1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kallsyms.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/resume-trace.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/async.h> 30 #include <linux/suspend.h> 31 #include <trace/events/power.h> 32 #include <linux/cpufreq.h> 33 #include <linux/cpuidle.h> 34 #include <linux/timer.h> 35 36 #include "../base.h" 37 #include "power.h" 38 39 typedef int (*pm_callback_t)(struct device *); 40 41 /* 42 * The entries in the dpm_list list are in a depth first order, simply 43 * because children are guaranteed to be discovered after parents, and 44 * are inserted at the back of the list on discovery. 45 * 46 * Since device_pm_add() may be called with a device lock held, 47 * we must never try to acquire a device lock while holding 48 * dpm_list_mutex. 49 */ 50 51 LIST_HEAD(dpm_list); 52 static LIST_HEAD(dpm_prepared_list); 53 static LIST_HEAD(dpm_suspended_list); 54 static LIST_HEAD(dpm_late_early_list); 55 static LIST_HEAD(dpm_noirq_list); 56 57 struct suspend_stats suspend_stats; 58 static DEFINE_MUTEX(dpm_list_mtx); 59 static pm_message_t pm_transition; 60 61 static int async_error; 62 63 static char *pm_verb(int event) 64 { 65 switch (event) { 66 case PM_EVENT_SUSPEND: 67 return "suspend"; 68 case PM_EVENT_RESUME: 69 return "resume"; 70 case PM_EVENT_FREEZE: 71 return "freeze"; 72 case PM_EVENT_QUIESCE: 73 return "quiesce"; 74 case PM_EVENT_HIBERNATE: 75 return "hibernate"; 76 case PM_EVENT_THAW: 77 return "thaw"; 78 case PM_EVENT_RESTORE: 79 return "restore"; 80 case PM_EVENT_RECOVER: 81 return "recover"; 82 default: 83 return "(unknown PM event)"; 84 } 85 } 86 87 /** 88 * device_pm_sleep_init - Initialize system suspend-related device fields. 89 * @dev: Device object being initialized. 90 */ 91 void device_pm_sleep_init(struct device *dev) 92 { 93 dev->power.is_prepared = false; 94 dev->power.is_suspended = false; 95 dev->power.is_noirq_suspended = false; 96 dev->power.is_late_suspended = false; 97 init_completion(&dev->power.completion); 98 complete_all(&dev->power.completion); 99 dev->power.wakeup = NULL; 100 INIT_LIST_HEAD(&dev->power.entry); 101 } 102 103 /** 104 * device_pm_lock - Lock the list of active devices used by the PM core. 105 */ 106 void device_pm_lock(void) 107 { 108 mutex_lock(&dpm_list_mtx); 109 } 110 111 /** 112 * device_pm_unlock - Unlock the list of active devices used by the PM core. 113 */ 114 void device_pm_unlock(void) 115 { 116 mutex_unlock(&dpm_list_mtx); 117 } 118 119 /** 120 * device_pm_add - Add a device to the PM core's list of active devices. 121 * @dev: Device to add to the list. 122 */ 123 void device_pm_add(struct device *dev) 124 { 125 pr_debug("PM: Adding info for %s:%s\n", 126 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 127 mutex_lock(&dpm_list_mtx); 128 if (dev->parent && dev->parent->power.is_prepared) 129 dev_warn(dev, "parent %s should not be sleeping\n", 130 dev_name(dev->parent)); 131 list_add_tail(&dev->power.entry, &dpm_list); 132 mutex_unlock(&dpm_list_mtx); 133 } 134 135 /** 136 * device_pm_remove - Remove a device from the PM core's list of active devices. 137 * @dev: Device to be removed from the list. 138 */ 139 void device_pm_remove(struct device *dev) 140 { 141 pr_debug("PM: Removing info for %s:%s\n", 142 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 143 complete_all(&dev->power.completion); 144 mutex_lock(&dpm_list_mtx); 145 list_del_init(&dev->power.entry); 146 mutex_unlock(&dpm_list_mtx); 147 device_wakeup_disable(dev); 148 pm_runtime_remove(dev); 149 } 150 151 /** 152 * device_pm_move_before - Move device in the PM core's list of active devices. 153 * @deva: Device to move in dpm_list. 154 * @devb: Device @deva should come before. 155 */ 156 void device_pm_move_before(struct device *deva, struct device *devb) 157 { 158 pr_debug("PM: Moving %s:%s before %s:%s\n", 159 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 160 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 161 /* Delete deva from dpm_list and reinsert before devb. */ 162 list_move_tail(&deva->power.entry, &devb->power.entry); 163 } 164 165 /** 166 * device_pm_move_after - Move device in the PM core's list of active devices. 167 * @deva: Device to move in dpm_list. 168 * @devb: Device @deva should come after. 169 */ 170 void device_pm_move_after(struct device *deva, struct device *devb) 171 { 172 pr_debug("PM: Moving %s:%s after %s:%s\n", 173 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 174 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 175 /* Delete deva from dpm_list and reinsert after devb. */ 176 list_move(&deva->power.entry, &devb->power.entry); 177 } 178 179 /** 180 * device_pm_move_last - Move device to end of the PM core's list of devices. 181 * @dev: Device to move in dpm_list. 182 */ 183 void device_pm_move_last(struct device *dev) 184 { 185 pr_debug("PM: Moving %s:%s to end of list\n", 186 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 187 list_move_tail(&dev->power.entry, &dpm_list); 188 } 189 190 static ktime_t initcall_debug_start(struct device *dev) 191 { 192 ktime_t calltime = ktime_set(0, 0); 193 194 if (pm_print_times_enabled) { 195 pr_info("calling %s+ @ %i, parent: %s\n", 196 dev_name(dev), task_pid_nr(current), 197 dev->parent ? dev_name(dev->parent) : "none"); 198 calltime = ktime_get(); 199 } 200 201 return calltime; 202 } 203 204 static void initcall_debug_report(struct device *dev, ktime_t calltime, 205 int error, pm_message_t state, char *info) 206 { 207 ktime_t rettime; 208 s64 nsecs; 209 210 rettime = ktime_get(); 211 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 212 213 if (pm_print_times_enabled) { 214 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 215 error, (unsigned long long)nsecs >> 10); 216 } 217 } 218 219 /** 220 * dpm_wait - Wait for a PM operation to complete. 