xref: /openbmc/linux/drivers/base/power/main.c (revision c127f98ba9aba1818a6ca3a1da5a24653a10d966)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 /*
44  * The entries in the dpm_list list are in a depth first order, simply
45  * because children are guaranteed to be discovered after parents, and
46  * are inserted at the back of the list on discovery.
47  *
48  * Since device_pm_add() may be called with a device lock held,
49  * we must never try to acquire a device lock while holding
50  * dpm_list_mutex.
51  */
52 
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58 
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62 
63 static int async_error;
64 
65 static const char *pm_verb(int event)
66 {
67 	switch (event) {
68 	case PM_EVENT_SUSPEND:
69 		return "suspend";
70 	case PM_EVENT_RESUME:
71 		return "resume";
72 	case PM_EVENT_FREEZE:
73 		return "freeze";
74 	case PM_EVENT_QUIESCE:
75 		return "quiesce";
76 	case PM_EVENT_HIBERNATE:
77 		return "hibernate";
78 	case PM_EVENT_THAW:
79 		return "thaw";
80 	case PM_EVENT_RESTORE:
81 		return "restore";
82 	case PM_EVENT_RECOVER:
83 		return "recover";
84 	default:
85 		return "(unknown PM event)";
86 	}
87 }
88 
89 /**
90  * device_pm_sleep_init - Initialize system suspend-related device fields.
91  * @dev: Device object being initialized.
92  */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 	dev->power.is_prepared = false;
96 	dev->power.is_suspended = false;
97 	dev->power.is_noirq_suspended = false;
98 	dev->power.is_late_suspended = false;
99 	init_completion(&dev->power.completion);
100 	complete_all(&dev->power.completion);
101 	dev->power.wakeup = NULL;
102 	INIT_LIST_HEAD(&dev->power.entry);
103 }
104 
105 /**
106  * device_pm_lock - Lock the list of active devices used by the PM core.
107  */
108 void device_pm_lock(void)
109 {
110 	mutex_lock(&dpm_list_mtx);
111 }
112 
113 /**
114  * device_pm_unlock - Unlock the list of active devices used by the PM core.
115  */
116 void device_pm_unlock(void)
117 {
118 	mutex_unlock(&dpm_list_mtx);
119 }
120 
121 /**
122  * device_pm_add - Add a device to the PM core's list of active devices.
123  * @dev: Device to add to the list.
124  */
125 void device_pm_add(struct device *dev)
126 {
127 	pr_debug("PM: Adding info for %s:%s\n",
128 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 	device_pm_check_callbacks(dev);
130 	mutex_lock(&dpm_list_mtx);
131 	if (dev->parent && dev->parent->power.is_prepared)
132 		dev_warn(dev, "parent %s should not be sleeping\n",
133 			dev_name(dev->parent));
134 	list_add_tail(&dev->power.entry, &dpm_list);
135 	dev->power.in_dpm_list = true;
136 	mutex_unlock(&dpm_list_mtx);
137 }
138 
139 /**
140  * device_pm_remove - Remove a device from the PM core's list of active devices.
141  * @dev: Device to be removed from the list.
142  */
143 void device_pm_remove(struct device *dev)
144 {
145 	pr_debug("PM: Removing info for %s:%s\n",
146 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 	complete_all(&dev->power.completion);
148 	mutex_lock(&dpm_list_mtx);
149 	list_del_init(&dev->power.entry);
150 	dev->power.in_dpm_list = false;
151 	mutex_unlock(&dpm_list_mtx);
152 	device_wakeup_disable(dev);
153 	pm_runtime_remove(dev);
154 	device_pm_check_callbacks(dev);
155 }
156 
157 /**
158  * device_pm_move_before - Move device in the PM core's list of active devices.
159  * @deva: Device to move in dpm_list.
160  * @devb: Device @deva should come before.
161  */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 	pr_debug("PM: Moving %s:%s before %s:%s\n",
165 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 	/* Delete deva from dpm_list and reinsert before devb. */
168 	list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170 
171 /**
172  * device_pm_move_after - Move device in the PM core's list of active devices.
173  * @deva: Device to move in dpm_list.
174  * @devb: Device @deva should come after.
175  */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 	pr_debug("PM: Moving %s:%s after %s:%s\n",
179 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 	/* Delete deva from dpm_list and reinsert after devb. */
182 	list_move(&deva->power.entry, &devb->power.entry);
183 }
184 
185 /**
186  * device_pm_move_last - Move device to end of the PM core's list of devices.
187  * @dev: Device to move in dpm_list.
188  */
189 void device_pm_move_last(struct device *dev)
190 {
191 	pr_debug("PM: Moving %s:%s to end of list\n",
192 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 	list_move_tail(&dev->power.entry, &dpm_list);
194 }
195 
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 	ktime_t calltime = 0;
199 
200 	if (pm_print_times_enabled) {
201 		pr_info("calling  %s+ @ %i, parent: %s\n",
202 			dev_name(dev), task_pid_nr(current),
203 			dev->parent ? dev_name(dev->parent) : "none");
204 		calltime = ktime_get();
205 	}
206 
207 	return calltime;
208 }
209 
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 				  int error, pm_message_t state,
212 				  const char *info)
213 {
214 	ktime_t rettime;
215 	s64 nsecs;
216 
217 	rettime = ktime_get();
218 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219 
220 	if (pm_print_times_enabled) {
221 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
222 			error, (unsigned long long)nsecs >> 10);
223 	}
224 }
225 
226 /**
227  * dpm_wait - Wait for a PM operation to complete.
228  * @dev: Device to wait for.
229  * @async: If unset, wait only if the device's power.async_suspend flag is set.
230  */
231 static void dpm_wait(struct device *dev, bool async)
232 {
233 	if (!dev)
234 		return;
235 
236 	if (async || (pm_async_enabled && dev->power.async_suspend))
237 		wait_for_completion(&dev->power.completion);
238 }
239 
240 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 {
242 	dpm_wait(dev, *((bool *)async_ptr));
243 	return 0;
244 }
245 
246 static void dpm_wait_for_children(struct device *dev, bool async)
247 {
248        device_for_each_child(dev, &async, dpm_wait_fn);
249 }
250 
251 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 {
253 	struct device_link *link;
254 	int idx;
255 
256 	idx = device_links_read_lock();
257 
258 	/*
259 	 * If the supplier goes away right after we've checked the link to it,
260 	 * we'll wait for its completion to change the state, but that's fine,
261 	 * because the only things that will block as a result are the SRCU
262 	 * callbacks freeing the link objects for the links in the list we're
263 	 * walking.
264 	 */
265 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
266 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
267 			dpm_wait(link->supplier, async);
268 
269 	device_links_read_unlock(idx);
270 }
271 
272 static void dpm_wait_for_superior(struct device *dev, bool async)
273 {
274 	dpm_wait(dev->parent, async);
275 	dpm_wait_for_suppliers(dev, async);
276 }
277 
278 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 {
280 	struct device_link *link;
281 	int idx;
282 
283 	idx = device_links_read_lock();
284 
285 	/*
286 	 * The status of a device link can only be changed from "dormant" by a
287 	 * probe, but that cannot happen during system suspend/resume.  In
288 	 * theory it can change to "dormant" at that time, but then it is
289 	 * reasonable to wait for the target device anyway (eg. if it goes
290 	 * away, it's better to wait for it to go away completely and then
291 	 * continue instead of trying to continue in parallel with its
292 	 * unregistration).
