timer_list	timer;
402 };
403 
404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
405 	struct dpm_watchdog wd
406 
407 /**
408  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
409  * @data: Watchdog object address.
410  *
411  * Called when a driver has timed out suspending or resuming.
412  * There's not much we can do here to recover so panic() to
413  * capture a crash-dump in pstore.
414  */
415 static void dpm_watchdog_handler(unsigned long data)
416 {
417 	struct dpm_watchdog *wd = (void *)data;
418 
419 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
420 	show_stack(wd->tsk, NULL);
421 	panic("%s %s: unrecoverable failure\n",
422 		dev_driver_string(wd->dev), dev_name(wd->dev));
423 }
424 
425 /**
426  * dpm_watchdog_set - Enable pm watchdog for given device.
427  * @wd: Watchdog. Must be allocated on the stack.
428  * @dev: Device to handle.
429  */
430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
431 {
432 	struct timer_list *timer = &wd->timer;
433 
434 	wd->dev = dev;
435 	wd->tsk = current;
436 
437 	init_timer_on_stack(timer);
438 	/* use same timeout value for both suspend and resume */
439 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
440 	timer->function = dpm_watchdog_handler;
441 	timer->data = (unsigned long)wd;
442 	add_timer(timer);
443 }
444 
445 /**
446  * dpm_watchdog_clear - Disable suspend/resume watchdog.
447  * @wd: Watchdog to disable.
448  */
449 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
450 {
451 	struct timer_list *timer = &wd->timer;
452 
453 	del_timer_sync(timer);
454 	destroy_timer_on_stack(timer);
455 }
456 #else
457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
458 #define dpm_watchdog_set(x, y)
459 #define dpm_watchdog_clear(x)
460 #endif
461 
462 /*------------------------- Resume routines -------------------------*/
463 
464 /**
465  * device_resume_noirq - Execute an "early resume" callback for given device.
466  * @dev: Device to handle.
467  * @state: PM transition of the system being carried out.
468  *
469  * The driver of @dev will not receive interrupts while this function is being
470  * executed.
471  */
472 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
473 {
474 	pm_callback_t callback = NULL;
475 	char *info = NULL;
476 	int error = 0;
477 
478 	TRACE_DEVICE(dev);
479 	TRACE_RESUME(0);
480 
481 	if (dev->power.syscore || dev->power.direct_complete)
482 		goto Out;
483 
484 	if (!dev->power.is_noirq_suspended)
485 		goto Out;
486 
487 	dpm_wait(dev->parent, async);
488 
489 	if (dev->pm_domain) {
490 		info = "noirq power domain ";
491 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
492 	} else if (dev->type && dev->type->pm) {
493 		info = "noirq type ";
494 		callback = pm_noirq_op(dev->type->pm, state);
495 	} else if (dev->class && dev->class->pm) {
496 		info = "noirq class ";
497 		callback = pm_noirq_op(dev->class->pm, state);
498 	} else if (dev->bus && dev->bus->pm) {
499 		info = "noirq bus ";
500 		callback = pm_noirq_op(dev->bus->pm, state);
501 	}
502 
503 	if (!callback && dev->driver && dev->driver->pm) {
504 		info = "noirq driver ";
505 		callback = pm_noirq_op(dev->driver->pm, state);
506 	}
507 
508 	error = dpm_run_callback(callback, dev, state, info);
509 	dev->power.is_noirq_suspended = false;
510 
511  Out:
512 	complete_all(&dev->power.completion);
513 	TRACE_RESUME(error);
514 	return error;
515 }
516 
517 static bool is_async(struct device *dev)
518 {
519 	return dev->power.async_suspend && pm_async_enabled
520 		&& !pm_trace_is_enabled();
521 }
522 
523 static void async_resume_noirq(void *data, async_cookie_t cookie)
524 {
525 	struct device *dev = (struct device *)data;
526 	int error;
527 
528 	error = device_resume_noirq(dev, pm_transition, true);
529 	if (error)
530 		pm_dev_err(dev, pm_transition, " async", error);
531 
532 	put_device(dev);
533 }
534 
535 /**
536  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
537  * @state: PM transition of the system being carried out.
538  *
539  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
540  * enable device drivers to receive interrupts.
541  */
542 static void dpm_resume_noirq(pm_message_t state)
543 {
544 	struct device *dev;
545 	ktime_t starttime = ktime_get();
546 
547 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
548 	mutex_lock(&dpm_list_mtx);
549 	pm_transition = state;
550 
551 	/*
552 	 * Advanced the async threads upfront,
553 	 * in case the starting of async threads is
554 	 * delayed by non-async resuming devices.