221 * @dev: Device to wait for. 222 * @async: If unset, wait only if the device's power.async_suspend flag is set. 223 */ 224 static void dpm_wait(struct device *dev, bool async) 225 { 226 if (!dev) 227 return; 228 229 if (async || (pm_async_enabled && dev->power.async_suspend)) 230 wait_for_completion(&dev->power.completion); 231 } 232 233 static int dpm_wait_fn(struct device *dev, void *async_ptr) 234 { 235 dpm_wait(dev, *((bool *)async_ptr)); 236 return 0; 237 } 238 239 static void dpm_wait_for_children(struct device *dev, bool async) 240 { 241 device_for_each_child(dev, &async, dpm_wait_fn); 242 } 243 244 /** 245 * pm_op - Return the PM operation appropriate for given PM event. 246 * @ops: PM operations to choose from. 247 * @state: PM transition of the system being carried out. 248 */ 249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 250 { 251 switch (state.event) { 252 #ifdef CONFIG_SUSPEND 253 case PM_EVENT_SUSPEND: 254 return ops->suspend; 255 case PM_EVENT_RESUME: 256 return ops->resume; 257 #endif /* CONFIG_SUSPEND */ 258 #ifdef CONFIG_HIBERNATE_CALLBACKS 259 case PM_EVENT_FREEZE: 260 case PM_EVENT_QUIESCE: 261 return ops->freeze; 262 case PM_EVENT_HIBERNATE: 263 return ops->poweroff; 264 case PM_EVENT_THAW: 265 case PM_EVENT_RECOVER: 266 return ops->thaw; 267 break; 268 case PM_EVENT_RESTORE: 269 return ops->restore; 270 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 271 } 272 273 return NULL; 274 } 275 276 /** 277 * pm_late_early_op - Return the PM operation appropriate for given PM event. 278 * @ops: PM operations to choose from. 279 * @state: PM transition of the system being carried out. 280 * 281 * Runtime PM is disabled for @dev while this function is being executed. 282 */ 283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 284 pm_message_t state) 285 { 286 switch (state.event) { 287 #ifdef CONFIG_SUSPEND 288 case PM_EVENT_SUSPEND: 289 return ops->suspend_late; 290 case PM_EVENT_RESUME: 291 return ops->resume_early; 292 #endif /* CONFIG_SUSPEND */ 293 #ifdef CONFIG_HIBERNATE_CALLBACKS 294 case PM_EVENT_FREEZE: 295 case PM_EVENT_QUIESCE: 296 return ops->freeze_late; 297 case PM_EVENT_HIBERNATE: 298 return ops->poweroff_late; 299 case PM_EVENT_THAW: 300 case PM_EVENT_RECOVER: 301 return ops->thaw_early; 302 case PM_EVENT_RESTORE: 303 return ops->restore_early; 304 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 305 } 306 307 return NULL; 308 } 309 310 /** 311 * pm_noirq_op - Return the PM operation appropriate for given PM event. 312 * @ops: PM operations to choose from. 313 * @state: PM transition of the system being carried out. 314 * 315 * The driver of @dev will not receive interrupts while this function is being 316 * executed. 317 */ 318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 319 { 320 switch (state.event) { 321 #ifdef CONFIG_SUSPEND 322 case PM_EVENT_SUSPEND: 323 return ops->suspend_noirq; 324 case PM_EVENT_RESUME: 325 return ops->resume_noirq; 326 #endif /* CONFIG_SUSPEND */ 327 #ifdef CONFIG_HIBERNATE_CALLBACKS 328 case PM_EVENT_FREEZE: 329 case PM_EVENT_QUIESCE: 330 return ops->freeze_noirq; 331 case PM_EVENT_HIBERNATE: 332 return ops->poweroff_noirq; 333 case PM_EVENT_THAW: 334 case PM_EVENT_RECOVER: 335 return ops->thaw_noirq; 336 case PM_EVENT_RESTORE: 337 return ops->restore_noirq; 338 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 339 } 340 341 return NULL; 342 } 343 344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 345 { 346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 348 ", may wakeup" : ""); 349 } 350 351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 352 int error) 353 { 354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 355 dev_name(dev), pm_verb(state.event), info, error); 356 } 357 358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 359 { 360 ktime_t calltime; 361 u64 usecs64; 362 int usecs; 363 364 calltime = ktime_get(); 365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 366 do_div(usecs64, NSEC_PER_USEC); 367 usecs = usecs64; 368 if (usecs == 0) 369 usecs = 1; 370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 371 info ?: "", info ? " " : "", pm_verb(state.event), 372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 373 } 374 375 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 376 pm_message_t state, char *info) 377 { 378 ktime_t calltime; 379 int error; 380 381 if (!cb) 382 return 0; 383 384 calltime = initcall_debug_start(dev); 385 386 pm_dev_dbg(dev, state, info); 387 trace_device_pm_callback_start(dev, info, state.event); 388 error = cb(dev); 389 trace_device_pm_callback_end(dev, error); 390 suspend_report_result(cb, error); 391 392 initcall_debug_report(dev, calltime, error, state, info); 393 394 return error; 395 } 396 397 #ifdef CONFIG_DPM_WATCHDOG 398 struct dpm_watchdog { 399 struct device *dev; 400 struct task_struct *tsk; 401 struct timer_list timer; 402 }; 403 404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 405 struct dpm_watchdog wd 406 407 /** 408 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 409 * @data: Watchdog object address. 410 * 411 * Called when a driver has timed out suspending or resuming. 412 * There's not much we can do here to recover so panic() to 413 * capture a crash-dump in pstore. 414 */ 415 static void dpm_watchdog_handler(unsigned long data) 416 { 417 struct dpm_watchdog *wd = (void *)data; 418 419 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 420 show_stack(wd->tsk, NULL); 421 panic("%s %s: unrecoverable failure\n", 422 dev_driver_string(wd->dev), dev_name(wd->dev)); 423 } 424 425 /** 426 * dpm_watchdog_set - Enable pm watchdog for given device. 427 * @wd: Watchdog. Must be allocated on the stack. 428 * @dev: Device to handle. 