293 	 */
294 	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
295 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
296 			dpm_wait(link->consumer, async);
297 
298 	device_links_read_unlock(idx);
299 }
300 
301 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 {
303 	dpm_wait_for_children(dev, async);
304 	dpm_wait_for_consumers(dev, async);
305 }
306 
307 /**
308  * pm_op - Return the PM operation appropriate for given PM event.
309  * @ops: PM operations to choose from.
310  * @state: PM transition of the system being carried out.
311  */
312 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 {
314 	switch (state.event) {
315 #ifdef CONFIG_SUSPEND
316 	case PM_EVENT_SUSPEND:
317 		return ops->suspend;
318 	case PM_EVENT_RESUME:
319 		return ops->resume;
320 #endif /* CONFIG_SUSPEND */
321 #ifdef CONFIG_HIBERNATE_CALLBACKS
322 	case PM_EVENT_FREEZE:
323 	case PM_EVENT_QUIESCE:
324 		return ops->freeze;
325 	case PM_EVENT_HIBERNATE:
326 		return ops->poweroff;
327 	case PM_EVENT_THAW:
328 	case PM_EVENT_RECOVER:
329 		return ops->thaw;
330 		break;
331 	case PM_EVENT_RESTORE:
332 		return ops->restore;
333 #endif /* CONFIG_HIBERNATE_CALLBACKS */
334 	}
335 
336 	return NULL;
337 }
338 
339 /**
340  * pm_late_early_op - Return the PM operation appropriate for given PM event.
341  * @ops: PM operations to choose from.
342  * @state: PM transition of the system being carried out.
343  *
344  * Runtime PM is disabled for @dev while this function is being executed.
345  */
346 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
347 				      pm_message_t state)
348 {
349 	switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 	case PM_EVENT_SUSPEND:
352 		return ops->suspend_late;
353 	case PM_EVENT_RESUME:
354 		return ops->resume_early;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 	case PM_EVENT_FREEZE:
358 	case PM_EVENT_QUIESCE:
359 		return ops->freeze_late;
360 	case PM_EVENT_HIBERNATE:
361 		return ops->poweroff_late;
362 	case PM_EVENT_THAW:
363 	case PM_EVENT_RECOVER:
364 		return ops->thaw_early;
365 	case PM_EVENT_RESTORE:
366 		return ops->restore_early;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 	}
369 
370 	return NULL;
371 }
372 
373 /**
374  * pm_noirq_op - Return the PM operation appropriate for given PM event.
375  * @ops: PM operations to choose from.
376  * @state: PM transition of the system being carried out.
377  *
378  * The driver of @dev will not receive interrupts while this function is being
379  * executed.
380  */
381 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 {
383 	switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 	case PM_EVENT_SUSPEND:
386 		return ops->suspend_noirq;
387 	case PM_EVENT_RESUME:
388 		return ops->resume_noirq;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 	case PM_EVENT_FREEZE:
392 	case PM_EVENT_QUIESCE:
393 		return ops->freeze_noirq;
394 	case PM_EVENT_HIBERNATE:
395 		return ops->poweroff_noirq;
396 	case PM_EVENT_THAW:
397 	case PM_EVENT_RECOVER:
398 		return ops->thaw_noirq;
399 	case PM_EVENT_RESTORE:
400 		return ops->restore_noirq;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 	}
403 
404 	return NULL;
405 }
406 
407 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 {
409 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
410 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
411 		", may wakeup" : "");
412 }
413 
414 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
415 			int error)
416 {
417 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
418 		dev_name(dev), pm_verb(state.event), info, error);
419 }
420 
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
422 			  const char *info)
423 {
424 	ktime_t calltime;
425 	u64 usecs64;
426 	int usecs;
427 
428 	calltime = ktime_get();
429 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
430 	do_div(usecs64, NSEC_PER_USEC);
431 	usecs = usecs64;
432 	if (usecs == 0)
433 		usecs = 1;
434 
435 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
436 		  info ?: "", info ? " " : "", pm_verb(state.event),
437 		  error ? "aborted" : "complete",
438 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
439 }
440 
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 			    pm_message_t state, const char *info)
443 {
444 	ktime_t calltime;
445 	int error;
446 
447 	if (!cb)
448 		return 0;
449 
450 	calltime = initcall_debug_start(dev);
451 
452 	pm_dev_dbg(dev, state, info);
453 	trace_device_pm_callback_start(dev, info, state.event);
454 	error = cb(dev);
455 	trace_device_pm_callback_end(dev, error);
456 	suspend_report_result(cb, error);
457 
458 	initcall_debug_report(dev, calltime, error, state, info);
459 
460 	return error;
461 }
462 
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 	struct device		*dev;
466 	struct task_struct	*tsk;
467 	struct timer_list	timer;
468 };
469 
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 	struct dpm_watchdog wd
472 
473 /**
474  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475  * @data: Watchdog object address.
476  *
477  * Called when a driver has timed out suspending or resuming.
478  * There's not much we can do here to recover so panic() to
479  * capture a crash-dump in pstore.
480  */
481 static void dpm_watchdog_handler(struct timer_list *t)
482 {
483 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
484 
485 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 	show_stack(wd->tsk, NULL);
487 	panic("%s %s: unrecoverable failure\n",
488 		dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490 
491 /**
492  * dpm_watchdog_set - Enable pm watchdog for given device.
493  * @wd: Watchdog. Must be allocated on the stack.
494  * @dev: Device to handle.
495  */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 	struct timer_list *timer = &wd->timer;
499 
500 	wd->dev = dev;
501 	wd->tsk = current;
502 
503 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
504 	/* use same timeout value for both suspend and resume */
505 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 	add_timer(timer);
507 }
508 
509 /**
510  * dpm_watchdog_clear - Disable suspend/resume watchdog.
511  * @wd: Watchdog to disable.
512  */
513 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
514 {
515 	struct timer_list *timer = &wd->timer;
516 
517 	del_timer_sync(timer);
518 	destroy_timer_on_stack(timer);
519 }
520 #else
521 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
522 #define dpm_watchdog_set(x, y)
523 #define dpm_watchdog_clear(x)
524 #endif
525 
526 /*------------------------- Resume routines -------------------------*/
527 
528 /**
529  * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
530  * @dev: Target device.
531  *
532  * Make the core skip the "early resume" and "resume" phases for @dev.
533  *
534  * This function can be called by middle-layer code during the "noirq" phase of
535  * system resume if necessary, but not by device drivers.
536  */
537 void dev_pm_skip_next_resume_phases(struct device *dev)
538 {
539 	dev->power.is_late_suspended = false;
540 	dev->power.is_suspended = false;
541 }
542 
543 /**
544  * device_resume_noirq - Execute a "noirq resume" callback for given device.