555 	 */
556 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
557 		reinit_completion(&dev->power.completion);
558 		if (is_async(dev)) {
559 			get_device(dev);
560 			async_schedule(async_resume_noirq, dev);
561 		}
562 	}
563 
564 	while (!list_empty(&dpm_noirq_list)) {
565 		dev = to_device(dpm_noirq_list.next);
566 		get_device(dev);
567 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
568 		mutex_unlock(&dpm_list_mtx);
569 
570 		if (!is_async(dev)) {
571 			int error;
572 
573 			error = device_resume_noirq(dev, state, false);
574 			if (error) {
575 				suspend_stats.failed_resume_noirq++;
576 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
577 				dpm_save_failed_dev(dev_name(dev));
578 				pm_dev_err(dev, state, " noirq", error);
579 			}
580 		}
581 
582 		mutex_lock(&dpm_list_mtx);
583 		put_device(dev);
584 	}
585 	mutex_unlock(&dpm_list_mtx);
586 	async_synchronize_full();
587 	dpm_show_time(starttime, state, "noirq");
588 	resume_device_irqs();
589 	cpuidle_resume();
590 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
591 }
592 
593 /**
594  * device_resume_early - Execute an "early resume" callback for given device.
595  * @dev: Device to handle.
596  * @state: PM transition of the system being carried out.
597  *
598  * Runtime PM is disabled for @dev while this function is being executed.
599  */
600 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
601 {
602 	pm_callback_t callback = NULL;
603 	char *info = NULL;
604 	int error = 0;
605 
606 	TRACE_DEVICE(dev);
607 	TRACE_RESUME(0);
608 
609 	if (dev->power.syscore || dev->power.direct_complete)
610 		goto Out;
611 
612 	if (!dev->power.is_late_suspended)
613 		goto Out;
614 
615 	dpm_wait(dev->parent, async);
616 
617 	if (dev->pm_domain) {
618 		info = "early power domain ";
619 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
620 	} else if (dev->type && dev->type->pm) {
621 		info = "early type ";
622 		callback = pm_late_early_op(dev->type->pm, state);
623 	} else if (dev->class && dev->class->pm) {
624 		info = "early class ";
625 		callback = pm_late_early_op(dev->class->pm, state);
626 	} else if (dev->bus && dev->bus->pm) {
627 		info = "early bus ";
628 		callback = pm_late_early_op(dev->bus->pm, state);
629 	}
630 
631 	if (!callback && dev->driver && dev->driver->pm) {
632 		info = "early driver ";
633 		callback = pm_late_early_op(dev->driver->pm, state);
634 	}
635 
636 	error = dpm_run_callback(callback, dev, state, info);
637 	dev->power.is_late_suspended = false;
638 
639  Out:
640 	TRACE_RESUME(error);
641 
642 	pm_runtime_enable(dev);
643 	complete_all(&dev->power.completion);
644 	return error;
645 }
646 
647 static void async_resume_early(void *data, async_cookie_t cookie)
648 {
649 	struct device *dev = (struct device *)data;
650 	int error;
651 
652 	error = device_resume_early(dev, pm_transition, true);
653 	if (error)
654 		pm_dev_err(dev, pm_transition, " async", error);
655 
656 	put_device(dev);
657 }
658 
659 /**
660  * dpm_resume_early - Execute "early resume" callbacks for all devices.
661  * @state: PM transition of the system being carried out.
662  */
663 static void dpm_resume_early(pm_message_t state)
664 {
665 	struct device *dev;
666 	ktime_t starttime = ktime_get();
667 
668 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
669 	mutex_lock(&dpm_list_mtx);
670 	pm_transition = state;
671 
672 	/*
673 	 * Advanced the async threads upfront,
674 	 * in case the starting of async threads is
675 	 * delayed by non-async resuming devices.
676 	 */
677 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
678 		reinit_completion(&dev->power.completion);
679 		if (is_async(dev)) {
680 			get_device(dev);
681 			async_schedule(async_resume_early, dev);
682 		}
683 	}
684 
685 	while (!list_empty(&dpm_late_early_list)) {
686 		dev = to_device(dpm_late_early_list.next);
687 		get_device(dev);
688 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
689 		mutex_unlock(&dpm_list_mtx);
690 
691 		if (!is_async(dev)) {
692 			int error;
693 
694 			error = device_resume_early(dev, state, false);
695 			if (error) {
696 				suspend_stats.failed_resume_early++;
697 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
698 				dpm_save_failed_dev(dev_name(dev));
699 				pm_dev_err(dev, state, " early", error);
700 			}
701 		}
702 		mutex_lock(&dpm_list_mtx);
703 		put_device(dev);
704 	}
705 	mutex_unlock(&dpm_list_mtx);
706 	async_synchronize_full();
707 	dpm_show_time(starttime, state, "early");
708 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
709 }
710 
711 /**
712  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
713  * @state: PM transition of the system being carried out.
714  */
715 void dpm_resume_start(pm_message_t state)
716 {
717 	dpm_resume_noirq(state);
718 	dpm_resume_early(state);
719 }
720 EXPORT_SYMBOL_GPL(dpm_resume_start);
721 
722 /**
723  * device_resume - Execute "resume" callbacks for given device.
724  * @dev: Device to handle.
725  * @state: PM transition of the system being carried out.
726  * @async: If true, the device is being resumed asynchronously.