429 */ 430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 431 { 432 struct timer_list *timer = &wd->timer; 433 434 wd->dev = dev; 435 wd->tsk = current; 436 437 init_timer_on_stack(timer); 438 /* use same timeout value for both suspend and resume */ 439 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 440 timer->function = dpm_watchdog_handler; 441 timer->data = (unsigned long)wd; 442 add_timer(timer); 443 } 444 445 /** 446 * dpm_watchdog_clear - Disable suspend/resume watchdog. 447 * @wd: Watchdog to disable. 448 */ 449 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 450 { 451 struct timer_list *timer = &wd->timer; 452 453 del_timer_sync(timer); 454 destroy_timer_on_stack(timer); 455 } 456 #else 457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 458 #define dpm_watchdog_set(x, y) 459 #define dpm_watchdog_clear(x) 460 #endif 461 462 /*------------------------- Resume routines -------------------------*/ 463 464 /** 465 * device_resume_noirq - Execute an "early resume" callback for given device. 466 * @dev: Device to handle. 467 * @state: PM transition of the system being carried out. 468 * 469 * The driver of @dev will not receive interrupts while this function is being 470 * executed. 471 */ 472 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 473 { 474 pm_callback_t callback = NULL; 475 char *info = NULL; 476 int error = 0; 477 478 TRACE_DEVICE(dev); 479 TRACE_RESUME(0); 480 481 if (dev->power.syscore || dev->power.direct_complete) 482 goto Out; 483 484 if (!dev->power.is_noirq_suspended) 485 goto Out; 486 487 dpm_wait(dev->parent, async); 488 489 if (dev->pm_domain) { 490 info = "noirq power domain "; 491 callback = pm_noirq_op(&dev->pm_domain->ops, state); 492 } else if (dev->type && dev->type->pm) { 493 info = "noirq type "; 494 callback = pm_noirq_op(dev->type->pm, state); 495 } else if (dev->class && dev->class->pm) { 496 info = "noirq class "; 497 callback = pm_noirq_op(dev->class->pm, state); 498 } else if (dev->bus && dev->bus->pm) { 499 info = "noirq bus "; 500 callback = pm_noirq_op(dev->bus->pm, state); 501 } 502 503 if (!callback && dev->driver && dev->driver->pm) { 504 info = "noirq driver "; 505 callback = pm_noirq_op(dev->driver->pm, state); 506 } 507 508 error = dpm_run_callback(callback, dev, state, info); 509 dev->power.is_noirq_suspended = false; 510 511 Out: 512 complete_all(&dev->power.completion); 513 TRACE_RESUME(error); 514 return error; 515 } 516 517 static bool is_async(struct device *dev) 518 { 519 return dev->power.async_suspend && pm_async_enabled 520 && !pm_trace_is_enabled(); 521 } 522 523 static void async_resume_noirq(void *data, async_cookie_t cookie) 524 { 525 struct device *dev = (struct device *)data; 526 int error; 527 528 error = device_resume_noirq(dev, pm_transition, true); 529 if (error) 530 pm_dev_err(dev, pm_transition, " async", error); 531 532 put_device(dev); 533 } 534 535 /** 536 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 537 * @state: PM transition of the system being carried out. 538 * 539 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and 540 * enable device drivers to receive interrupts. 541 */ 542 static void dpm_resume_noirq(pm_message_t state) 543 { 544 struct device *dev; 545 ktime_t starttime = ktime_get(); 546 547 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 548 mutex_lock(&dpm_list_mtx); 549 pm_transition = state; 550 551 /* 552 * Advanced the async threads upfront, 553 * in case the starting of async threads is 554 * delayed by non-async resuming devices. 555 */ 556 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 557 reinit_completion(&dev->power.completion); 558 if (is_async(dev)) { 559 get_device(dev); 560 async_schedule(async_resume_noirq, dev); 561 } 562 } 563 564 while (!list_empty(&dpm_noirq_list)) { 565 dev = to_device(dpm_noirq_list.next); 566 get_device(dev); 567 list_move_tail(&dev->power.entry, &dpm_late_early_list); 568 mutex_unlock(&dpm_list_mtx); 569 570 if (!is_async(dev)) { 571 int error; 572 573 error = device_resume_noirq(dev, state, false); 574 if (error) { 575 suspend_stats.failed_resume_noirq++; 576 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 577 dpm_save_failed_dev(dev_name(dev)); 578 pm_dev_err(dev, state, " noirq", error); 579 } 580 } 581 582 mutex_lock(&dpm_list_mtx); 583 put_device(dev); 584 } 585 mutex_unlock(&dpm_list_mtx); 586 async_synchronize_full(); 587 dpm_show_time(starttime, state, "noirq"); 588 resume_device_irqs(); 589 cpuidle_resume(); 590 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 591 } 592 593 /** 594 * device_resume_early - Execute an "early resume" callback for given device. 595 * @dev: Device to handle. 596 * @state: PM transition of the system being carried out. 597 * 598 * Runtime PM is disabled for @dev while this function is being executed. 599 */ 600 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 601 { 602 pm_callback_t callback = NULL; 603 char *info = NULL; 604 int error = 0; 605 606 TRACE_DEVICE(dev); 607 TRACE_RESUME(0); 608 609 if (dev->power.syscore || dev->power.direct_complete) 610 goto Out; 611 612 if (!dev->power.is_late_suspended) 613 goto Out; 614 615 dpm_wait(dev->parent, async); 616 617 if (dev->pm_domain) { 618 info = "early power domain "; 619 callback = pm_late_early_op(&dev->pm_domain->ops, state); 620 } else if (dev->type && dev->type->pm) { 621 info = "early type "; 622 callback = pm_late_early_op(dev->type->pm, state); 623 } else if (dev->class && dev->class->pm) { 624 info = "early class "; 625 callback = pm_late_early_op(dev->class->pm, state); 626 } else if (dev->bus && dev->bus->pm) { 627 info = "early bus "; 628 callback = pm_late_early_op(dev->bus->pm, state); 629 } 630 631 if (!callback && dev->driver && dev->driver->pm) { 632 info = "early driver "; 633 callback = pm_late_early_op(dev->driver->pm, state); 634 } 635 636 error = dpm_run_callback(callback, dev, state, info); 637 dev->power.is_late_suspended = false; 638 639 Out: 640 TRACE_RESUME(error); 641 642 pm_runtime_enable(dev); 643 complete_all(&dev->power.completion); 644 return error; 645 } 646 647 static void async_resume_early(void *data, async_cookie_t cookie) 648 { 649 struct device *dev = (struct device *)data; 650 int error; 651 652 error = device_resume_early(dev, pm_transition, true); 653 if (error) 654 pm_dev_err(dev, pm_transition, " async", error); 655 656 put_device(dev); 657 } 658 659 /** 660 * dpm_resume_early - Execute "early resume" callbacks for all devices. 