545  * @dev: Device to handle.
546  * @state: PM transition of the system being carried out.
547  * @async: If true, the device is being resumed asynchronously.
548  *
549  * The driver of @dev will not receive interrupts while this function is being
550  * executed.
551  */
552 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
553 {
554 	pm_callback_t callback = NULL;
555 	const char *info = NULL;
556 	int error = 0;
557 
558 	TRACE_DEVICE(dev);
559 	TRACE_RESUME(0);
560 
561 	if (dev->power.syscore || dev->power.direct_complete)
562 		goto Out;
563 
564 	if (!dev->power.is_noirq_suspended)
565 		goto Out;
566 
567 	dpm_wait_for_superior(dev, async);
568 
569 	if (dev->pm_domain) {
570 		info = "noirq power domain ";
571 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
572 	} else if (dev->type && dev->type->pm) {
573 		info = "noirq type ";
574 		callback = pm_noirq_op(dev->type->pm, state);
575 	} else if (dev->class && dev->class->pm) {
576 		info = "noirq class ";
577 		callback = pm_noirq_op(dev->class->pm, state);
578 	} else if (dev->bus && dev->bus->pm) {
579 		info = "noirq bus ";
580 		callback = pm_noirq_op(dev->bus->pm, state);
581 	}
582 
583 	if (!callback && dev->driver && dev->driver->pm) {
584 		info = "noirq driver ";
585 		callback = pm_noirq_op(dev->driver->pm, state);
586 	}
587 
588 	error = dpm_run_callback(callback, dev, state, info);
589 	dev->power.is_noirq_suspended = false;
590 
591  Out:
592 	complete_all(&dev->power.completion);
593 	TRACE_RESUME(error);
594 	return error;
595 }
596 
597 static bool is_async(struct device *dev)
598 {
599 	return dev->power.async_suspend && pm_async_enabled
600 		&& !pm_trace_is_enabled();
601 }
602 
603 static void async_resume_noirq(void *data, async_cookie_t cookie)
604 {
605 	struct device *dev = (struct device *)data;
606 	int error;
607 
608 	error = device_resume_noirq(dev, pm_transition, true);
609 	if (error)
610 		pm_dev_err(dev, pm_transition, " async", error);
611 
612 	put_device(dev);
613 }
614 
615 void dpm_noirq_resume_devices(pm_message_t state)
616 {
617 	struct device *dev;
618 	ktime_t starttime = ktime_get();
619 
620 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
621 	mutex_lock(&dpm_list_mtx);
622 	pm_transition = state;
623 
624 	/*
625 	 * Advanced the async threads upfront,
626 	 * in case the starting of async threads is
627 	 * delayed by non-async resuming devices.
628 	 */
629 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
630 		reinit_completion(&dev->power.completion);
631 		if (is_async(dev)) {
632 			get_device(dev);
633 			async_schedule(async_resume_noirq, dev);
634 		}
635 	}
636 
637 	while (!list_empty(&dpm_noirq_list)) {
638 		dev = to_device(dpm_noirq_list.next);
639 		get_device(dev);
640 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
641 		mutex_unlock(&dpm_list_mtx);
642 
643 		if (!is_async(dev)) {
644 			int error;
645 
646 			error = device_resume_noirq(dev, state, false);
647 			if (error) {
648 				suspend_stats.failed_resume_noirq++;
649 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
650 				dpm_save_failed_dev(dev_name(dev));
651 				pm_dev_err(dev, state, " noirq", error);
652 			}
653 		}
654 
655 		mutex_lock(&dpm_list_mtx);
656 		put_device(dev);
657 	}
658 	mutex_unlock(&dpm_list_mtx);
659 	async_synchronize_full();
660 	dpm_show_time(starttime, state, 0, "noirq");
661 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
662 }
663 
664 void dpm_noirq_end(void)
665 {
666 	resume_device_irqs();
667 	device_wakeup_disarm_wake_irqs();
668 	cpuidle_resume();
669 }
670 
671 /**
672  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
673  * @state: PM transition of the system being carried out.
674  *
675  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
676  * allow device drivers' interrupt handlers to be called.
677  */
678 void dpm_resume_noirq(pm_message_t state)
679 {
680 	dpm_noirq_resume_devices(state);
681 	dpm_noirq_end();
682 }
683 
684 /**
685  * device_resume_early - Execute an "early resume" callback for given device.
686  * @dev: Device to handle.
687  * @state: PM transition of the system being carried out.
688  * @async: If true, the device is being resumed asynchronously.
689  *
690  * Runtime PM is disabled for @dev while this function is being executed.
691  */
692 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
693 {
694 	pm_callback_t callback = NULL;
695 	const char *info = NULL;
696 	int error = 0;
697 
698 	TRACE_DEVICE(dev);
699 	TRACE_RESUME(0);
700 
701 	if (dev->power.syscore || dev->power.direct_complete)
702 		goto Out;
703 
704 	if (!dev->power.is_late_suspended)
705 		goto Out;
706 
707 	dpm_wait_for_superior(dev, async);
708 
709 	if (dev->pm_domain) {
710 		info = "early power domain ";
711 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
712 	} else if (dev->type && dev->type->pm) {
713 		info = "early type ";
714 		callback = pm_late_early_op(dev->type->pm, state);
715 	} else if (dev->class && dev->class->pm) {
716 		info = "early class ";
717 		callback = pm_late_early_op(dev->class->pm, state);
718 	} else if (dev->bus && dev->bus->pm) {
719 		info = "early bus ";
720 		callback = pm_late_early_op(dev->bus->pm, state);
721 	}
722 
723 	if (!callback && dev->driver && dev->driver->pm) {
724 		info = "early driver ";
725 		callback = pm_late_early_op(dev->driver->pm, state);
726 	}
727 
728 	error = dpm_run_callback(callback, dev, state, info);
729 	dev->power.is_late_suspended = false;
730 
731  Out:
732 	TRACE_RESUME(error);
733 
734 	pm_runtime_enable(dev);
735 	complete_all(&dev->power.completion);
736 	return error;
737 }
738 
739 static void async_resume_early(void *data, async_cookie_t cookie)
740 {
741 	struct device *dev = (struct device *)data;
742 	int error;
743 
744 	error = device_resume_early(dev, pm_transition, true);
745 	if (error)
746 		pm_dev_err(dev, pm_transition, " async", error);
747 
748 	put_device(dev);
749 }
750 
751 /**
752  * dpm_resume_early - Execute "early resume" callbacks for all devices.
753  * @state: PM transition of the system being carried out.
754  */
755 void dpm_resume_early(pm_message_t state)
756 {
757 	struct device *dev;
758 	ktime_t starttime = ktime_get();
759 
760 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
761 	mutex_lock(&dpm_list_mtx);
762 	pm_transition = state;
763 
764 	/*
765 	 * Advanced the async threads upfront,
766 	 * in case the starting of async threads is
767 	 * delayed by non-async resuming devices.
