xref: /openbmc/linux/drivers/base/power/main.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 /*
44  * The entries in the dpm_list list are in a depth first order, simply
45  * because children are guaranteed to be discovered after parents, and
46  * are inserted at the back of the list on discovery.
47  *
48  * Since device_pm_add() may be called with a device lock held,
49  * we must never try to acquire a device lock while holding
50  * dpm_list_mutex.
51  */
52 
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58 
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62 
63 static int async_error;
64 
65 static const char *pm_verb(int event)
66 {
67 	switch (event) {
68 	case PM_EVENT_SUSPEND:
69 		return "suspend";
70 	case PM_EVENT_RESUME:
71 		return "resume";
72 	case PM_EVENT_FREEZE:
73 		return "freeze";
74 	case PM_EVENT_QUIESCE:
75 		return "quiesce";
76 	case PM_EVENT_HIBERNATE:
77 		return "hibernate";
78 	case PM_EVENT_THAW:
79 		return "thaw";
80 	case PM_EVENT_RESTORE:
81 		return "restore";
82 	case PM_EVENT_RECOVER:
83 		return "recover";
84 	default:
85 		return "(unknown PM event)";
86 	}
87 }
88 
89 /**
90  * device_pm_sleep_init - Initialize system suspend-related device fields.
91  * @dev: Device object being initialized.
92  */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 	dev->power.is_prepared = false;
96 	dev->power.is_suspended = false;
97 	dev->power.is_noirq_suspended = false;
98 	dev->power.is_late_suspended = false;
99 	init_completion(&dev->power.completion);
100 	complete_all(&dev->power.completion);
101 	dev->power.wakeup = NULL;
102 	INIT_LIST_HEAD(&dev->power.entry);
103 }
104 
105 /**
106  * device_pm_lock - Lock the list of active devices used by the PM core.
107  */
108 void device_pm_lock(void)
109 {
110 	mutex_lock(&dpm_list_mtx);
111 }
112 
113 /**
114  * device_pm_unlock - Unlock the list of active devices used by the PM core.
115  */
116 void device_pm_unlock(void)
117 {
118 	mutex_unlock(&dpm_list_mtx);
119 }
120 
121 /**
122  * device_pm_add - Add a device to the PM core's list of active devices.
123  * @dev: Device to add to the list.
124  */
125 void device_pm_add(struct device *dev)
126 {
127 	pr_debug("PM: Adding info for %s:%s\n",
128 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 	device_pm_check_callbacks(dev);
130 	mutex_lock(&dpm_list_mtx);
131 	if (dev->parent && dev->parent->power.is_prepared)
132 		dev_warn(dev, "parent %s should not be sleeping\n",
133 			dev_name(dev->parent));
134 	list_add_tail(&dev->power.entry, &dpm_list);
135 	dev->power.in_dpm_list = true;
136 	mutex_unlock(&dpm_list_mtx);
137 }
138 
139 /**
140  * device_pm_remove - Remove a device from the PM core's list of active devices.
141  * @dev: Device to be removed from the list.
142  */
143 void device_pm_remove(struct device *dev)
144 {
145 	pr_debug("PM: Removing info for %s:%s\n",
146 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 	complete_all(&dev->power.completion);
148 	mutex_lock(&dpm_list_mtx);
149 	list_del_init(&dev->power.entry);
150 	dev->power.in_dpm_list = false;
151 	mutex_unlock(&dpm_list_mtx);
152 	device_wakeup_disable(dev);
153 	pm_runtime_remove(dev);
154 	device_pm_check_callbacks(dev);
155 }
156 
157 /**
158  * device_pm_move_before - Move device in the PM core's list of active devices.
159  * @deva: Device to move in dpm_list.
160  * @devb: Device @deva should come before.
161  */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 	pr_debug("PM: Moving %s:%s before %s:%s\n",
165 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 	/* Delete deva from dpm_list and reinsert before devb. */
168 	list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170 
171 /**
172  * device_pm_move_after - Move device in the PM core's list of active devices.
173  * @deva: Device to move in dpm_list.
174  * @devb: Device @deva should come after.
175  */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 	pr_debug("PM: Moving %s:%s after %s:%s\n",
179 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 	/* Delete deva from dpm_list and reinsert after devb. */
182 	list_move(&deva->power.entry, &devb->power.entry);
183 }
184 
185 /**
186  * device_pm_move_last - Move device to end of the PM core's list of devices.
187  * @dev: Device to move in dpm_list.