727  */
728 static int device_resume(struct device *dev, pm_message_t state, bool async)
729 {
730 	pm_callback_t callback = NULL;
731 	char *info = NULL;
732 	int error = 0;
733 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
734 
735 	TRACE_DEVICE(dev);
736 	TRACE_RESUME(0);
737 
738 	if (dev->power.syscore)
739 		goto Complete;
740 
741 	if (dev->power.direct_complete) {
742 		/* Match the pm_runtime_disable() in __device_suspend(). */
743 		pm_runtime_enable(dev);
744 		goto Complete;
745 	}
746 
747 	dpm_wait(dev->parent, async);
748 	dpm_watchdog_set(&wd, dev);
749 	device_lock(dev);
750 
751 	/*
752 	 * This is a fib.  But we'll allow new children to be added below
753 	 * a resumed device, even if the device hasn't been completed yet.
754 	 */
755 	dev->power.is_prepared = false;
756 
757 	if (!dev->power.is_suspended)
758 		goto Unlock;
759 
760 	if (dev->pm_domain) {
761 		info = "power domain ";
762 		callback = pm_op(&dev->pm_domain->ops, state);
763 		goto Driver;
764 	}
765 
766 	if (dev->type && dev->type->pm) {
767 		info = "type ";
768 		callback = pm_op(dev->type->pm, state);
769 		goto Driver;
770 	}
771 
772 	if (dev->class) {
773 		if (dev->class->pm) {
774 			info = "class ";
775 			callback = pm_op(dev->class->pm, state);
776 			goto Driver;
777 		} else if (dev->class->resume) {
778 			info = "legacy class ";
779 			callback = dev->class->resume;
780 			goto End;
781 		}
782 	}
783 
784 	if (dev->bus) {
785 		if (dev->bus->pm) {
786 			info = "bus ";
787 			callback = pm_op(dev->bus->pm, state);
788 		} else if (dev->bus->resume) {
789 			info = "legacy bus ";
790 			callback = dev->bus->resume;
791 			goto End;
792 		}
793 	}
794 
795  Driver:
796 	if (!callback && dev->driver && dev->driver->pm) {
797 		info = "driver ";
798 		callback = pm_op(dev->driver->pm, state);
799 	}
800 
801  End:
802 	error = dpm_run_callback(callback, dev, state, info);
803 	dev->power.is_suspended = false;
804 
805  Unlock:
806 	device_unlock(dev);
807 	dpm_watchdog_clear(&wd);
808 
809  Complete:
810 	complete_all(&dev->power.completion);
811 
812 	TRACE_RESUME(error);
813 
814 	return error;
815 }
816 
817 static void async_resume(void *data, async_cookie_t cookie)
818 {
819 	struct device *dev = (struct device *)data;
820 	int error;
821 
822 	error = device_resume(dev, pm_transition, true);
823 	if (error)
824 		pm_dev_err(dev, pm_transition, " async", error);
825 	put_device(dev);
826 }
827 
828 /**
829  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
830  * @state: PM transition of the system being carried out.
831  *
832  * Execute the appropriate "resume" callback for all devices whose status
833  * indicates that they are suspended.
834  */
835 void dpm_resume(pm_message_t state)
836 {
837 	struct device *dev;
838 	ktime_t starttime = ktime_get();
839 
840 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
841 	might_sleep();
842 
843 	mutex_lock(&dpm_list_mtx);
844 	pm_transition = state;
845 	async_error = 0;
846 
847 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
848 		reinit_completion(&dev->power.completion);
849 		if (is_async(dev)) {
850 			get_device(dev);
851 			async_schedule(async_resume, dev);
852 		}
853 	}
854 
855 	while (!list_empty(&dpm_suspended_list)) {
856 		dev = to_device(dpm_suspended_list.next);
857 		get_device(dev);
858 		if (!is_async(dev)) {
859 			int error;
860 
861 			mutex_unlock(&dpm_list_mtx);
862 
863 			error = device_resume(dev, state, false);
864 			if (error) {
865 				suspend_stats.failed_resume++;
866 				dpm_save_failed_step(SUSPEND_RESUME);
867 				dpm_save_failed_dev(dev_name(dev));
868 				pm_dev_err(dev, state, "", error);
869 			}
870 
871 			mutex_lock(&dpm_list_mtx);
872 		}
873 		if (!list_empty(&dev->power.entry))
874 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
875 		put_device(dev);
876 	}
877 	mutex_unlock(&dpm_list_mtx);
878 	async_synchronize_full();
879 	dpm_show_time(starttime, state, NULL);
880 
881 	cpufreq_resume();
882 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
883 }
884 
885 /**
886  * device_complete - Complete a PM transition for given device.
887  * @dev: Device to handle.
888  * @state: PM transition of the system being carried out.