768 	 */
769 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
770 		reinit_completion(&dev->power.completion);
771 		if (is_async(dev)) {
772 			get_device(dev);
773 			async_schedule(async_resume_early, dev);
774 		}
775 	}
776 
777 	while (!list_empty(&dpm_late_early_list)) {
778 		dev = to_device(dpm_late_early_list.next);
779 		get_device(dev);
780 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
781 		mutex_unlock(&dpm_list_mtx);
782 
783 		if (!is_async(dev)) {
784 			int error;
785 
786 			error = device_resume_early(dev, state, false);
787 			if (error) {
788 				suspend_stats.failed_resume_early++;
789 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
790 				dpm_save_failed_dev(dev_name(dev));
791 				pm_dev_err(dev, state, " early", error);
792 			}
793 		}
794 		mutex_lock(&dpm_list_mtx);
795 		put_device(dev);
796 	}
797 	mutex_unlock(&dpm_list_mtx);
798 	async_synchronize_full();
799 	dpm_show_time(starttime, state, 0, "early");
800 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
801 }
802 
803 /**
804  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
805  * @state: PM transition of the system being carried out.
806  */
807 void dpm_resume_start(pm_message_t state)
808 {
809 	dpm_resume_noirq(state);
810 	dpm_resume_early(state);
811 }
812 EXPORT_SYMBOL_GPL(dpm_resume_start);
813 
814 /**
815  * device_resume - Execute "resume" callbacks for given device.
816  * @dev: Device to handle.
817  * @state: PM transition of the system being carried out.
818  * @async: If true, the device is being resumed asynchronously.
819  */
820 static int device_resume(struct device *dev, pm_message_t state, bool async)
821 {
822 	pm_callback_t callback = NULL;
823 	const char *info = NULL;
824 	int error = 0;
825 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
826 
827 	TRACE_DEVICE(dev);
828 	TRACE_RESUME(0);
829 
830 	if (dev->power.syscore)
831 		goto Complete;
832 
833 	if (dev->power.direct_complete) {
834 		/* Match the pm_runtime_disable() in __device_suspend(). */
835 		pm_runtime_enable(dev);
836 		goto Complete;
837 	}
838 
839 	dpm_wait_for_superior(dev, async);
840 	dpm_watchdog_set(&wd, dev);
841 	device_lock(dev);
842 
843 	/*
844 	 * This is a fib.  But we'll allow new children to be added below
845 	 * a resumed device, even if the device hasn't been completed yet.
846 	 */
847 	dev->power.is_prepared = false;
848 
849 	if (!dev->power.is_suspended)
850 		goto Unlock;
851 
852 	if (dev->pm_domain) {
853 		info = "power domain ";
854 		callback = pm_op(&dev->pm_domain->ops, state);
855 		goto Driver;
856 	}
857 
858 	if (dev->type && dev->type->pm) {
859 		info = "type ";
860 		callback = pm_op(dev->type->pm, state);
861 		goto Driver;
862 	}
863 
864 	if (dev->class && dev->class->pm) {
865 		info = "class ";
866 		callback = pm_op(dev->class->pm, state);
867 		goto Driver;
868 	}
869 
870 	if (dev->bus) {
871 		if (dev->bus->pm) {
872 			info = "bus ";
873 			callback = pm_op(dev->bus->pm, state);
874 		} else if (dev->bus->resume) {
875 			info = "legacy bus ";
876 			callback = dev->bus->resume;
877 			goto End;
878 		}
879 	}
880 
881  Driver:
882 	if (!callback && dev->driver && dev->driver->pm) {
883 		info = "driver ";
884 		callback = pm_op(dev->driver->pm, state);
885 	}
886 
887  End:
888 	error = dpm_run_callback(callback, dev, state, info);
889 	dev->power.is_suspended = false;
890 
891  Unlock:
892 	device_unlock(dev);
893 	dpm_watchdog_clear(&wd);
894 
895  Complete:
896 	complete_all(&dev->power.completion);
897 
898 	TRACE_RESUME(error);
899 
900 	return error;
901 }
902 
903 static void async_resume(void *data, async_cookie_t cookie)
904 {
905 	struct device *dev = (struct device *)data;
906 	int error;
907 
908 	error = device_resume(dev, pm_transition, true);
909 	if (error)
910 		pm_dev_err(dev, pm_transition, " async", error);
911 	put_device(dev);
912 }
913 
914 /**
915  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
916  * @state: PM transition of the system being carried out.
917  *
918  * Execute the appropriate "resume" callback for all devices whose status
919  * indicates that they are suspended.
920  */
921 void dpm_resume(pm_message_t state)
922 {
923 	struct device *dev;
924 	ktime_t starttime = ktime_get();
925 
926 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
927 	might_sleep();
928 
929 	mutex_lock(&dpm_list_mtx);
930 	pm_transition = state;
931 	async_error = 0;
932 
933 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
934 		reinit_completion(&dev->power.completion);
935 		if (is_async(dev)) {
936 			get_device(dev);
937 			async_schedule(async_resume, dev);
938 		}
939 	}
940 
941 	while (!list_empty(&dpm_suspended_list)) {
942 		dev = to_device(dpm_suspended_list.next);
943 		get_device(dev);
944 		if (!is_async(dev)) {
945 			int error;
946 
947 			mutex_unlock(&dpm_list_mtx);
948 
949 			error = device_resume(dev, state, false);
950 			if (error) {
951 				suspend_stats.failed_resume++;
952 				dpm_save_failed_step(SUSPEND_RESUME);
953 				dpm_save_failed_dev(dev_name(dev));
954 				pm_dev_err(dev, state, "", error);
955 			}
956 
957 			mutex_lock(&dpm_list_mtx);
958 		}
959 		if (!list_empty(&dev->power.entry))
960 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
961 		put_device(dev);
962 	}
963 	mutex_unlock(&dpm_list_mtx);
964 	async_synchronize_full();
965 	dpm_show_time(starttime, state, 0, NULL);
966 
967 	cpufreq_resume();
968 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
969 }
970 
971 /**
972  * device_complete - Complete a PM transition for given device.
973  * @dev: Device to handle.
974  * @state: PM transition of the system being carried out.
975  */
976 static void device_complete(struct device *dev, pm_message_t state)
977 {
978 	void (*callback)(struct device *) = NULL;
979 	const char *info = NULL;
980 
981 	if (dev->power.syscore)
982 		return;
983 
984 	device_lock(dev);
985 
986 	if (dev->pm_domain) {
987 		info = "completing power domain ";
988 		callback = dev->pm_domain->ops.complete;
989 	} else if (dev->type && dev->type->pm) {
990 		info = "completing type ";
991 		callback = dev->type->pm->complete;
992 	} else if (dev->class && dev->class->pm) {
993 		info = "completing class ";
994 		callback = dev->class->pm->complete;
995 	} else if (dev->bus && dev->bus->pm) {
996 		info = "completing bus ";
997 		callback = dev->bus->pm->complete;
998 	}
999 
1000 	if (!callback && dev->driver && dev->driver->pm) {
1001 		info = "completing driver ";
1002 		callback = dev->driver->pm->complete;
1003 	}
1004 
1005 	if (callback) {
1006 		pm_dev_dbg(dev, state, info);
1007 		callback(dev);
1008 	}
1009 
1010 	device_unlock(dev);
1011 
1012 	pm_runtime_put(dev);
1013 }
1014 
1015 /**
1016  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1017  * @state: PM transition of the system being carried out.