661 * @state: PM transition of the system being carried out. 662 */ 663 static void dpm_resume_early(pm_message_t state) 664 { 665 struct device *dev; 666 ktime_t starttime = ktime_get(); 667 668 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 669 mutex_lock(&dpm_list_mtx); 670 pm_transition = state; 671 672 /* 673 * Advanced the async threads upfront, 674 * in case the starting of async threads is 675 * delayed by non-async resuming devices. 676 */ 677 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 678 reinit_completion(&dev->power.completion); 679 if (is_async(dev)) { 680 get_device(dev); 681 async_schedule(async_resume_early, dev); 682 } 683 } 684 685 while (!list_empty(&dpm_late_early_list)) { 686 dev = to_device(dpm_late_early_list.next); 687 get_device(dev); 688 list_move_tail(&dev->power.entry, &dpm_suspended_list); 689 mutex_unlock(&dpm_list_mtx); 690 691 if (!is_async(dev)) { 692 int error; 693 694 error = device_resume_early(dev, state, false); 695 if (error) { 696 suspend_stats.failed_resume_early++; 697 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 698 dpm_save_failed_dev(dev_name(dev)); 699 pm_dev_err(dev, state, " early", error); 700 } 701 } 702 mutex_lock(&dpm_list_mtx); 703 put_device(dev); 704 } 705 mutex_unlock(&dpm_list_mtx); 706 async_synchronize_full(); 707 dpm_show_time(starttime, state, "early"); 708 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 709 } 710 711 /** 712 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 713 * @state: PM transition of the system being carried out. 714 */ 715 void dpm_resume_start(pm_message_t state) 716 { 717 dpm_resume_noirq(state); 718 dpm_resume_early(state); 719 } 720 EXPORT_SYMBOL_GPL(dpm_resume_start); 721 722 /** 723 * device_resume - Execute "resume" callbacks for given device. 724 * @dev: Device to handle. 725 * @state: PM transition of the system being carried out. 726 * @async: If true, the device is being resumed asynchronously. 727 */ 728 static int device_resume(struct device *dev, pm_message_t state, bool async) 729 { 730 pm_callback_t callback = NULL; 731 char *info = NULL; 732 int error = 0; 733 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 734 735 TRACE_DEVICE(dev); 736 TRACE_RESUME(0); 737 738 if (dev->power.syscore) 739 goto Complete; 740 741 if (dev->power.direct_complete) { 742 /* Match the pm_runtime_disable() in __device_suspend(). */ 743 pm_runtime_enable(dev); 744 goto Complete; 745 } 746 747 dpm_wait(dev->parent, async); 748 dpm_watchdog_set(&wd, dev); 749 device_lock(dev); 750 751 /* 752 * This is a fib. But we'll allow new children to be added below 753 * a resumed device, even if the device hasn't been completed yet. 754 */ 755 dev->power.is_prepared = false; 756 757 if (!dev->power.is_suspended) 758 goto Unlock; 759 760 if (dev->pm_domain) { 761 info = "power domain "; 762 callback = pm_op(&dev->pm_domain->ops, state); 763 goto Driver; 764 } 765 766 if (dev->type && dev->type->pm) { 767 info = "type "; 768 callback = pm_op(dev->type->pm, state); 769 goto Driver; 770 } 771 772 if (dev->class) { 773 if (dev->class->pm) { 774 info = "class "; 775 callback = pm_op(dev->class->pm, state); 776 goto Driver; 777 } else if (dev->class->resume) { 778 info = "legacy class "; 779 callback = dev->class->resume; 780 goto End; 781 } 782 } 783 784 if (dev->bus) { 785 if (dev->bus->pm) { 786 info = "bus "; 787 callback = pm_op(dev->bus->pm, state); 788 } else if (dev->bus->resume) { 789 info = "legacy bus "; 790 callback = dev->bus->resume; 791 goto End; 792 } 793 } 794 795 Driver: 796 if (!callback && dev->driver && dev->driver->pm) { 797 info = "driver "; 798 callback = pm_op(dev->driver->pm, state); 799 } 800 801 End: 802 error = dpm_run_callback(callback, dev, state, info); 803 dev->power.is_suspended = false; 804 805 Unlock: 806 device_unlock(dev); 807 dpm_watchdog_clear(&wd); 808 809 Complete: 810 complete_all(&dev->power.completion); 811 812 TRACE_RESUME(error); 813 814 return error; 815 } 816 817 static void async_resume(void *data, async_cookie_t cookie) 818 { 819 struct device *dev = (struct device *)data; 820 int error; 821 822 error = device_resume(dev, pm_transition, true); 823 if (error) 824 pm_dev_err(dev, pm_transition, " async", error); 825 put_device(dev); 826 } 827 828 /** 829 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 830 * @state: PM transition of the system being carried out. 831 * 832 * Execute the appropriate "resume" callback for all devices whose status 833 * indicates that they are suspended. 