889  */
890 static void device_complete(struct device *dev, pm_message_t state)
891 {
892 	void (*callback)(struct device *) = NULL;
893 	char *info = NULL;
894 
895 	if (dev->power.syscore)
896 		return;
897 
898 	device_lock(dev);
899 
900 	if (dev->pm_domain) {
901 		info = "completing power domain ";
902 		callback = dev->pm_domain->ops.complete;
903 	} else if (dev->type && dev->type->pm) {
904 		info = "completing type ";
905 		callback = dev->type->pm->complete;
906 	} else if (dev->class && dev->class->pm) {
907 		info = "completing class ";
908 		callback = dev->class->pm->complete;
909 	} else if (dev->bus && dev->bus->pm) {
910 		info = "completing bus ";
911 		callback = dev->bus->pm->complete;
912 	}
913 
914 	if (!callback && dev->driver && dev->driver->pm) {
915 		info = "completing driver ";
916 		callback = dev->driver->pm->complete;
917 	}
918 
919 	if (callback) {
920 		pm_dev_dbg(dev, state, info);
921 		trace_device_pm_callback_start(dev, info, state.event);
922 		callback(dev);
923 		trace_device_pm_callback_end(dev, 0);
924 	}
925 
926 	device_unlock(dev);
927 
928 	pm_runtime_put(dev);
929 }
930 
931 /**
932  * dpm_complete - Complete a PM transition for all non-sysdev devices.
933  * @state: PM transition of the system being carried out.
934  *
935  * Execute the ->complete() callbacks for all devices whose PM status is not
936  * DPM_ON (this allows new devices to be registered).
937  */
938 void dpm_complete(pm_message_t state)
939 {
940 	struct list_head list;
941 
942 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
943 	might_sleep();
944 
945 	INIT_LIST_HEAD(&list);
946 	mutex_lock(&dpm_list_mtx);
947 	while (!list_empty(&dpm_prepared_list)) {
948 		struct device *dev = to_device(dpm_prepared_list.prev);
949 
950 		get_device(dev);
951 		dev->power.is_prepared = false;
952 		list_move(&dev->power.entry, &list);
953 		mutex_unlock(&dpm_list_mtx);
954 
955 		device_complete(dev, state);
956 
957 		mutex_lock(&dpm_list_mtx);
958 		put_device(dev);
959 	}
960 	list_splice(&list, &dpm_list);
961 	mutex_unlock(&dpm_list_mtx);
962 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
963 }
964 
965 /**
966  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
967  * @state: PM transition of the system being carried out.
968  *
969  * Execute "resume" callbacks for all devices and complete the PM transition of
970  * the system.
971  */
972 void dpm_resume_end(pm_message_t state)
973 {
974 	dpm_resume(state);
975 	dpm_complete(state);
976 }
977 EXPORT_SYMBOL_GPL(dpm_resume_end);
978 
979 
980 /*------------------------- Suspend routines -------------------------*/
981 
982 /**
983  * resume_event - Return a "resume" message for given "suspend" sleep state.
984  * @sleep_state: PM message representing a sleep state.
985  *
986  * Return a PM message representing the resume event corresponding to given
987  * sleep state.
988  */
989 static pm_message_t resume_event(pm_message_t sleep_state)
990 {
991 	switch (sleep_state.event) {
992 	case PM_EVENT_SUSPEND:
993 		return PMSG_RESUME;
994 	case PM_EVENT_FREEZE:
995 	case PM_EVENT_QUIESCE:
996 		return PMSG_RECOVER;
997 	case PM_EVENT_HIBERNATE:
998 		return PMSG_RESTORE;
999 	}
1000 	return PMSG_ON;
1001 }
1002 
1003 /**
1004  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1005  * @dev: Device to handle.
1006  * @state: PM transition of the system being carried out.
1007  *
1008  * The driver of @dev will not receive interrupts while this function is being
1009  * executed.
1010  */
1011 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1012 {
1013 	pm_callback_t callback = NULL;
1014 	char *info = NULL;
1015 	int error = 0;
1016 
1017 	if (async_error)
1018 		goto Complete;
1019 
1020 	if (pm_wakeup_pending()) {
1021 		async_error = -EBUSY;
1022 		goto Complete;
1023 	}
1024 
1025 	if (dev->power.syscore || dev->power.direct_complete)
1026 		goto Complete;
1027 
1028 	dpm_wait_for_children(dev, async);
1029 
1030 	if (dev->pm_domain) {
1031 		info = "noirq power domain ";
1032 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1033 	} else if (dev->type && dev->type->pm) {
1034 		info = "noirq type ";
1035 		callback = pm_noirq_op(dev->type->pm, state);
1036 	} else if (dev->class && dev->class->pm) {
1037 		info = "noirq class ";
1038 		callback = pm_noirq_op(dev->class->pm, state);
1039 	} else if (dev->bus && dev->bus->pm) {
1040 		info = "noirq bus ";
1041 		callback = pm_noirq_op(dev->bus->pm, state);
1042 	}
1043 
1044 	if (!callback && dev->driver && dev->driver->pm) {
1045 		info = "noirq driver ";
1046 		callback = pm_noirq_op(dev->driver->pm, state);
1047 	}
1048 
1049 	error = dpm_run_callback(callback, dev, state, info);
1050 	if (!error)
1051 		dev->power.is_noirq_suspended = true;
1052 	else
1053 		async_error = error;
1054 
1055 Complete:
1056 	complete_all(&dev->power.completion);
1057 	return error;
1058 }
1059 
1060 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1061 {
1062 	struct device *dev = (struct device *)data;
1063 	int error;
1064 
1065 	error = __device_suspend_noirq(dev, pm_transition, true);
1066 	if (error) {
1067 		dpm_save_failed_dev(dev_name(dev));
1068 		pm_dev_err(dev, pm_transition, " async", error);
1069 	}
1070 
1071 	put_device(dev);
1072 }
1073 
1074 static int device_suspend_noirq(struct device *dev)
1075 {
1076 	reinit_completion(&dev->power.completion);
1077 
1078 	if (pm_async_enabled && dev->power.async_suspend) {
1079 		get_device(dev);
1080 		async_schedule(async_suspend_noirq, dev);
1081 		return 0;
1082 	}
1083 	return __device_suspend_noirq(dev, pm_transition, false);
1084 }
1085 
1086 /**
1087  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1088  * @state: PM transition of the system being carried out.