188  */
189 void device_pm_move_last(struct device *dev)
190 {
191 	pr_debug("PM: Moving %s:%s to end of list\n",
192 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 	list_move_tail(&dev->power.entry, &dpm_list);
194 }
195 
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 	ktime_t calltime = 0;
199 
200 	if (pm_print_times_enabled) {
201 		pr_info("calling  %s+ @ %i, parent: %s\n",
202 			dev_name(dev), task_pid_nr(current),
203 			dev->parent ? dev_name(dev->parent) : "none");
204 		calltime = ktime_get();
205 	}
206 
207 	return calltime;
208 }
209 
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 				  int error, pm_message_t state,
212 				  const char *info)
213 {
214 	ktime_t rettime;
215 	s64 nsecs;
216 
217 	rettime = ktime_get();
218 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219 
220 	if (pm_print_times_enabled) {
221 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
222 			error, (unsigned long long)nsecs >> 10);
223 	}
224 }
225 
226 /**
227  * dpm_wait - Wait for a PM operation to complete.
228  * @dev: Device to wait for.
229  * @async: If unset, wait only if the device's power.async_suspend flag is set.
230  */
231 static void dpm_wait(struct device *dev, bool async)
232 {
233 	if (!dev)
234 		return;
235 
236 	if (async || (pm_async_enabled && dev->power.async_suspend))
237 		wait_for_completion(&dev->power.completion);
238 }
239 
240 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 {
242 	dpm_wait(dev, *((bool *)async_ptr));
243 	return 0;
244 }
245 
246 static void dpm_wait_for_children(struct device *dev, bool async)
247 {
248        device_for_each_child(dev, &async, dpm_wait_fn);
249 }
250 
251 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 {
253 	struct device_link *link;
254 	int idx;
255 
256 	idx = device_links_read_lock();
257 
258 	/*
259 	 * If the supplier goes away right after we've checked the link to it,
260 	 * we'll wait for its completion to change the state, but that's fine,
261 	 * because the only things that will block as a result are the SRCU
262 	 * callbacks freeing the link objects for the links in the list we're
263 	 * walking.
264 	 */
265 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
266 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
267 			dpm_wait(link->supplier, async);
268 
269 	device_links_read_unlock(idx);
270 }
271 
272 static void dpm_wait_for_superior(struct device *dev, bool async)
273 {
274 	dpm_wait(dev->parent, async);
275 	dpm_wait_for_suppliers(dev, async);
276 }
277 
278 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 {
280 	struct device_link *link;
281 	int idx;
282 
283 	idx = device_links_read_lock();
284 
285 	/*
286 	 * The status of a device link can only be changed from "dormant" by a
287 	 * probe, but that cannot happen during system suspend/resume.  In
288 	 * theory it can change to "dormant" at that time, but then it is
289 	 * reasonable to wait for the target device anyway (eg. if it goes
290 	 * away, it's better to wait for it to go away completely and then
291 	 * continue instead of trying to continue in parallel with its
292 	 * unregistration).
293 	 */
294 	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
295 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
296 			dpm_wait(link->consumer, async);
297 
298 	device_links_read_unlock(idx);
299 }
300 
301 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 {
303 	dpm_wait_for_children(dev, async);
304 	dpm_wait_for_consumers(dev, async);
305 }
306 
307 /**
308  * pm_op - Return the PM operation appropriate for given PM event.
309  * @ops: PM operations to choose from.
310  * @state: PM transition of the system being carried out.
311  */
312 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 {
314 	switch (state.event) {
315 #ifdef CONFIG_SUSPEND
316 	case PM_EVENT_SUSPEND:
317 		return ops->suspend;
318 	case PM_EVENT_RESUME:
319 		return ops->resume;
320 #endif /* CONFIG_SUSPEND */
321 #ifdef CONFIG_HIBERNATE_CALLBACKS
322 	case PM_EVENT_FREEZE:
323 	case PM_EVENT_QUIESCE:
324 		return ops->freeze;
325 	case PM_EVENT_HIBERNATE:
326 		return ops->poweroff;
327 	case PM_EVENT_THAW:
328 	case PM_EVENT_RECOVER:
329 		return ops->thaw;
330 		break;
331 	case PM_EVENT_RESTORE:
332 		return ops->restore;
333 #endif /* CONFIG_HIBERNATE_CALLBACKS */
334 	}
335 
336 	return NULL;
337 }
338 
339 /**
340  * pm_late_early_op - Return the PM operation appropriate for given PM event.
341  * @ops: PM operations to choose from.
342  * @state: PM transition of the system being carried out.