834 */ 835 void dpm_resume(pm_message_t state) 836 { 837 struct device *dev; 838 ktime_t starttime = ktime_get(); 839 840 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 841 might_sleep(); 842 843 mutex_lock(&dpm_list_mtx); 844 pm_transition = state; 845 async_error = 0; 846 847 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 848 reinit_completion(&dev->power.completion); 849 if (is_async(dev)) { 850 get_device(dev); 851 async_schedule(async_resume, dev); 852 } 853 } 854 855 while (!list_empty(&dpm_suspended_list)) { 856 dev = to_device(dpm_suspended_list.next); 857 get_device(dev); 858 if (!is_async(dev)) { 859 int error; 860 861 mutex_unlock(&dpm_list_mtx); 862 863 error = device_resume(dev, state, false); 864 if (error) { 865 suspend_stats.failed_resume++; 866 dpm_save_failed_step(SUSPEND_RESUME); 867 dpm_save_failed_dev(dev_name(dev)); 868 pm_dev_err(dev, state, "", error); 869 } 870 871 mutex_lock(&dpm_list_mtx); 872 } 873 if (!list_empty(&dev->power.entry)) 874 list_move_tail(&dev->power.entry, &dpm_prepared_list); 875 put_device(dev); 876 } 877 mutex_unlock(&dpm_list_mtx); 878 async_synchronize_full(); 879 dpm_show_time(starttime, state, NULL); 880 881 cpufreq_resume(); 882 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 883 } 884 885 /** 886 * device_complete - Complete a PM transition for given device. 887 * @dev: Device to handle. 888 * @state: PM transition of the system being carried out. 889 */ 890 static void device_complete(struct device *dev, pm_message_t state) 891 { 892 void (*callback)(struct device *) = NULL; 893 char *info = NULL; 894 895 if (dev->power.syscore) 896 return; 897 898 device_lock(dev); 899 900 if (dev->pm_domain) { 901 info = "completing power domain "; 902 callback = dev->pm_domain->ops.complete; 903 } else if (dev->type && dev->type->pm) { 904 info = "completing type "; 905 callback = dev->type->pm->complete; 906 } else if (dev->class && dev->class->pm) { 907 info = "completing class "; 908 callback = dev->class->pm->complete; 909 } else if (dev->bus && dev->bus->pm) { 910 info = "completing bus "; 911 callback = dev->bus->pm->complete; 912 } 913 914 if (!callback && dev->driver && dev->driver->pm) { 915 info = "completing driver "; 916 callback = dev->driver->pm->complete; 917 } 918 919 if (callback) { 920 pm_dev_dbg(dev, state, info); 921 trace_device_pm_callback_start(dev, info, state.event); 922 callback(dev); 923 trace_device_pm_callback_end(dev, 0); 924 } 925 926 device_unlock(dev); 927 928 pm_runtime_put(dev); 929 } 930 931 /** 932 * dpm_complete - Complete a PM transition for all non-sysdev devices. 933 * @state: PM transition of the system being carried out. 934 * 935 * Execute the ->complete() callbacks for all devices whose PM status is not 936 * DPM_ON (this allows new devices to be registered). 937 */ 938 void dpm_complete(pm_message_t state) 939 { 940 struct list_head list; 941 942 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 943 might_sleep(); 944 945 INIT_LIST_HEAD(&list); 946 mutex_lock(&dpm_list_mtx); 947 while (!list_empty(&dpm_prepared_list)) { 948 struct device *dev = to_device(dpm_prepared_list.prev); 949 950 get_device(dev); 951 dev->power.is_prepared = false; 952 list_move(&dev->power.entry, &list); 953 mutex_unlock(&dpm_list_mtx); 954 955 device_complete(dev, state); 956 957 mutex_lock(&dpm_list_mtx); 958 put_device(dev); 959 } 960 list_splice(&list, &dpm_list); 961 mutex_unlock(&dpm_list_mtx); 962 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 963 } 964 965 /** 966 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 967 * @state: PM transition of the system being carried out. 968 * 969 * Execute "resume" callbacks for all devices and complete the PM transition of 970 * the system. 971 */ 972 void dpm_resume_end(pm_message_t state) 973 { 974 dpm_resume(state); 975 dpm_complete(state); 976 } 977 EXPORT_SYMBOL_GPL(dpm_resume_end); 978 979 980 /*------------------------- Suspend routines -------------------------*/ 981 982 /** 983 * resume_event - Return a "resume" message for given "suspend" sleep state. 984 * @sleep_state: PM message representing a sleep state. 985 * 986 * Return a PM message representing the resume event corresponding to given 987 * sleep state. 988 */ 989 static pm_message_t resume_event(pm_message_t sleep_state) 990 { 991 switch (sleep_state.event) { 992 case PM_EVENT_SUSPEND: 993 return PMSG_RESUME; 994 case PM_EVENT_FREEZE: 995 case PM_EVENT_QUIESCE: 996 return PMSG_RECOVER; 997 case PM_EVENT_HIBERNATE: 998 return PMSG_RESTORE; 999 } 1000 return PMSG_ON; 1001 } 1002 1003 /** 1004 * device_suspend_noirq - Execute a "late suspend" callback for given device. 1005 * @dev: Device to handle. 1006 * @state: PM transition of the system being carried out. 1007 * 1008 * The driver of @dev will not receive interrupts while this function is being 1009 * executed. 1010 */ 1011 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1012 { 1013 pm_callback_t callback = NULL; 1014 char *info = NULL; 1015 int error = 0; 1016 1017 if (async_error) 1018 goto Complete; 1019 1020 if (pm_wakeup_pending()) { 1021 async_error = -EBUSY; 1022 goto Complete; 1023 } 1024 1025 if (dev->power.syscore || dev->power.direct_complete) 1026 goto Complete; 1027 1028 dpm_wait_for_children(dev, async); 1029 1030 if (dev->pm_domain) { 1031 info = "noirq power domain "; 1032 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1033 } else if (dev->type && dev->type->pm) { 1034 info = "noirq type "; 1035 callback = pm_noirq_op(dev->type->pm, state); 1036 } else if (dev->class && dev->class->pm) { 1037 info = "noirq class "; 1038 callback = pm_noirq_op(dev->class->pm, state); 1039 } else if (dev->bus && dev->bus->pm) { 1040 info = "noirq bus "; 1041 callback = pm_noirq_op(dev->bus->pm, state); 1042 } 1043 1044 if (!callback && dev->driver && dev->driver->pm) { 1045 info = "noirq driver "; 1046 callback = pm_noirq_op(dev->driver->pm, state); 1047 } 1048 1049 error = dpm_run_callback(callback, dev, state, info); 1050 if (!error) 1051 dev->power.is_noirq_suspended = true; 1052 else 1053 async_error = error; 1054 1055 Complete: 1056 complete_all(&dev->power.completion); 1057 return error; 1058 } 1059 1060 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1061 { 1062 struct device *dev = (struct device *)data; 1063 int error; 1064 1065 error = __device_suspend_noirq(dev, pm_transition, true); 1066 if (error) { 1067 dpm_save_failed_dev(dev_name(dev)); 1068 pm_dev_err(dev, pm_transition, " async", error); 1069 } 1070 1071 put_device(dev); 1072 } 1073 1074 static int device_suspend_noirq(struct device *dev) 1075 { 1076 reinit_completion(&dev->power.completion); 1077 1078 if (pm_async_enabled && dev->power.async_suspend) { 1079 get_device(dev); 1080 async_schedule(async_suspend_noirq, dev); 1081 return 0; 1082 } 1083 return __device_suspend_noirq(dev, pm_transition, false); 1084 } 1085 1086 /** 1087 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1088 * @state: PM transition of the system being carried out. 1089 * 1090 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 1091 * handlers for all non-sysdev devices. 