1089  *
1090  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1091  * handlers for all non-sysdev devices.
1092  */
1093 static int dpm_suspend_noirq(pm_message_t state)
1094 {
1095 	ktime_t starttime = ktime_get();
1096 	int error = 0;
1097 
1098 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1099 	cpuidle_pause();
1100 	suspend_device_irqs();
1101 	mutex_lock(&dpm_list_mtx);
1102 	pm_transition = state;
1103 	async_error = 0;
1104 
1105 	while (!list_empty(&dpm_late_early_list)) {
1106 		struct device *dev = to_device(dpm_late_early_list.prev);
1107 
1108 		get_device(dev);
1109 		mutex_unlock(&dpm_list_mtx);
1110 
1111 		error = device_suspend_noirq(dev);
1112 
1113 		mutex_lock(&dpm_list_mtx);
1114 		if (error) {
1115 			pm_dev_err(dev, state, " noirq", error);
1116 			dpm_save_failed_dev(dev_name(dev));
1117 			put_device(dev);
1118 			break;
1119 		}
1120 		if (!list_empty(&dev->power.entry))
1121 			list_move(&dev->power.entry, &dpm_noirq_list);
1122 		put_device(dev);
1123 
1124 		if (async_error)
1125 			break;
1126 	}
1127 	mutex_unlock(&dpm_list_mtx);
1128 	async_synchronize_full();
1129 	if (!error)
1130 		error = async_error;
1131 
1132 	if (error) {
1133 		suspend_stats.failed_suspend_noirq++;
1134 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1135 		dpm_resume_noirq(resume_event(state));
1136 	} else {
1137 		dpm_show_time(starttime, state, "noirq");
1138 	}
1139 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1140 	return error;
1141 }
1142 
1143 /**
1144  * device_suspend_late - Execute a "late suspend" callback for given device.
1145  * @dev: Device to handle.
1146  * @state: PM transition of the system being carried out.
1147  *
1148  * Runtime PM is disabled for @dev while this function is being executed.
1149  */
1150 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1151 {
1152 	pm_callback_t callback = NULL;
1153 	char *info = NULL;
1154 	int error = 0;
1155 
1156 	__pm_runtime_disable(dev, false);
1157 
1158 	if (async_error)
1159 		goto Complete;
1160 
1161 	if (pm_wakeup_pending()) {
1162 		async_error = -EBUSY;
1163 		goto Complete;
1164 	}
1165 
1166 	if (dev->power.syscore || dev->power.direct_complete)
1167 		goto Complete;
1168 
1169 	dpm_wait_for_children(dev, async);
1170 
1171 	if (dev->pm_domain) {
1172 		info = "late power domain ";
1173 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1174 	} else if (dev->type && dev->type->pm) {
1175 		info = "late type ";
1176 		callback = pm_late_early_op(dev->type->pm, state);
1177 	} else if (dev->class && dev->class->pm) {
1178 		info = "late class ";
1179 		callback = pm_late_early_op(dev->class->pm, state);
1180 	} else if (dev->bus && dev->bus->pm) {
1181 		info = "late bus ";
1182 		callback = pm_late_early_op(dev->bus->pm, state);
1183 	}
1184 
1185 	if (!callback && dev->driver && dev->driver->pm) {
1186 		info = "late driver ";
1187 		callback = pm_late_early_op(dev->driver->pm, state);
1188 	}
1189 
1190 	error = dpm_run_callback(callback, dev, state, info);
1191 	if (!error)
1192 		dev->power.is_late_suspended = true;
1193 	else
1194 		async_error = error;
1195 
1196 Complete:
1197 	complete_all(&dev->power.completion);
1198 	return error;
1199 }
1200 
1201 static void async_suspend_late(void *data, async_cookie_t cookie)
1202 {
1203 	struct device *dev = (struct device *)data;
1204 	int error;
1205 
1206 	error = __device_suspend_late(dev, pm_transition, true);
1207 	if (error) {
1208 		dpm_save_failed_dev(dev_name(dev));
1209 		pm_dev_err(dev, pm_transition, " async", error);
1210 	}
1211 	put_device(dev);
1212 }
1213 
1214 static int device_suspend_late(struct device *dev)
1215 {
1216 	reinit_completion(&dev->power.completion);
1217 
1218 	if (pm_async_enabled && dev->power.async_suspend) {
1219 		get_device(dev);
1220 		async_schedule(async_suspend_late, dev);
1221 		return 0;
1222 	}
1223 
1224 	return __device_suspend_late(dev, pm_transition, false);
1225 }
1226 
1227 /**
1228  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1229  * @state: PM transition of the system being carried out.