343  *
344  * Runtime PM is disabled for @dev while this function is being executed.
345  */
346 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
347 				      pm_message_t state)
348 {
349 	switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 	case PM_EVENT_SUSPEND:
352 		return ops->suspend_late;
353 	case PM_EVENT_RESUME:
354 		return ops->resume_early;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 	case PM_EVENT_FREEZE:
358 	case PM_EVENT_QUIESCE:
359 		return ops->freeze_late;
360 	case PM_EVENT_HIBERNATE:
361 		return ops->poweroff_late;
362 	case PM_EVENT_THAW:
363 	case PM_EVENT_RECOVER:
364 		return ops->thaw_early;
365 	case PM_EVENT_RESTORE:
366 		return ops->restore_early;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 	}
369 
370 	return NULL;
371 }
372 
373 /**
374  * pm_noirq_op - Return the PM operation appropriate for given PM event.
375  * @ops: PM operations to choose from.
376  * @state: PM transition of the system being carried out.
377  *
378  * The driver of @dev will not receive interrupts while this function is being
379  * executed.
380  */
381 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 {
383 	switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 	case PM_EVENT_SUSPEND:
386 		return ops->suspend_noirq;
387 	case PM_EVENT_RESUME:
388 		return ops->resume_noirq;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 	case PM_EVENT_FREEZE:
392 	case PM_EVENT_QUIESCE:
393 		return ops->freeze_noirq;
394 	case PM_EVENT_HIBERNATE:
395 		return ops->poweroff_noirq;
396 	case PM_EVENT_THAW:
397 	case PM_EVENT_RECOVER:
398 		return ops->thaw_noirq;
399 	case PM_EVENT_RESTORE:
400 		return ops->restore_noirq;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 	}
403 
404 	return NULL;
405 }
406 
407 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 {
409 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
410 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
411 		", may wakeup" : "");
412 }
413 
414 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
415 			int error)
416 {
417 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
418 		dev_name(dev), pm_verb(state.event), info, error);
419 }
420 
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
422 			  const char *info)
423 {
424 	ktime_t calltime;
425 	u64 usecs64;
426 	int usecs;
427 
428 	calltime = ktime_get();
429 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
430 	do_div(usecs64, NSEC_PER_USEC);
431 	usecs = usecs64;
432 	if (usecs == 0)
433 		usecs = 1;
434 
435 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
436 		  info ?: "", info ? " " : "", pm_verb(state.event),
437 		  error ? "aborted" : "complete",
438 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
439 }
440 
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 			    pm_message_t state, const char *info)
443 {
444 	ktime_t calltime;
445 	int error;
446 
447 	if (!cb)
448 		return 0;
449 
450 	calltime = initcall_debug_start(dev);
451 
452 	pm_dev_dbg(dev, state, info);
453 	trace_device_pm_callback_start(dev, info, state.event);
454 	error = cb(dev);
455 	trace_device_pm_callback_end(dev, error);
456 	suspend_report_result(cb, error);
457 
458 	initcall_debug_report(dev, calltime, error, state, info);
459 
460 	return error;
461 }
462 
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 	struct device		*dev;
466 	struct task_struct	*tsk;
467 	struct timer_list	timer;
468 };
469 
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 	struct dpm_watchdog wd
472 
473 /**
474  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475  * @data: Watchdog object address.
476  *
477  * Called when a driver has timed out suspending or resuming.
478  * There's not much we can do here to recover so panic() to
479  * capture a crash-dump in pstore.
480  */
481 static void dpm_watchdog_handler(unsigned long data)
482 {
483 	struct dpm_watchdog *wd = (void *)data;
484 
485 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 	show_stack(wd->tsk, NULL);
487 	panic("%s %s: unrecoverable failure\n",
488 		dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490 
491 /**
492  * dpm_watchdog_set - Enable pm watchdog for given device.
493  * @wd: Watchdog. Must be allocated on the stack.
494  * @dev: Device to handle.
495  */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 	struct timer_list *timer = &wd->timer;
499 
500 	wd->dev = dev;
501 	wd->tsk = current;
502 
503 	init_timer_on_stack(timer);
504 	/* use same timeout value for both suspend and resume */
505 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 	timer->function = dpm_watchdog_handler;
507 	timer->data = (unsigned long)wd;
508 	add_timer(timer);
509 }
510 
511 /**
512  * dpm_watchdog_clear - Disable suspend/resume watchdog.
513  * @wd: Watchdog to disable.