1018  *
1019  * Execute the ->complete() callbacks for all devices whose PM status is not
1020  * DPM_ON (this allows new devices to be registered).
1021  */
1022 void dpm_complete(pm_message_t state)
1023 {
1024 	struct list_head list;
1025 
1026 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1027 	might_sleep();
1028 
1029 	INIT_LIST_HEAD(&list);
1030 	mutex_lock(&dpm_list_mtx);
1031 	while (!list_empty(&dpm_prepared_list)) {
1032 		struct device *dev = to_device(dpm_prepared_list.prev);
1033 
1034 		get_device(dev);
1035 		dev->power.is_prepared = false;
1036 		list_move(&dev->power.entry, &list);
1037 		mutex_unlock(&dpm_list_mtx);
1038 
1039 		trace_device_pm_callback_start(dev, "", state.event);
1040 		device_complete(dev, state);
1041 		trace_device_pm_callback_end(dev, 0);
1042 
1043 		mutex_lock(&dpm_list_mtx);
1044 		put_device(dev);
1045 	}
1046 	list_splice(&list, &dpm_list);
1047 	mutex_unlock(&dpm_list_mtx);
1048 
1049 	/* Allow device probing and trigger re-probing of deferred devices */
1050 	device_unblock_probing();
1051 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1052 }
1053 
1054 /**
1055  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1056  * @state: PM transition of the system being carried out.
1057  *
1058  * Execute "resume" callbacks for all devices and complete the PM transition of
1059  * the system.
1060  */
1061 void dpm_resume_end(pm_message_t state)
1062 {
1063 	dpm_resume(state);
1064 	dpm_complete(state);
1065 }
1066 EXPORT_SYMBOL_GPL(dpm_resume_end);
1067 
1068 
1069 /*------------------------- Suspend routines -------------------------*/
1070 
1071 /**
1072  * resume_event - Return a "resume" message for given "suspend" sleep state.
1073  * @sleep_state: PM message representing a sleep state.
1074  *
1075  * Return a PM message representing the resume event corresponding to given
1076  * sleep state.
1077  */
1078 static pm_message_t resume_event(pm_message_t sleep_state)
1079 {
1080 	switch (sleep_state.event) {
1081 	case PM_EVENT_SUSPEND:
1082 		return PMSG_RESUME;
1083 	case PM_EVENT_FREEZE:
1084 	case PM_EVENT_QUIESCE:
1085 		return PMSG_RECOVER;
1086 	case PM_EVENT_HIBERNATE:
1087 		return PMSG_RESTORE;
1088 	}
1089 	return PMSG_ON;
1090 }
1091 
1092 /**
1093  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1094  * @dev: Device to handle.
1095  * @state: PM transition of the system being carried out.
1096  * @async: If true, the device is being suspended asynchronously.
1097  *
1098  * The driver of @dev will not receive interrupts while this function is being
1099  * executed.
1100  */
1101 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1102 {
1103 	pm_callback_t callback = NULL;
1104 	const char *info = NULL;
1105 	int error = 0;
1106 
1107 	TRACE_DEVICE(dev);
1108 	TRACE_SUSPEND(0);
1109 
1110 	dpm_wait_for_subordinate(dev, async);
1111 
1112 	if (async_error)
1113 		goto Complete;
1114 
1115 	if (pm_wakeup_pending()) {
1116 		async_error = -EBUSY;
1117 		goto Complete;
1118 	}
1119 
1120 	if (dev->power.syscore || dev->power.direct_complete)
1121 		goto Complete;
1122 
1123 	if (dev->pm_domain) {
1124 		info = "noirq power domain ";
1125 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1126 	} else if (dev->type && dev->type->pm) {
1127 		info = "noirq type ";
1128 		callback = pm_noirq_op(dev->type->pm, state);
1129 	} else if (dev->class && dev->class->pm) {
1130 		info = "noirq class ";
1131 		callback = pm_noirq_op(dev->class->pm, state);
1132 	} else if (dev->bus && dev->bus->pm) {
1133 		info = "noirq bus ";
1134 		callback = pm_noirq_op(dev->bus->pm, state);
1135 	}
1136 
1137 	if (!callback && dev->driver && dev->driver->pm) {
1138 		info = "noirq driver ";
1139 		callback = pm_noirq_op(dev->driver->pm, state);
1140 	}
1141 
1142 	error = dpm_run_callback(callback, dev, state, info);
1143 	if (!error)
1144 		dev->power.is_noirq_suspended = true;
1145 	else
1146 		async_error = error;
1147 
1148 Complete:
1149 	complete_all(&dev->power.completion);
1150 	TRACE_SUSPEND(error);
1151 	return error;
1152 }
1153 
1154 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1155 {
1156 	struct device *dev = (struct device *)data;
1157 	int error;
1158 
1159 	error = __device_suspend_noirq(dev, pm_transition, true);
1160 	if (error) {
1161 		dpm_save_failed_dev(dev_name(dev));
1162 		pm_dev_err(dev, pm_transition, " async", error);
1163 	}
1164 
1165 	put_device(dev);
1166 }
1167 
1168 static int device_suspend_noirq(struct device *dev)
1169 {
1170 	reinit_completion(&dev->power.completion);
1171 
1172 	if (is_async(dev)) {
1173 		get_device(dev);
1174 		async_schedule(async_suspend_noirq, dev);
1175 		return 0;
1176 	}
1177 	return __device_suspend_noirq(dev, pm_transition, false);
1178 }
1179 
1180 void dpm_noirq_begin(void)
1181 {
1182 	cpuidle_pause();
1183 	device_wakeup_arm_wake_irqs();
1184 	suspend_device_irqs();
1185 }
1186 
1187 int dpm_noirq_suspend_devices(pm_message_t state)
1188 {
1189 	ktime_t starttime = ktime_get();
1190 	int error = 0;
1191 
1192 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1193 	mutex_lock(&dpm_list_mtx);
1194 	pm_transition = state;
1195 	async_error = 0;
1196 
1197 	while (!list_empty(&dpm_late_early_list)) {
1198 		struct device *dev = to_device(dpm_late_early_list.prev);
1199 
1200 		get_device(dev);
1201 		mutex_unlock(&dpm_list_mtx);
1202 
1203 		error = device_suspend_noirq(dev);
1204 
1205 		mutex_lock(&dpm_list_mtx);
1206 		if (error) {
1207 			pm_dev_err(dev, state, " noirq", error);
1208 			dpm_save_failed_dev(dev_name(dev));
1209 			put_device(dev);
1210 			break;
1211 		}
1212 		if (!list_empty(&dev->power.entry))
1213 			list_move(&dev->power.entry, &dpm_noirq_list);
1214 		put_device(dev);
1215 
1216 		if (async_error)
1217 			break;
1218 	}
1219 	mutex_unlock(&dpm_list_mtx);
1220 	async_synchronize_full();
1221 	if (!error)
1222 		error = async_error;
1223 
1224 	if (error) {
1225 		suspend_stats.failed_suspend_noirq++;
1226 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1227 	}
1228 	dpm_show_time(starttime, state, error, "noirq");
1229 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1230 	return error;
1231 }
1232 
1233 /**
1234  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1235  * @state: PM transition of the system being carried out.