1230  */
1231 static int dpm_suspend_late(pm_message_t state)
1232 {
1233 	ktime_t starttime = ktime_get();
1234 	int error = 0;
1235 
1236 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1237 	mutex_lock(&dpm_list_mtx);
1238 	pm_transition = state;
1239 	async_error = 0;
1240 
1241 	while (!list_empty(&dpm_suspended_list)) {
1242 		struct device *dev = to_device(dpm_suspended_list.prev);
1243 
1244 		get_device(dev);
1245 		mutex_unlock(&dpm_list_mtx);
1246 
1247 		error = device_suspend_late(dev);
1248 
1249 		mutex_lock(&dpm_list_mtx);
1250 		if (error) {
1251 			pm_dev_err(dev, state, " late", error);
1252 			dpm_save_failed_dev(dev_name(dev));
1253 			put_device(dev);
1254 			break;
1255 		}
1256 		if (!list_empty(&dev->power.entry))
1257 			list_move(&dev->power.entry, &dpm_late_early_list);
1258 		put_device(dev);
1259 
1260 		if (async_error)
1261 			break;
1262 	}
1263 	mutex_unlock(&dpm_list_mtx);
1264 	async_synchronize_full();
1265 	if (error) {
1266 		suspend_stats.failed_suspend_late++;
1267 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1268 		dpm_resume_early(resume_event(state));
1269 	} else {
1270 		dpm_show_time(starttime, state, "late");
1271 	}
1272 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1273 	return error;
1274 }
1275 
1276 /**
1277  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1278  * @state: PM transition of the system being carried out.
1279  */
1280 int dpm_suspend_end(pm_message_t state)
1281 {
1282 	int error = dpm_suspend_late(state);
1283 	if (error)
1284 		return error;
1285 
1286 	error = dpm_suspend_noirq(state);
1287 	if (error) {
1288 		dpm_resume_early(resume_event(state));
1289 		return error;
1290 	}
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1295 
1296 /**
1297  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1298  * @dev: Device to suspend.
1299  * @state: PM transition of the system being carried out.
1300  * @cb: Suspend callback to execute.
1301  */
1302 static int legacy_suspend(struct device *dev, pm_message_t state,
1303 			  int (*cb)(struct device *dev, pm_message_t state),
1304 			  char *info)
1305 {
1306 	int error;
1307 	ktime_t calltime;
1308 
1309 	calltime = initcall_debug_start(dev);
1310 
1311 	trace_device_pm_callback_start(dev, info, state.event);
1312 	error = cb(dev, state);
1313 	trace_device_pm_callback_end(dev, error);
1314 	suspend_report_result(cb, error);
1315 
1316 	initcall_debug_report(dev, calltime, error, state, info);
1317 
1318 	return error;
1319 }
1320 
1321 /**
1322  * device_suspend - Execute "suspend" callbacks for given device.
1323  * @dev: Device to handle.
1324  * @state: PM transition of the system being carried out.
1325  * @async: If true, the device is being suspended asynchronously.
1326  */
1327 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1328 {
1329 	pm_callback_t callback = NULL;
1330 	char *info = NULL;
1331 	int error = 0;
1332 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1333 
1334 	dpm_wait_for_children(dev, async);
1335 
1336 	if (async_error)
1337 		goto Complete;
1338 
1339 	/*
1340 	 * If a device configured to wake up the system from sleep states
1341 	 * has been suspended at run time and there's a resume request pending
1342 	 * for it, this is equivalent to the device signaling wakeup, so the
1343 	 * system suspend operation should be aborted.