514  */
515 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
516 {
517 	struct timer_list *timer = &wd->timer;
518 
519 	del_timer_sync(timer);
520 	destroy_timer_on_stack(timer);
521 }
522 #else
523 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
524 #define dpm_watchdog_set(x, y)
525 #define dpm_watchdog_clear(x)
526 #endif
527 
528 /*------------------------- Resume routines -------------------------*/
529 
530 /**
531  * device_resume_noirq - Execute an "early resume" callback for given device.
532  * @dev: Device to handle.
533  * @state: PM transition of the system being carried out.
534  * @async: If true, the device is being resumed asynchronously.
535  *
536  * The driver of @dev will not receive interrupts while this function is being
537  * executed.
538  */
539 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
540 {
541 	pm_callback_t callback = NULL;
542 	const char *info = NULL;
543 	int error = 0;
544 
545 	TRACE_DEVICE(dev);
546 	TRACE_RESUME(0);
547 
548 	if (dev->power.syscore || dev->power.direct_complete)
549 		goto Out;
550 
551 	if (!dev->power.is_noirq_suspended)
552 		goto Out;
553 
554 	dpm_wait_for_superior(dev, async);
555 
556 	if (dev->pm_domain) {
557 		info = "noirq power domain ";
558 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
559 	} else if (dev->type && dev->type->pm) {
560 		info = "noirq type ";
561 		callback = pm_noirq_op(dev->type->pm, state);
562 	} else if (dev->class && dev->class->pm) {
563 		info = "noirq class ";
564 		callback = pm_noirq_op(dev->class->pm, state);
565 	} else if (dev->bus && dev->bus->pm) {
566 		info = "noirq bus ";
567 		callback = pm_noirq_op(dev->bus->pm, state);
568 	}
569 
570 	if (!callback && dev->driver && dev->driver->pm) {
571 		info = "noirq driver ";
572 		callback = pm_noirq_op(dev->driver->pm, state);
573 	}
574 
575 	error = dpm_run_callback(callback, dev, state, info);
576 	dev->power.is_noirq_suspended = false;
577 
578  Out:
579 	complete_all(&dev->power.completion);
580 	TRACE_RESUME(error);
581 	return error;
582 }
583 
584 static bool is_async(struct device *dev)
585 {
586 	return dev->power.async_suspend && pm_async_enabled
587 		&& !pm_trace_is_enabled();
588 }
589 
590 static void async_resume_noirq(void *data, async_cookie_t cookie)
591 {
592 	struct device *dev = (struct device *)data;
593 	int error;
594 
595 	error = device_resume_noirq(dev, pm_transition, true);
596 	if (error)
597 		pm_dev_err(dev, pm_transition, " async", error);
598 
599 	put_device(dev);
600 }
601 
602 void dpm_noirq_resume_devices(pm_message_t state)
603 {
604 	struct device *dev;
605 	ktime_t starttime = ktime_get();
606 
607 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
608 	mutex_lock(&dpm_list_mtx);
609 	pm_transition = state;
610 
611 	/*
612 	 * Advanced the async threads upfront,
613 	 * in case the starting of async threads is
614 	 * delayed by non-async resuming devices.
615 	 */
616 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
617 		reinit_completion(&dev->power.completion);
618 		if (is_async(dev)) {
619 			get_device(dev);
620 			async_schedule(async_resume_noirq, dev);
621 		}
622 	}
623 
624 	while (!list_empty(&dpm_noirq_list)) {
625 		dev = to_device(dpm_noirq_list.next);
626 		get_device(dev);
627 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
628 		mutex_unlock(&dpm_list_mtx);
629 
630 		if (!is_async(dev)) {
631 			int error;
632 
633 			error = device_resume_noirq(dev, state, false);
634 			if (error) {
635 				suspend_stats.failed_resume_noirq++;
636 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
637 				dpm_save_failed_dev(dev_name(dev));
638 				pm_dev_err(dev, state, " noirq", error);
639 			}
640 		}
641 
642 		mutex_lock(&dpm_list_mtx);
643 		put_device(dev);
644 	}
645 	mutex_unlock(&dpm_list_mtx);
646 	async_synchronize_full();
647 	dpm_show_time(starttime, state, 0, "noirq");
648 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
649 }
650 
651 void dpm_noirq_end(void)
652 {
653 	resume_device_irqs();
654 	device_wakeup_disarm_wake_irqs();
655 	cpuidle_resume();
656 }
657 
658 /**
659  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
660  * @state: PM transition of the system being carried out.
661  *
662  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
663  * allow device drivers' interrupt handlers to be called.