1092 */ 1093 static int dpm_suspend_noirq(pm_message_t state) 1094 { 1095 ktime_t starttime = ktime_get(); 1096 int error = 0; 1097 1098 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1099 cpuidle_pause(); 1100 suspend_device_irqs(); 1101 mutex_lock(&dpm_list_mtx); 1102 pm_transition = state; 1103 async_error = 0; 1104 1105 while (!list_empty(&dpm_late_early_list)) { 1106 struct device *dev = to_device(dpm_late_early_list.prev); 1107 1108 get_device(dev); 1109 mutex_unlock(&dpm_list_mtx); 1110 1111 error = device_suspend_noirq(dev); 1112 1113 mutex_lock(&dpm_list_mtx); 1114 if (error) { 1115 pm_dev_err(dev, state, " noirq", error); 1116 dpm_save_failed_dev(dev_name(dev)); 1117 put_device(dev); 1118 break; 1119 } 1120 if (!list_empty(&dev->power.entry)) 1121 list_move(&dev->power.entry, &dpm_noirq_list); 1122 put_device(dev); 1123 1124 if (async_error) 1125 break; 1126 } 1127 mutex_unlock(&dpm_list_mtx); 1128 async_synchronize_full(); 1129 if (!error) 1130 error = async_error; 1131 1132 if (error) { 1133 suspend_stats.failed_suspend_noirq++; 1134 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1135 dpm_resume_noirq(resume_event(state)); 1136 } else { 1137 dpm_show_time(starttime, state, "noirq"); 1138 } 1139 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1140 return error; 1141 } 1142 1143 /** 1144 * device_suspend_late - Execute a "late suspend" callback for given device. 1145 * @dev: Device to handle. 1146 * @state: PM transition of the system being carried out. 1147 * 1148 * Runtime PM is disabled for @dev while this function is being executed. 1149 */ 1150 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1151 { 1152 pm_callback_t callback = NULL; 1153 char *info = NULL; 1154 int error = 0; 1155 1156 __pm_runtime_disable(dev, false); 1157 1158 if (async_error) 1159 goto Complete; 1160 1161 if (pm_wakeup_pending()) { 1162 async_error = -EBUSY; 1163 goto Complete; 1164 } 1165 1166 if (dev->power.syscore || dev->power.direct_complete) 1167 goto Complete; 1168 1169 dpm_wait_for_children(dev, async); 1170 1171 if (dev->pm_domain) { 1172 info = "late power domain "; 1173 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1174 } else if (dev->type && dev->type->pm) { 1175 info = "late type "; 1176 callback = pm_late_early_op(dev->type->pm, state); 1177 } else if (dev->class && dev->class->pm) { 1178 info = "late class "; 1179 callback = pm_late_early_op(dev->class->pm, state); 1180 } else if (dev->bus && dev->bus->pm) { 1181 info = "late bus "; 1182 callback = pm_late_early_op(dev->bus->pm, state); 1183 } 1184 1185 if (!callback && dev->driver && dev->driver->pm) { 1186 info = "late driver "; 1187 callback = pm_late_early_op(dev->driver->pm, state); 1188 } 1189 1190 error = dpm_run_callback(callback, dev, state, info); 1191 if (!error) 1192 dev->power.is_late_suspended = true; 1193 else 1194 async_error = error; 1195 1196 Complete: 1197 complete_all(&dev->power.completion); 1198 return error; 1199 } 1200 1201 static void async_suspend_late(void *data, async_cookie_t cookie) 1202 { 1203 struct device *dev = (struct device *)data; 1204 int error; 1205 1206 error = __device_suspend_late(dev, pm_transition, true); 1207 if (error) { 1208 dpm_save_failed_dev(dev_name(dev)); 1209 pm_dev_err(dev, pm_transition, " async", error); 1210 } 1211 put_device(dev); 1212 } 1213 1214 static int device_suspend_late(struct device *dev) 1215 { 1216 reinit_completion(&dev->power.completion); 1217 1218 if (pm_async_enabled && dev->power.async_suspend) { 1219 get_device(dev); 1220 async_schedule(async_suspend_late, dev); 1221 return 0; 1222 } 1223 1224 return __device_suspend_late(dev, pm_transition, false); 1225 } 1226 1227 /** 1228 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1229 * @state: PM transition of the system being carried out. 1230 */ 1231 static int dpm_suspend_late(pm_message_t state) 1232 { 1233 ktime_t starttime = ktime_get(); 1234 int error = 0; 1235 1236 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1237 mutex_lock(&dpm_list_mtx); 1238 pm_transition = state; 1239 async_error = 0; 1240 1241 while (!list_empty(&dpm_suspended_list)) { 1242 struct device *dev = to_device(dpm_suspended_list.prev); 1243 1244 get_device(dev); 1245 mutex_unlock(&dpm_list_mtx); 1246 1247 error = device_suspend_late(dev); 1248 1249 mutex_lock(&dpm_list_mtx); 1250 if (error) { 1251 pm_dev_err(dev, state, " late", error); 1252 dpm_save_failed_dev(dev_name(dev)); 1253 put_device(dev); 1254 break; 1255 } 1256 if (!list_empty(&dev->power.entry)) 1257 list_move(&dev->power.entry, &dpm_late_early_list); 1258 put_device(dev); 1259 1260 if (async_error) 1261 break; 1262 } 1263 mutex_unlock(&dpm_list_mtx); 1264 async_synchronize_full(); 1265 if (error) { 1266 suspend_stats.failed_suspend_late++; 1267 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1268 dpm_resume_early(resume_event(state)); 1269 } else { 1270 dpm_show_time(starttime, state, "late"); 1271 } 1272 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1273 return error; 1274 } 1275 1276 /** 1277 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1278 * @state: PM transition of the system being carried out. 1279 */ 1280 int dpm_suspend_end(pm_message_t state) 1281 { 1282 int error = dpm_suspend_late(state); 1283 if (error) 1284 return error; 1285 1286 error = dpm_suspend_noirq(state); 1287 if (error) { 1288 dpm_resume_early(resume_event(state)); 1289 return error; 1290 } 1291 1292 return 0; 1293 } 1294 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1295 1296 /** 1297 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1298 * @dev: Device to suspend. 