1344 	 */
1345 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1346 		pm_wakeup_event(dev, 0);
1347 
1348 	if (pm_wakeup_pending()) {
1349 		async_error = -EBUSY;
1350 		goto Complete;
1351 	}
1352 
1353 	if (dev->power.syscore)
1354 		goto Complete;
1355 
1356 	if (dev->power.direct_complete) {
1357 		if (pm_runtime_status_suspended(dev)) {
1358 			pm_runtime_disable(dev);
1359 			if (pm_runtime_suspended_if_enabled(dev))
1360 				goto Complete;
1361 
1362 			pm_runtime_enable(dev);
1363 		}
1364 		dev->power.direct_complete = false;
1365 	}
1366 
1367 	dpm_watchdog_set(&wd, dev);
1368 	device_lock(dev);
1369 
1370 	if (dev->pm_domain) {
1371 		info = "power domain ";
1372 		callback = pm_op(&dev->pm_domain->ops, state);
1373 		goto Run;
1374 	}
1375 
1376 	if (dev->type && dev->type->pm) {
1377 		info = "type ";
1378 		callback = pm_op(dev->type->pm, state);
1379 		goto Run;
1380 	}
1381 
1382 	if (dev->class) {
1383 		if (dev->class->pm) {
1384 			info = "class ";
1385 			callback = pm_op(dev->class->pm, state);
1386 			goto Run;
1387 		} else if (dev->class->suspend) {
1388 			pm_dev_dbg(dev, state, "legacy class ");
1389 			error = legacy_suspend(dev, state, dev->class->suspend,
1390 						"legacy class ");
1391 			goto End;
1392 		}
1393 	}
1394 
1395 	if (dev->bus) {
1396 		if (dev->bus->pm) {
1397 			info = "bus ";
1398 			callback = pm_op(dev->bus->pm, state);
1399 		} else if (dev->bus->suspend) {
1400 			pm_dev_dbg(dev, state, "legacy bus ");
1401 			error = legacy_suspend(dev, state, dev->bus->suspend,
1402 						"legacy bus ");
1403 			goto End;
1404 		}
1405 	}
1406 
1407  Run:
1408 	if (!callback && dev->driver && dev->driver->pm) {
1409 		info = "driver ";
1410 		callback = pm_op(dev->driver->pm, state);
1411 	}
1412 
1413 	error = dpm_run_callback(callback, dev, state, info);
1414 
1415  End:
1416 	if (!error) {
1417 		struct device *parent = dev->parent;
1418 
1419 		dev->power.is_suspended = true;
1420 		if (parent) {
1421 			spin_lock_irq(&parent->power.lock);
1422 
1423 			dev->parent->power.direct_complete = false;
1424 			if (dev->power.wakeup_path
1425 			    && !dev->parent->power.ignore_children)
1426 				dev->parent->power.wakeup_path = true;
1427 
1428 			spin_unlock_irq(&parent->power.lock);
1429 		}
1430 	}
1431 
1432 	device_unlock(dev);
1433 	dpm_watchdog_clear(&wd);
1434 
1435  Complete:
1436 	complete_all(&dev->power.completion);
1437 	if (error)
1438 		async_error = error;
1439 
1440 	return error;
1441 }
1442 
1443 static void async_suspend(void *data, async_cookie_t cookie)
1444 {
1445 	struct device *dev = (struct device *)data;
1446 	int error;
1447 
1448 	error = __device_suspend(dev, pm_transition, true);
1449 	if (error) {
1450 		dpm_save_failed_dev(dev_name(dev));
1451 		pm_dev_err(dev, pm_transition, " async", error);
1452 	}
1453 
1454 	put_device(dev);
1455 }
1456 
1457 static int device_suspend(struct device *dev)
1458 {
1459 	reinit_completion(&dev->power.completion);
1460 
1461 	if (pm_async_enabled && dev->power.async_suspend) {
1462 		get_device(dev);
1463 		async_schedule(async_suspend, dev);
1464 		return 0;
1465 	}
1466 
1467 	return __device_suspend(dev, pm_transition, false);
1468 }
1469 
1470 /**
1471  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1472  * @state: PM transition of the system being carried out.
1473  */
1474 int dpm_suspend(pm_message_t state)
1475 {
1476 	ktime_t starttime = ktime_get();
1477 	int error = 0;
1478 
1479 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1480 	might_sleep();
1481 
1482 	cpufreq_suspend();
1483 
1484 	mutex_lock(&dpm_list_mtx);
1485 	pm_transition = state;
1486 	async_error = 0;
1487 	while (!list_empty(&dpm_prepared_list)) {
1488 		struct device *dev = to_device(dpm_prepared_list.prev);
1489 
1490 		get_device(dev);
1491 		mutex_unlock(&dpm_list_mtx);
1492 
1493 		error = device_suspend(dev);
1494 
1495 		mutex_lock(&dpm_list_mtx);
1496 		if (error) {
1497 			pm_dev_err(dev, state, "", error);
1498 			dpm_save_failed_dev(dev_name(dev));
1499 			put_device(dev);
1500 			break;
1501 		}
1502 		if (!list_empty(&dev->power.entry))
1503 			list_move(&dev->power.entry, &dpm_suspended_list);
1504 		put_device(dev);
1505 		if (async_error)
1506 			break;
1507 	}
1508 	mutex_unlock(&dpm_list_mtx);
1509 	async_synchronize_full();
1510 	if (!error)
1511 		error = async_error;
1512 	if (error) {
1513 		suspend_stats.failed_suspend++;
1514 		dpm_save_failed_step(SUSPEND_SUSPEND);
1515 	} else
1516 		dpm_show_time(starttime, state, NULL);
1517 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1518 	return error;
1519 }
1520 
1521 /**
1522  * device_prepare - Prepare a device for system power transition.
1523  * @dev: Device to handle.
1524  * @state: PM transition of the system being carried out.
1525  *
1526  * Execute the ->prepare() callback(s) for given device.  No new children of the
1527  * device may be registered after this function has returned.
1528  */
1529 static int device_prepare(struct device *dev, pm_message_t state)
1530 {
1531 	int (*callback)(struct device *) = NULL;
1532 	char *info = NULL;
1533 	int ret = 0;
1534 
1535 	if (dev->power.syscore)
1536 		return 0;
1537 
1538 	/*
1539 	 * If a device's parent goes into runtime suspend at the wrong time,
1540 	 * it won't be possible to resume the device.  To prevent this we
1541 	 * block runtime suspend here, during the prepare phase, and allow
1542 	 * it again during the complete phase.