664  */
665 void dpm_resume_noirq(pm_message_t state)
666 {
667 	dpm_noirq_resume_devices(state);
668 	dpm_noirq_end();
669 }
670 
671 /**
672  * device_resume_early - Execute an "early resume" callback for given device.
673  * @dev: Device to handle.
674  * @state: PM transition of the system being carried out.
675  * @async: If true, the device is being resumed asynchronously.
676  *
677  * Runtime PM is disabled for @dev while this function is being executed.
678  */
679 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
680 {
681 	pm_callback_t callback = NULL;
682 	const char *info = NULL;
683 	int error = 0;
684 
685 	TRACE_DEVICE(dev);
686 	TRACE_RESUME(0);
687 
688 	if (dev->power.syscore || dev->power.direct_complete)
689 		goto Out;
690 
691 	if (!dev->power.is_late_suspended)
692 		goto Out;
693 
694 	dpm_wait_for_superior(dev, async);
695 
696 	if (dev->pm_domain) {
697 		info = "early power domain ";
698 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
699 	} else if (dev->type && dev->type->pm) {
700 		info = "early type ";
701 		callback = pm_late_early_op(dev->type->pm, state);
702 	} else if (dev->class && dev->class->pm) {
703 		info = "early class ";
704 		callback = pm_late_early_op(dev->class->pm, state);
705 	} else if (dev->bus && dev->bus->pm) {
706 		info = "early bus ";
707 		callback = pm_late_early_op(dev->bus->pm, state);
708 	}
709 
710 	if (!callback && dev->driver && dev->driver->pm) {
711 		info = "early driver ";
712 		callback = pm_late_early_op(dev->driver->pm, state);
713 	}
714 
715 	error = dpm_run_callback(callback, dev, state, info);
716 	dev->power.is_late_suspended = false;
717 
718  Out:
719 	TRACE_RESUME(error);
720 
721 	pm_runtime_enable(dev);
722 	complete_all(&dev->power.completion);
723 	return error;
724 }
725 
726 static void async_resume_early(void *data, async_cookie_t cookie)
727 {
728 	struct device *dev = (struct device *)data;
729 	int error;
730 
731 	error = device_resume_early(dev, pm_transition, true);
732 	if (error)
733 		pm_dev_err(dev, pm_transition, " async", error);
734 
735 	put_device(dev);
736 }
737 
738 /**
739  * dpm_resume_early - Execute "early resume" callbacks for all devices.
740  * @state: PM transition of the system being carried out.
741  */
742 void dpm_resume_early(pm_message_t state)
743 {
744 	struct device *dev;
745 	ktime_t starttime = ktime_get();
746 
747 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
748 	mutex_lock(&dpm_list_mtx);
749 	pm_transition = state;
750 
751 	/*
752 	 * Advanced the async threads upfront,
753 	 * in case the starting of async threads is
754 	 * delayed by non-async resuming devices.
755 	 */
756 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
757 		reinit_completion(&dev->power.completion);
758 		if (is_async(dev)) {
759 			get_device(dev);
760 			async_schedule(async_resume_early, dev);
761 		}
762 	}
763 
764 	while (!list_empty(&dpm_late_early_list)) {
765 		dev = to_device(dpm_late_early_list.next);
766 		get_device(dev);
767 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
768 		mutex_unlock(&dpm_list_mtx);
769 
770 		if (!is_async(dev)) {
771 			int error;
772 
773 			error = device_resume_early(dev, state, false);
774 			if (error) {
775 				suspend_stats.failed_resume_early++;
776 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
777 				dpm_save_failed_dev(dev_name(dev));
778 				pm_dev_err(dev, state, " early", error);
779 			}
780 		}
781 		mutex_lock(&dpm_list_mtx);
782 		put_device(dev);
783 	}
784 	mutex_unlock(&dpm_list_mtx);
785 	async_synchronize_full();
786 	dpm_show_time(starttime, state, 0, "early");
787 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
788 }
789 
790 /**
791  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
792  * @state: PM transition of the system being carried out.
793  */
794 void dpm_resume_start(pm_message_t state)
795 {
796 	dpm_resume_noirq(state);
797 	dpm_resume_early(state);
798 }
799 EXPORT_SYMBOL_GPL(dpm_resume_start);
800 
801 /**
802  * device_resume - Execute "resume" callbacks for given device.
803  * @dev: Device to handle.
804  * @state: PM transition of the system being carried out.
805  * @async: If true, the device is being resumed asynchronously.