1236  *
1237  * Prevent device drivers' interrupt handlers from being called and invoke
1238  * "noirq" suspend callbacks for all non-sysdev devices.
1239  */
1240 int dpm_suspend_noirq(pm_message_t state)
1241 {
1242 	int ret;
1243 
1244 	dpm_noirq_begin();
1245 	ret = dpm_noirq_suspend_devices(state);
1246 	if (ret)
1247 		dpm_resume_noirq(resume_event(state));
1248 
1249 	return ret;
1250 }
1251 
1252 /**
1253  * __device_suspend_late - Execute a "late suspend" callback for given device.
1254  * @dev: Device to handle.
1255  * @state: PM transition of the system being carried out.
1256  * @async: If true, the device is being suspended asynchronously.
1257  *
1258  * Runtime PM is disabled for @dev while this function is being executed.
1259  */
1260 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1261 {
1262 	pm_callback_t callback = NULL;
1263 	const char *info = NULL;
1264 	int error = 0;
1265 
1266 	TRACE_DEVICE(dev);
1267 	TRACE_SUSPEND(0);
1268 
1269 	__pm_runtime_disable(dev, false);
1270 
1271 	dpm_wait_for_subordinate(dev, async);
1272 
1273 	if (async_error)
1274 		goto Complete;
1275 
1276 	if (pm_wakeup_pending()) {
1277 		async_error = -EBUSY;
1278 		goto Complete;
1279 	}
1280 
1281 	if (dev->power.syscore || dev->power.direct_complete)
1282 		goto Complete;
1283 
1284 	if (dev->pm_domain) {
1285 		info = "late power domain ";
1286 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1287 	} else if (dev->type && dev->type->pm) {
1288 		info = "late type ";
1289 		callback = pm_late_early_op(dev->type->pm, state);
1290 	} else if (dev->class && dev->class->pm) {
1291 		info = "late class ";
1292 		callback = pm_late_early_op(dev->class->pm, state);
1293 	} else if (dev->bus && dev->bus->pm) {
1294 		info = "late bus ";
1295 		callback = pm_late_early_op(dev->bus->pm, state);
1296 	}
1297 
1298 	if (!callback && dev->driver && dev->driver->pm) {
1299 		info = "late driver ";
1300 		callback = pm_late_early_op(dev->driver->pm, state);
1301 	}
1302 
1303 	error = dpm_run_callback(callback, dev, state, info);
1304 	if (!error)
1305 		dev->power.is_late_suspended = true;
1306 	else
1307 		async_error = error;
1308 
1309 Complete:
1310 	TRACE_SUSPEND(error);
1311 	complete_all(&dev->power.completion);
1312 	return error;
1313 }
1314 
1315 static void async_suspend_late(void *data, async_cookie_t cookie)
1316 {
1317 	struct device *dev = (struct device *)data;
1318 	int error;
1319 
1320 	error = __device_suspend_late(dev, pm_transition, true);
1321 	if (error) {
1322 		dpm_save_failed_dev(dev_name(dev));
1323 		pm_dev_err(dev, pm_transition, " async", error);
1324 	}
1325 	put_device(dev);
1326 }
1327 
1328 static int device_suspend_late(struct device *dev)
1329 {
1330 	reinit_completion(&dev->power.completion);
1331 
1332 	if (is_async(dev)) {
1333 		get_device(dev);
1334 		async_schedule(async_suspend_late, dev);
1335 		return 0;
1336 	}
1337 
1338 	return __device_suspend_late(dev, pm_transition, false);
1339 }
1340 
1341 /**
1342  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1343  * @state: PM transition of the system being carried out.
1344  */
1345 int dpm_suspend_late(pm_message_t state)
1346 {
1347 	ktime_t starttime = ktime_get();
1348 	int error = 0;
1349 
1350 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1351 	mutex_lock(&dpm_list_mtx);
1352 	pm_transition = state;
1353 	async_error = 0;
1354 
1355 	while (!list_empty(&dpm_suspended_list)) {
1356 		struct device *dev = to_device(dpm_suspended_list.prev);
1357 
1358 		get_device(dev);
1359 		mutex_unlock(&dpm_list_mtx);
1360 
1361 		error = device_suspend_late(dev);
1362 
1363 		mutex_lock(&dpm_list_mtx);
1364 		if (!list_empty(&dev->power.entry))
1365 			list_move(&dev->power.entry, &dpm_late_early_list);
1366 
1367 		if (error) {
1368 			pm_dev_err(dev, state, " late", error);
1369 			dpm_save_failed_dev(dev_name(dev));
1370 			put_device(dev);
1371 			break;
1372 		}
1373 		put_device(dev);
1374 
1375 		if (async_error)
1376 			break;
1377 	}
1378 	mutex_unlock(&dpm_list_mtx);
1379 	async_synchronize_full();
1380 	if (!error)
1381 		error = async_error;
1382 	if (error) {
1383 		suspend_stats.failed_suspend_late++;
1384 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1385 		dpm_resume_early(resume_event(state));
1386 	}
1387 	dpm_show_time(starttime, state, error, "late");
1388 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1389 	return error;
1390 }
1391 
1392 /**
1393  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1394  * @state: PM transition of the system being carried out.
1395  */
1396 int dpm_suspend_end(pm_message_t state)
1397 {
1398 	int error = dpm_suspend_late(state);
1399 	if (error)
1400 		return error;
1401 
1402 	error = dpm_suspend_noirq(state);
1403 	if (error) {
1404 		dpm_resume_early(resume_event(state));
1405 		return error;
1406 	}
1407 
1408 	return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1411 
1412 /**
1413  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1414  * @dev: Device to suspend.
1415  * @state: PM transition of the system being carried out.
1416  * @cb: Suspend callback to execute.
1417  * @info: string description of caller.
1418  */
1419 static int legacy_suspend(struct device *dev, pm_message_t state,
1420 			  int (*cb)(struct device *dev, pm_message_t state),
1421 			  const char *info)
1422 {
1423 	int error;
1424 	ktime_t calltime;
1425 
1426 	calltime = initcall_debug_start(dev);
1427 
1428 	trace_device_pm_callback_start(dev, info, state.event);
1429 	error = cb(dev, state);
1430 	trace_device_pm_callback_end(dev, error);
1431 	suspend_report_result(cb, error);
1432 
1433 	initcall_debug_report(dev, calltime, error, state, info);
1434 
1435 	return error;
1436 }
1437 
1438 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1439 {
1440 	struct device_link *link;
1441 	int idx;
1442 
1443 	idx = device_links_read_lock();
1444 
1445 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1446 		spin_lock_irq(&link->supplier->power.lock);
1447 		link->supplier->power.direct_complete = false;
1448 		spin_unlock_irq(&link->supplier->power.lock);
1449 	}
1450 
1451 	device_links_read_unlock(idx);
1452 }
1453 
1454 /**
1455  * __device_suspend - Execute "suspend" callbacks for given device.