1543 	 */
1544 	pm_runtime_get_noresume(dev);
1545 
1546 	device_lock(dev);
1547 
1548 	dev->power.wakeup_path = device_may_wakeup(dev);
1549 
1550 	if (dev->pm_domain) {
1551 		info = "preparing power domain ";
1552 		callback = dev->pm_domain->ops.prepare;
1553 	} else if (dev->type && dev->type->pm) {
1554 		info = "preparing type ";
1555 		callback = dev->type->pm->prepare;
1556 	} else if (dev->class && dev->class->pm) {
1557 		info = "preparing class ";
1558 		callback = dev->class->pm->prepare;
1559 	} else if (dev->bus && dev->bus->pm) {
1560 		info = "preparing bus ";
1561 		callback = dev->bus->pm->prepare;
1562 	}
1563 
1564 	if (!callback && dev->driver && dev->driver->pm) {
1565 		info = "preparing driver ";
1566 		callback = dev->driver->pm->prepare;
1567 	}
1568 
1569 	if (callback) {
1570 		trace_device_pm_callback_start(dev, info, state.event);
1571 		ret = callback(dev);
1572 		trace_device_pm_callback_end(dev, ret);
1573 	}
1574 
1575 	device_unlock(dev);
1576 
1577 	if (ret < 0) {
1578 		suspend_report_result(callback, ret);
1579 		pm_runtime_put(dev);
1580 		return ret;
1581 	}
1582 	/*
1583 	 * A positive return value from ->prepare() means "this device appears
1584 	 * to be runtime-suspended and its state is fine, so if it really is
1585 	 * runtime-suspended, you can leave it in that state provided that you
1586 	 * will do the same thing with all of its descendants".  This only
1587 	 * applies to suspend transitions, however.
1588 	 */
1589 	spin_lock_irq(&dev->power.lock);
1590 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1591 	spin_unlock_irq(&dev->power.lock);
1592 	return 0;
1593 }
1594 
1595 /**
1596  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1597  * @state: PM transition of the system being carried out.
1598  *
1599  * Execute the ->prepare() callback(s) for all devices.
1600  */
1601 int dpm_prepare(pm_message_t state)
1602 {
1603 	int error = 0;
1604 
1605 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1606 	might_sleep();
1607 
1608 	mutex_lock(&dpm_list_mtx);
1609 	while (!list_empty(&dpm_list)) {
1610 		struct device *dev = to_device(dpm_list.next);
1611 
1612 		get_device(dev);
1613 		mutex_unlock(&dpm_list_mtx);
1614 
1615 		error = device_prepare(dev, state);
1616 
1617 		mutex_lock(&dpm_list_mtx);
1618 		if (error) {
1619 			if (error == -EAGAIN) {
1620 				put_device(dev);
1621 				error = 0;
1622 				continue;
1623 			}
1624 			printk(KERN_INFO "PM: Device %s not prepared "
1625 				"for power transition: code %d\n",
1626 				dev_name(dev), error);
1627 			put_device(dev);
1628 			break;
1629 		}
1630 		dev->power.is_prepared = true;
1631 		if (!list_empty(&dev->power.entry))
1632 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1633 		put_device(dev);
1634 	}
1635 	mutex_unlock(&dpm_list_mtx);
1636 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1637 	return error;
1638 }
1639 
1640 /**
1641  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1642  * @state: PM transition of the system being carried out.
1643  *
1644  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1645  * callbacks for them.
1646  */
1647 int dpm_suspend_start(pm_message_t state)
1648 {
1649 	int error;
1650 
1651 	error = dpm_prepare(state);
1652 	if (error) {
1653 		suspend_stats.failed_prepare++;
1654 		dpm_save_failed_step(SUSPEND_PREPARE);
1655 	} else
1656 		error = dpm_suspend(state);
1657 	return error;
1658 }
1659 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1660 
1661 void __suspend_report_result(const char *function, void *fn, int ret)
1662 {
1663 	if (ret)
1664 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1665 }
1666 EXPORT_SYMBOL_GPL(__suspend_report_result);
1667 
1668 /**
1669  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1670  * @dev: Device to wait for.
1671  * @subordinate: Device that needs to wait for @dev.
1672  */
1673 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1674 {
1675 	dpm_wait(dev, subordinate->power.async_suspend);
1676 	return async_error;
1677 }
1678 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1679 
1680 /**
1681  * dpm_for_each_dev - device iterator.
1682  * @data: data for the callback.
1683  * @fn: function to be called for each device.
1684  *
1685  * Iterate over devices in dpm_list, and call @fn for each device,
1686  * passing it @data.
1687  */
1688 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1689 {
1690 	struct device *dev;
1691 
1692 	if (!fn)
1693 		return;
1694 
1695 	device_pm_lock();
1696 	list_for_each_entry(dev, &dpm_list, power.entry)
1697 		fn(dev, data);
1698 	device_pm_unlock();
1699 }
1700 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1701