806  */
807 static int device_resume(struct device *dev, pm_message_t state, bool async)
808 {
809 	pm_callback_t callback = NULL;
810 	const char *info = NULL;
811 	int error = 0;
812 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
813 
814 	TRACE_DEVICE(dev);
815 	TRACE_RESUME(0);
816 
817 	if (dev->power.syscore)
818 		goto Complete;
819 
820 	if (dev->power.direct_complete) {
821 		/* Match the pm_runtime_disable() in __device_suspend(). */
822 		pm_runtime_enable(dev);
823 		goto Complete;
824 	}
825 
826 	dpm_wait_for_superior(dev, async);
827 	dpm_watchdog_set(&wd, dev);
828 	device_lock(dev);
829 
830 	/*
831 	 * This is a fib.  But we'll allow new children to be added below
832 	 * a resumed device, even if the device hasn't been completed yet.
833 	 */
834 	dev->power.is_prepared = false;
835 
836 	if (!dev->power.is_suspended)
837 		goto Unlock;
838 
839 	if (dev->pm_domain) {
840 		info = "power domain ";
841 		callback = pm_op(&dev->pm_domain->ops, state);
842 		goto Driver;
843 	}
844 
845 	if (dev->type && dev->type->pm) {
846 		info = "type ";
847 		callback = pm_op(dev->type->pm, state);
848 		goto Driver;
849 	}
850 
851 	if (dev->class) {
852 		if (dev->class->pm) {
853 			info = "class ";
854 			callback = pm_op(dev->class->pm, state);
855 			goto Driver;
856 		} else if (dev->class->resume) {
857 			info = "legacy class ";
858 			callback = dev->class->resume;
859 			goto End;
860 		}
861 	}
862 
863 	if (dev->bus) {
864 		if (dev->bus->pm) {
865 			info = "bus ";
866 			callback = pm_op(dev->bus->pm, state);
867 		} else if (dev->bus->resume) {
868 			info = "legacy bus ";
869 			callback = dev->bus->resume;
870 			goto End;
871 		}
872 	}
873 
874  Driver:
875 	if (!callback && dev->driver && dev->driver->pm) {
876 		info = "driver ";
877 		callback = pm_op(dev->driver->pm, state);
878 	}
879 
880  End:
881 	error = dpm_run_callback(callback, dev, state, info);
882 	dev->power.is_suspended = false;
883 
884  Unlock:
885 	device_unlock(dev);
886 	dpm_watchdog_clear(&wd);
887 
888  Complete:
889 	complete_all(&dev->power.completion);
890 
891 	TRACE_RESUME(error);
892 
893 	return error;
894 }
895 
896 static void async_resume(void *data, async_cookie_t cookie)
897 {
898 	struct device *dev = (struct device *)data;
899 	int error;
900 
901 	error = device_resume(dev, pm_transition, true);
902 	if (error)
903 		pm_dev_err(dev, pm_transition, " async", error);
904 	put_device(dev);
905 }
906 
907 /**
908  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
909  * @state: PM transition of the system being carried out.
910  *
911  * Execute the appropriate "resume" callback for all devices whose status
912  * indicates that they are suspended.
913  */
914 void dpm_resume(pm_message_t state)
915 {
916 	struct device *dev;
917 	ktime_t starttime = ktime_get();
918 
919 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
920 	might_sleep();
921 
922 	mutex_lock(&dpm_list_mtx);
923 	pm_transition = state;
924 	async_error = 0;
925 
926 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
927 		reinit_completion(&dev->power.completion);
928 		if (is_async(dev)) {
929 			get_device(dev);
930 			async_schedule(async_resume, dev);
931 		}
932 	}
933 
934 	while (!list_empty(&dpm_suspended_list)) {
935 		dev = to_device(dpm_suspended_list.next);
936 		get_device(dev);
937 		if (!is_async(dev)) {
938 			int error;
939 
940 			mutex_unlock(&dpm_list_mtx);
941 
942 			error = device_resume(dev, state, false);
943 			if (error) {
944 				suspend_stats.failed_resume++;
945 				dpm_save_failed_step(SUSPEND_RESUME);
946 				dpm_save_failed_dev(dev_name(dev));
947 				pm_dev_err(dev, state, "", error);
948 			}
949 
950 			mutex_lock(&dpm_list_mtx);
951 		}
952 		if (!list_empty(&dev->power.entry))
953 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
954 		put_device(dev);
955 	}
956 	mutex_unlock(&dpm_list_mtx);
957 	async_synchronize_full();
958 	dpm_show_time(starttime, state, 0, NULL);
959 
960 	cpufreq_resume();
961 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
962 }
963 
964 /**
965  * device_complete - Complete a PM transition for given device.