1299 * @state: PM transition of the system being carried out. 1300 * @cb: Suspend callback to execute. 1301 */ 1302 static int legacy_suspend(struct device *dev, pm_message_t state, 1303 int (*cb)(struct device *dev, pm_message_t state), 1304 char *info) 1305 { 1306 int error; 1307 ktime_t calltime; 1308 1309 calltime = initcall_debug_start(dev); 1310 1311 trace_device_pm_callback_start(dev, info, state.event); 1312 error = cb(dev, state); 1313 trace_device_pm_callback_end(dev, error); 1314 suspend_report_result(cb, error); 1315 1316 initcall_debug_report(dev, calltime, error, state, info); 1317 1318 return error; 1319 } 1320 1321 /** 1322 * device_suspend - Execute "suspend" callbacks for given device. 1323 * @dev: Device to handle. 1324 * @state: PM transition of the system being carried out. 1325 * @async: If true, the device is being suspended asynchronously. 1326 */ 1327 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1328 { 1329 pm_callback_t callback = NULL; 1330 char *info = NULL; 1331 int error = 0; 1332 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1333 1334 dpm_wait_for_children(dev, async); 1335 1336 if (async_error) 1337 goto Complete; 1338 1339 /* 1340 * If a device configured to wake up the system from sleep states 1341 * has been suspended at run time and there's a resume request pending 1342 * for it, this is equivalent to the device signaling wakeup, so the 1343 * system suspend operation should be aborted. 1344 */ 1345 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1346 pm_wakeup_event(dev, 0); 1347 1348 if (pm_wakeup_pending()) { 1349 async_error = -EBUSY; 1350 goto Complete; 1351 } 1352 1353 if (dev->power.syscore) 1354 goto Complete; 1355 1356 if (dev->power.direct_complete) { 1357 if (pm_runtime_status_suspended(dev)) { 1358 pm_runtime_disable(dev); 1359 if (pm_runtime_suspended_if_enabled(dev)) 1360 goto Complete; 1361 1362 pm_runtime_enable(dev); 1363 } 1364 dev->power.direct_complete = false; 1365 } 1366 1367 dpm_watchdog_set(&wd, dev); 1368 device_lock(dev); 1369 1370 if (dev->pm_domain) { 1371 info = "power domain "; 1372 callback = pm_op(&dev->pm_domain->ops, state); 1373 goto Run; 1374 } 1375 1376 if (dev->type && dev->type->pm) { 1377 info = "type "; 1378 callback = pm_op(dev->type->pm, state); 1379 goto Run; 1380 } 1381 1382 if (dev->class) { 1383 if (dev->class->pm) { 1384 info = "class "; 1385 callback = pm_op(dev->class->pm, state); 1386 goto Run; 1387 } else if (dev->class->suspend) { 1388 pm_dev_dbg(dev, state, "legacy class "); 1389 error = legacy_suspend(dev, state, dev->class->suspend, 1390 "legacy class "); 1391 goto End; 1392 } 1393 } 1394 1395 if (dev->bus) { 1396 if (dev->bus->pm) { 1397 info = "bus "; 1398 callback = pm_op(dev->bus->pm, state); 1399 } else if (dev->bus->suspend) { 1400 pm_dev_dbg(dev, state, "legacy bus "); 1401 error = legacy_suspend(dev, state, dev->bus->suspend, 1402 "legacy bus "); 1403 goto End; 1404 } 1405 } 1406 1407 Run: 1408 if (!callback && dev->driver && dev->driver->pm) { 1409 info = "driver "; 1410 callback = pm_op(dev->driver->pm, state); 1411 } 1412 1413 error = dpm_run_callback(callback, dev, state, info); 1414 1415 End: 1416 if (!error) { 1417 struct device *parent = dev->parent; 1418 1419 dev->power.is_suspended = true; 1420 if (parent) { 1421 spin_lock_irq(&parent->power.lock); 1422 1423 dev->parent->power.direct_complete = false; 1424 if (dev->power.wakeup_path 1425 && !dev->parent->power.ignore_children) 1426 dev->parent->power.wakeup_path = true; 1427 1428 spin_unlock_irq(&parent->power.lock); 1429 } 1430 } 1431 1432 device_unlock(dev); 1433 dpm_watchdog_clear(&wd); 1434 1435 Complete: 1436 complete_all(&dev->power.completion); 1437 if (error) 1438 async_error = error; 1439 1440 return error; 1441 } 1442 1443 static void async_suspend(void *data, async_cookie_t cookie) 1444 { 1445 struct device *dev = (struct device *)data; 1446 int error; 1447 1448 error = __device_suspend(dev, pm_transition, true); 1449 if (error) { 1450 dpm_save_failed_dev(dev_name(dev)); 1451 pm_dev_err(dev, pm_transition, " async", error); 1452 } 1453 1454 put_device(dev); 1455 } 1456 1457 static int device_suspend(struct device *dev) 1458 { 1459 reinit_completion(&dev->power.completion); 1460 1461 if (pm_async_enabled && dev->power.async_suspend) { 1462 get_device(dev); 1463 async_schedule(async_suspend, dev); 1464 return 0; 1465 } 1466 1467 return __device_suspend(dev, pm_transition, false); 1468 } 1469 1470 /** 1471 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1472 * @state: PM transition of the system being carried out. 1473 */ 1474 int dpm_suspend(pm_message_t state) 1475 { 1476 ktime_t starttime = ktime_get(); 1477 int error = 0; 1478 1479 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1480 might_sleep(); 1481 1482 cpufreq_suspend(); 1483 1484 mutex_lock(&dpm_list_mtx); 1485 pm_transition = state; 1486 async_error = 0; 1487 while (!list_empty(&dpm_prepared_list)) { 1488 struct device *dev = to_device(dpm_prepared_list.prev); 1489 1490 get_device(dev); 1491 mutex_unlock(&dpm_list_mtx); 1492 1493 error = device_suspend(dev); 1494 1495 mutex_lock(&dpm_list_mtx); 1496 if (error) { 1497 pm_dev_err(dev, state, "", error); 1498 dpm_save_failed_dev(dev_name(dev)); 1499 put_device(dev); 1500 break; 1501 } 1502 if (!list_empty(&dev->power.entry)) 1503 list_move(&dev->power.entry, &dpm_suspended_list); 1504 put_device(dev); 1505 if (async_error) 1506 break; 1507 } 1508 mutex_unlock(&dpm_list_mtx); 1509 async_synchronize_full(); 1510 if (!error) 1511 error = async_error; 1512 if (error) { 1513 suspend_stats.failed_suspend++; 1514 dpm_save_failed_step(SUSPEND_SUSPEND); 1515 } else 1516 dpm_show_time(starttime, state, NULL); 1517 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1518 return error; 1519 } 1520 1521 /** 1522 * device_prepare - Prepare a device for system power transition. 