1456  * @dev: Device to handle.
1457  * @state: PM transition of the system being carried out.
1458  * @async: If true, the device is being suspended asynchronously.
1459  */
1460 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1461 {
1462 	pm_callback_t callback = NULL;
1463 	const char *info = NULL;
1464 	int error = 0;
1465 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1466 
1467 	TRACE_DEVICE(dev);
1468 	TRACE_SUSPEND(0);
1469 
1470 	dpm_wait_for_subordinate(dev, async);
1471 
1472 	if (async_error)
1473 		goto Complete;
1474 
1475 	/*
1476 	 * If a device configured to wake up the system from sleep states
1477 	 * has been suspended at run time and there's a resume request pending
1478 	 * for it, this is equivalent to the device signaling wakeup, so the
1479 	 * system suspend operation should be aborted.
1480 	 */
1481 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1482 		pm_wakeup_event(dev, 0);
1483 
1484 	if (pm_wakeup_pending()) {
1485 		async_error = -EBUSY;
1486 		goto Complete;
1487 	}
1488 
1489 	if (dev->power.syscore)
1490 		goto Complete;
1491 
1492 	if (dev->power.direct_complete) {
1493 		if (pm_runtime_status_suspended(dev)) {
1494 			pm_runtime_disable(dev);
1495 			if (pm_runtime_status_suspended(dev))
1496 				goto Complete;
1497 
1498 			pm_runtime_enable(dev);
1499 		}
1500 		dev->power.direct_complete = false;
1501 	}
1502 
1503 	dpm_watchdog_set(&wd, dev);
1504 	device_lock(dev);
1505 
1506 	if (dev->pm_domain) {
1507 		info = "power domain ";
1508 		callback = pm_op(&dev->pm_domain->ops, state);
1509 		goto Run;
1510 	}
1511 
1512 	if (dev->type && dev->type->pm) {
1513 		info = "type ";
1514 		callback = pm_op(dev->type->pm, state);
1515 		goto Run;
1516 	}
1517 
1518 	if (dev->class && dev->class->pm) {
1519 		info = "class ";
1520 		callback = pm_op(dev->class->pm, state);
1521 		goto Run;
1522 	}
1523 
1524 	if (dev->bus) {
1525 		if (dev->bus->pm) {
1526 			info = "bus ";
1527 			callback = pm_op(dev->bus->pm, state);
1528 		} else if (dev->bus->suspend) {
1529 			pm_dev_dbg(dev, state, "legacy bus ");
1530 			error = legacy_suspend(dev, state, dev->bus->suspend,
1531 						"legacy bus ");
1532 			goto End;
1533 		}
1534 	}
1535 
1536  Run:
1537 	if (!callback && dev->driver && dev->driver->pm) {
1538 		info = "driver ";
1539 		callback = pm_op(dev->driver->pm, state);
1540 	}
1541 
1542 	error = dpm_run_callback(callback, dev, state, info);
1543 
1544  End:
1545 	if (!error) {
1546 		struct device *parent = dev->parent;
1547 
1548 		dev->power.is_suspended = true;
1549 		if (parent) {
1550 			spin_lock_irq(&parent->power.lock);
1551 
1552 			dev->parent->power.direct_complete = false;
1553 			if (dev->power.wakeup_path
1554 			    && !dev->parent->power.ignore_children)
1555 				dev->parent->power.wakeup_path = true;
1556 
1557 			spin_unlock_irq(&parent->power.lock);
1558 		}
1559 		dpm_clear_suppliers_direct_complete(dev);
1560 	}
1561 
1562 	device_unlock(dev);
1563 	dpm_watchdog_clear(&wd);
1564 
1565  Complete:
1566 	if (error)
1567 		async_error = error;
1568 
1569 	complete_all(&dev->power.completion);
1570 	TRACE_SUSPEND(error);
1571 	return error;
1572 }
1573 
1574 static void async_suspend(void *data, async_cookie_t cookie)
1575 {
1576 	struct device *dev = (struct device *)data;
1577 	int error;
1578 
1579 	error = __device_suspend(dev, pm_transition, true);
1580 	if (error) {
1581 		dpm_save_failed_dev(dev_name(dev));
1582 		pm_dev_err(dev, pm_transition, " async", error);
1583 	}
1584 
1585 	put_device(dev);
1586 }
1587 
1588 static int device_suspend(struct device *dev)
1589 {
1590 	reinit_completion(&dev->power.completion);
1591 
1592 	if (is_async(dev)) {
1593 		get_device(dev);
1594 		async_schedule(async_suspend, dev);
1595 		return 0;
1596 	}
1597 
1598 	return __device_suspend(dev, pm_transition, false);
1599 }
1600 
1601 /**
1602  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1603  * @state: PM transition of the system being carried out.
1604  */
1605 int dpm_suspend(pm_message_t state)
1606 {
1607 	ktime_t starttime = ktime_get();
1608 	int error = 0;
1609 
1610 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1611 	might_sleep();
1612 
1613 	cpufreq_suspend();
1614 
1615 	mutex_lock(&dpm_list_mtx);
1616 	pm_transition = state;
1617 	async_error = 0;
1618 	while (!list_empty(&dpm_prepared_list)) {
1619 		struct device *dev = to_device(dpm_prepared_list.prev);
1620 
1621 		get_device(dev);
1622 		mutex_unlock(&dpm_list_mtx);
1623 
1624 		error = device_suspend(dev);
1625 
1626 		mutex_lock(&dpm_list_mtx);
1627 		if (error) {
1628 			pm_dev_err(dev, state, "", error);
1629 			dpm_save_failed_dev(dev_name(dev));
1630 			put_device(dev);
1631 			break;
1632 		}
1633 		if (!list_empty(&dev->power.entry))
1634 			list_move(&dev->power.entry, &dpm_suspended_list);
1635 		put_device(dev);
1636 		if (async_error)
1637 			break;
1638 	}
1639 	mutex_unlock(&dpm_list_mtx);
1640 	async_synchronize_full();
1641 	if (!error)
1642 		error = async_error;
1643 	if (error) {
1644 		suspend_stats.failed_suspend++;
1645 		dpm_save_failed_step(SUSPEND_SUSPEND);
1646 	}
1647 	dpm_show_time(starttime, state, error, NULL);
1648 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1649 	return error;
1650 }
1651 
1652 /**
1653  * device_prepare - Prepare a device for system power transition.
1654  * @dev: Device to handle.
1655  * @state: PM transition of the system being carried out.
1656  *
1657  * Execute the ->prepare() callback(s) for given device.  No new children of the
1658  * device may be registered after this function has returned.