966  * @dev: Device to handle.
967  * @state: PM transition of the system being carried out.
968  */
969 static void device_complete(struct device *dev, pm_message_t state)
970 {
971 	void (*callback)(struct device *) = NULL;
972 	const char *info = NULL;
973 
974 	if (dev->power.syscore)
975 		return;
976 
977 	device_lock(dev);
978 
979 	if (dev->pm_domain) {
980 		info = "completing power domain ";
981 		callback = dev->pm_domain->ops.complete;
982 	} else if (dev->type && dev->type->pm) {
983 		info = "completing type ";
984 		callback = dev->type->pm->complete;
985 	} else if (dev->class && dev->class->pm) {
986 		info = "completing class ";
987 		callback = dev->class->pm->complete;
988 	} else if (dev->bus && dev->bus->pm) {
989 		info = "completing bus ";
990 		callback = dev->bus->pm->complete;
991 	}
992 
993 	if (!callback && dev->driver && dev->driver->pm) {
994 		info = "completing driver ";
995 		callback = dev->driver->pm->complete;
996 	}
997 
998 	if (callback) {
999 		pm_dev_dbg(dev, state, info);
1000 		callback(dev);
1001 	}
1002 
1003 	device_unlock(dev);
1004 
1005 	pm_runtime_put(dev);
1006 }
1007 
1008 /**
1009  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1010  * @state: PM transition of the system being carried out.
1011  *
1012  * Execute the ->complete() callbacks for all devices whose PM status is not
1013  * DPM_ON (this allows new devices to be registered).
1014  */
1015 void dpm_complete(pm_message_t state)
1016 {
1017 	struct list_head list;
1018 
1019 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1020 	might_sleep();
1021 
1022 	INIT_LIST_HEAD(&list);
1023 	mutex_lock(&dpm_list_mtx);
1024 	while (!list_empty(&dpm_prepared_list)) {
1025 		struct device *dev = to_device(dpm_prepared_list.prev);
1026 
1027 		get_device(dev);
1028 		dev->power.is_prepared = false;
1029 		list_move(&dev->power.entry, &list);
1030 		mutex_unlock(&dpm_list_mtx);
1031 
1032 		trace_device_pm_callback_start(dev, "", state.event);
1033 		device_complete(dev, state);
1034 		trace_device_pm_callback_end(dev, 0);
1035 
1036 		mutex_lock(&dpm_list_mtx);
1037 		put_device(dev);
1038 	}
1039 	list_splice(&list, &dpm_list);
1040 	mutex_unlock(&dpm_list_mtx);
1041 
1042 	/* Allow device probing and trigger re-probing of deferred devices */
1043 	device_unblock_probing();
1044 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1045 }
1046 
1047 /**
1048  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1049  * @state: PM transition of the system being carried out.
1050  *
1051  * Execute "resume" callbacks for all devices and complete the PM transition of
1052  * the system.
1053  */
1054 void dpm_resume_end(pm_message_t state)
1055 {
1056 	dpm_resume(state);
1057 	dpm_complete(state);
1058 }
1059 EXPORT_SYMBOL_GPL(dpm_resume_end);
1060 
1061 
1062 /*------------------------- Suspend routines -------------------------*/
1063 
1064 /**
1065  * resume_event - Return a "resume" message for given "suspend" sleep state.
1066  * @sleep_state: PM message representing a sleep state.
1067  *
1068  * Return a PM message representing the resume event corresponding to given
1069  * sleep state.
1070  */
1071 static pm_message_t resume_event(pm_message_t sleep_state)
1072 {
1073 	switch (sleep_state.event) {
1074 	case PM_EVENT_SUSPEND:
1075 		return PMSG_RESUME;
1076 	case PM_EVENT_FREEZE:
1077 	case PM_EVENT_QUIESCE:
1078 		return PMSG_RECOVER;
1079 	case PM_EVENT_HIBERNATE:
1080 		return PMSG_RESTORE;
1081 	}
1082 	return PMSG_ON;
1083 }
1084 
1085 /**
1086  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1087  * @dev: Device to handle.
1088  * @state: PM transition of the system being carried out.
1089  * @async: If true, the device is being suspended asynchronously.
1090  *
1091  * The driver of @dev will not receive interrupts while this function is being
1092  * executed.