1523 * @dev: Device to handle. 1524 * @state: PM transition of the system being carried out. 1525 * 1526 * Execute the ->prepare() callback(s) for given device. No new children of the 1527 * device may be registered after this function has returned. 1528 */ 1529 static int device_prepare(struct device *dev, pm_message_t state) 1530 { 1531 int (*callback)(struct device *) = NULL; 1532 char *info = NULL; 1533 int ret = 0; 1534 1535 if (dev->power.syscore) 1536 return 0; 1537 1538 /* 1539 * If a device's parent goes into runtime suspend at the wrong time, 1540 * it won't be possible to resume the device. To prevent this we 1541 * block runtime suspend here, during the prepare phase, and allow 1542 * it again during the complete phase. 1543 */ 1544 pm_runtime_get_noresume(dev); 1545 1546 device_lock(dev); 1547 1548 dev->power.wakeup_path = device_may_wakeup(dev); 1549 1550 if (dev->pm_domain) { 1551 info = "preparing power domain "; 1552 callback = dev->pm_domain->ops.prepare; 1553 } else if (dev->type && dev->type->pm) { 1554 info = "preparing type "; 1555 callback = dev->type->pm->prepare; 1556 } else if (dev->class && dev->class->pm) { 1557 info = "preparing class "; 1558 callback = dev->class->pm->prepare; 1559 } else if (dev->bus && dev->bus->pm) { 1560 info = "preparing bus "; 1561 callback = dev->bus->pm->prepare; 1562 } 1563 1564 if (!callback && dev->driver && dev->driver->pm) { 1565 info = "preparing driver "; 1566 callback = dev->driver->pm->prepare; 1567 } 1568 1569 if (callback) { 1570 trace_device_pm_callback_start(dev, info, state.event); 1571 ret = callback(dev); 1572 trace_device_pm_callback_end(dev, ret); 1573 } 1574 1575 device_unlock(dev); 1576 1577 if (ret < 0) { 1578 suspend_report_result(callback, ret); 1579 pm_runtime_put(dev); 1580 return ret; 1581 } 1582 /* 1583 * A positive return value from ->prepare() means "this device appears 1584 * to be runtime-suspended and its state is fine, so if it really is 1585 * runtime-suspended, you can leave it in that state provided that you 1586 * will do the same thing with all of its descendants". This only 1587 * applies to suspend transitions, however. 1588 */ 1589 spin_lock_irq(&dev->power.lock); 1590 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND; 1591 spin_unlock_irq(&dev->power.lock); 1592 return 0; 1593 } 1594 1595 /** 1596 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1597 * @state: PM transition of the system being carried out. 1598 * 1599 * Execute the ->prepare() callback(s) for all devices. 1600 */ 1601 int dpm_prepare(pm_message_t state) 1602 { 1603 int error = 0; 1604 1605 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1606 might_sleep(); 1607 1608 mutex_lock(&dpm_list_mtx); 1609 while (!list_empty(&dpm_list)) { 1610 struct device *dev = to_device(dpm_list.next); 1611 1612 get_device(dev); 1613 mutex_unlock(&dpm_list_mtx); 1614 1615 error = device_prepare(dev, state); 1616 1617 mutex_lock(&dpm_list_mtx); 1618 if (error) { 1619 if (error == -EAGAIN) { 1620 put_device(dev); 1621 error = 0; 1622 continue; 1623 } 1624 printk(KERN_INFO "PM: Device %s not prepared " 1625 "for power transition: code %d\n", 1626 dev_name(dev), error); 1627 put_device(dev); 1628 break; 1629 } 1630 dev->power.is_prepared = true; 1631 if (!list_empty(&dev->power.entry)) 1632 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1633 put_device(dev); 1634 } 1635 mutex_unlock(&dpm_list_mtx); 1636 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1637 return error; 1638 } 1639 1640 /** 1641 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1642 * @state: PM transition of the system being carried out. 1643 * 1644 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1645 * callbacks for them. 1646 */ 1647 int dpm_suspend_start(pm_message_t state) 1648 { 1649 int error; 1650 1651 error = dpm_prepare(state); 1652 if (error) { 1653 suspend_stats.failed_prepare++; 1654 dpm_save_failed_step(SUSPEND_PREPARE); 1655 } else 1656 error = dpm_suspend(state); 1657 return error; 1658 } 1659 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1660 1661 void __suspend_report_result(const char *function, void *fn, int ret) 1662 { 1663 if (ret) 1664 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1665 } 1666 EXPORT_SYMBOL_GPL(__suspend_report_result); 1667 1668 /** 1669 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1670 * @dev: Device to wait for. 1671 * @subordinate: Device that needs to wait for @dev. 1672 */ 1673 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1674 { 1675 dpm_wait(dev, subordinate->power.async_suspend); 1676 return async_error; 1677 } 1678 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1679 1680 /** 1681 * dpm_for_each_dev - device iterator. 1682 * @data: data for the callback. 1683 * @fn: function to be called for each device. 1684 * 1685 * Iterate over devices in dpm_list, and call @fn for each device, 1686 * passing it @data. 1687 */ 1688 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1689 { 1690 struct device *dev; 1691 1692 if (!fn) 1693 return; 1694 1695 device_pm_lock(); 1696 list_for_each_entry(dev, &dpm_list, power.entry) 1697 fn(dev, data); 1698 device_pm_unlock(); 1699 } 1700 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1701