1659  */
1660 static int device_prepare(struct device *dev, pm_message_t state)
1661 {
1662 	int (*callback)(struct device *) = NULL;
1663 	int ret = 0;
1664 
1665 	if (dev->power.syscore)
1666 		return 0;
1667 
1668 	WARN_ON(dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
1669 		!pm_runtime_enabled(dev));
1670 
1671 	/*
1672 	 * If a device's parent goes into runtime suspend at the wrong time,
1673 	 * it won't be possible to resume the device.  To prevent this we
1674 	 * block runtime suspend here, during the prepare phase, and allow
1675 	 * it again during the complete phase.
1676 	 */
1677 	pm_runtime_get_noresume(dev);
1678 
1679 	device_lock(dev);
1680 
1681 	dev->power.wakeup_path = device_may_wakeup(dev);
1682 
1683 	if (dev->power.no_pm_callbacks) {
1684 		ret = 1;	/* Let device go direct_complete */
1685 		goto unlock;
1686 	}
1687 
1688 	if (dev->pm_domain)
1689 		callback = dev->pm_domain->ops.prepare;
1690 	else if (dev->type && dev->type->pm)
1691 		callback = dev->type->pm->prepare;
1692 	else if (dev->class && dev->class->pm)
1693 		callback = dev->class->pm->prepare;
1694 	else if (dev->bus && dev->bus->pm)
1695 		callback = dev->bus->pm->prepare;
1696 
1697 	if (!callback && dev->driver && dev->driver->pm)
1698 		callback = dev->driver->pm->prepare;
1699 
1700 	if (callback)
1701 		ret = callback(dev);
1702 
1703 unlock:
1704 	device_unlock(dev);
1705 
1706 	if (ret < 0) {
1707 		suspend_report_result(callback, ret);
1708 		pm_runtime_put(dev);
1709 		return ret;
1710 	}
1711 	/*
1712 	 * A positive return value from ->prepare() means "this device appears
1713 	 * to be runtime-suspended and its state is fine, so if it really is
1714 	 * runtime-suspended, you can leave it in that state provided that you
1715 	 * will do the same thing with all of its descendants".  This only
1716 	 * applies to suspend transitions, however.
1717 	 */
1718 	spin_lock_irq(&dev->power.lock);
1719 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1720 		pm_runtime_suspended(dev) && ret > 0 &&
1721 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1722 	spin_unlock_irq(&dev->power.lock);
1723 	return 0;
1724 }
1725 
1726 /**
1727  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1728  * @state: PM transition of the system being carried out.
1729  *
1730  * Execute the ->prepare() callback(s) for all devices.
1731  */
1732 int dpm_prepare(pm_message_t state)
1733 {
1734 	int error = 0;
1735 
1736 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1737 	might_sleep();
1738 
1739 	/*
1740 	 * Give a chance for the known devices to complete their probes, before
1741 	 * disable probing of devices. This sync point is important at least
1742 	 * at boot time + hibernation restore.
1743 	 */
1744 	wait_for_device_probe();
1745 	/*
1746 	 * It is unsafe if probing of devices will happen during suspend or
1747 	 * hibernation and system behavior will be unpredictable in this case.
1748 	 * So, let's prohibit device's probing here and defer their probes
1749 	 * instead. The normal behavior will be restored in dpm_complete().
1750 	 */
1751 	device_block_probing();
1752 
1753 	mutex_lock(&dpm_list_mtx);
1754 	while (!list_empty(&dpm_list)) {
1755 		struct device *dev = to_device(dpm_list.next);
1756 
1757 		get_device(dev);
1758 		mutex_unlock(&dpm_list_mtx);
1759 
1760 		trace_device_pm_callback_start(dev, "", state.event);
1761 		error = device_prepare(dev, state);
1762 		trace_device_pm_callback_end(dev, error);
1763 
1764 		mutex_lock(&dpm_list_mtx);
1765 		if (error) {
1766 			if (error == -EAGAIN) {
1767 				put_device(dev);
1768 				error = 0;
1769 				continue;
1770 			}
1771 			printk(KERN_INFO "PM: Device %s not prepared "
1772 				"for power transition: code %d\n",
1773 				dev_name(dev), error);
1774 			put_device(dev);
1775 			break;
1776 		}
1777 		dev->power.is_prepared = true;
1778 		if (!list_empty(&dev->power.entry))
1779 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1780 		put_device(dev);
1781 	}
1782 	mutex_unlock(&dpm_list_mtx);
1783 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1784 	return error;
1785 }
1786 
1787 /**
1788  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1789  * @state: PM transition of the system being carried out.
1790  *
1791  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1792  * callbacks for them.
1793  */
1794 int dpm_suspend_start(pm_message_t state)
1795 {
1796 	int error;
1797 
1798 	error = dpm_prepare(state);
1799 	if (error) {
1800 		suspend_stats.failed_prepare++;
1801 		dpm_save_failed_step(SUSPEND_PREPARE);
1802 	} else
1803 		error = dpm_suspend(state);
1804 	return error;
1805 }
1806 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1807 
1808 void __suspend_report_result(const char *function, void *fn, int ret)
1809 {
1810 	if (ret)
1811 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1812 }
1813 EXPORT_SYMBOL_GPL(__suspend_report_result);
1814 
1815 /**
1816  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1817  * @dev: Device to wait for.
1818  * @subordinate: Device that needs to wait for @dev.
1819  */
1820 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1821 {
1822 	dpm_wait(dev, subordinate->power.async_suspend);
1823 	return async_error;
1824 }
1825 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1826 
1827 /**
1828  * dpm_for_each_dev - device iterator.
1829  * @data: data for the callback.
1830  * @fn: function to be called for each device.
1831  *
1832  * Iterate over devices in dpm_list, and call @fn for each device,
1833  * passing it @data.
1834  */
1835 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1836 {
1837 	struct device *dev;
1838 
1839 	if (!fn)
1840 		return;
1841 
1842 	device_pm_lock();
1843 	list_for_each_entry(dev, &dpm_list, power.entry)
1844 		fn(dev, data);
1845 	device_pm_unlock();
1846 }
1847 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1848 
1849 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1850 {
1851 	if (!ops)
1852 		return true;
1853 
1854 	return !ops->prepare &&
1855 	       !ops->suspend &&
1856 	       !ops->suspend_late &&
1857 	       !ops->suspend_noirq &&
1858 	       !ops->resume_noirq &&
1859 	       !ops->resume_early &&
1860 	       !ops->resume &&
1861 	       !ops->complete;
1862 }
1863 
1864 void device_pm_check_callbacks(struct device *dev)
1865 {
1866 	spin_lock_irq(&dev->power.lock);
1867 	dev->power.no_pm_callbacks =
1868 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1869 		 !dev->bus->suspend && !dev->bus->resume)) &&
1870 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1871 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1872 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1873 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1874 		 !dev->driver->suspend && !dev->driver->resume));
1875 	spin_unlock_irq(&dev->power.lock);
1876 }
1877 
1878 bool dev_pm_smart_suspend_and_suspended(struct device *dev)
1879 {
1880 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
1881 		pm_runtime_status_suspended(dev);
1882 }
1883