1093  */
1094 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1095 {
1096 	pm_callback_t callback = NULL;
1097 	const char *info = NULL;
1098 	int error = 0;
1099 
1100 	TRACE_DEVICE(dev);
1101 	TRACE_SUSPEND(0);
1102 
1103 	dpm_wait_for_subordinate(dev, async);
1104 
1105 	if (async_error)
1106 		goto Complete;
1107 
1108 	if (pm_wakeup_pending()) {
1109 		async_error = -EBUSY;
1110 		goto Complete;
1111 	}
1112 
1113 	if (dev->power.syscore || dev->power.direct_complete)
1114 		goto Complete;
1115 
1116 	if (dev->pm_domain) {
1117 		info = "noirq power domain ";
1118 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1119 	} else if (dev->type && dev->type->pm) {
1120 		info = "noirq type ";
1121 		callback = pm_noirq_op(dev->type->pm, state);
1122 	} else if (dev->class && dev->class->pm) {
1123 		info = "noirq class ";
1124 		callback = pm_noirq_op(dev->class->pm, state);
1125 	} else if (dev->bus && dev->bus->pm) {
1126 		info = "noirq bus ";
1127 		callback = pm_noirq_op(dev->bus->pm, state);
1128 	}
1129 
1130 	if (!callback && dev->driver && dev->driver->pm) {
1131 		info = "noirq driver ";
1132 		callback = pm_noirq_op(dev->driver->pm, state);
1133 	}
1134 
1135 	error = dpm_run_callback(callback, dev, state, info);
1136 	if (!error)
1137 		dev->power.is_noirq_suspended = true;
1138 	else
1139 		async_error = error;
1140 
1141 Complete:
1142 	complete_all(&dev->power.completion);
1143 	TRACE_SUSPEND(error);
1144 	return error;
1145 }
1146 
1147 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1148 {
1149 	struct device *dev = (struct device *)data;
1150 	int error;
1151 
1152 	error = __device_suspend_noirq(dev, pm_transition, true);
1153 	if (error) {
1154 		dpm_save_failed_dev(dev_name(dev));
1155 		pm_dev_err(dev, pm_transition, " async", error);
1156 	}
1157 
1158 	put_device(dev);
1159 }
1160 
1161 static int device_suspend_noirq(struct device *dev)
1162 {
1163 	reinit_completion(&dev->power.completion);
1164 
1165 	if (is_async(dev)) {
1166 		get_device(dev);
1167 		async_schedule(async_suspend_noirq, dev);
1168 		return 0;
1169 	}
1170 	return __device_suspend_noirq(dev, pm_transition, false);
1171 }
1172 
1173 void dpm_noirq_begin(void)
1174 {
1175 	cpuidle_pause();
1176 	device_wakeup_arm_wake_irqs();
1177 	suspend_device_irqs();
1178 }
1179 
1180 int dpm_noirq_suspend_devices(pm_message_t state)
1181 {
1182 	ktime_t starttime = ktime_get();
1183 	int error = 0;
1184 
1185 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1186 	mutex_lock(&dpm_list_mtx);
1187 	pm_transition = state;
1188 	async_error = 0;
1189 
1190 	while (!list_empty(&dpm_late_early_list)) {
1191 		struct device *dev = to_device(dpm_late_early_list.prev);
1192 
1193 		get_device(dev);
1194 		mutex_unlock(&dpm_list_mtx);
1195 
1196 		error = device_suspend_noirq(dev);
1197 
1198 		mutex_lock(&dpm_list_mtx);
1199 		if (error) {
1200 			pm_dev_err(dev, state, " noirq", error);
1201 			dpm_save_failed_dev(dev_name(dev));
1202 			put_device(dev);
1203 			break;
1204 		}
1205 		if (!list_empty(&dev->power.entry))
1206 			list_move(&dev->power.entry, &dpm_noirq_list);
1207 		put_device(dev);
1208 
1209 		if (async_error)
1210 			break;
1211 	}
1212 	mutex_unlock(&dpm_list_mtx);
1213 	async_synchronize_full();
1214 	if (!error)
1215 		error = async_error;
1216 
1217 	if (error) {
1218 		suspend_stats.failed_suspend_noirq++;
1219 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1220 	}
1221 	dpm_show_time(starttime, state, error, "noirq");
1222 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1223 	return error;
1224 }
1225 
1226 /**
1227  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1228  * @state: PM transition of the system being carried out.
1229  *
1230  * Prevent device drivers' interrupt handlers from being called and invoke
1231  * "noirq" suspend callbacks for all non-sysdev devices.
1232  */
1233 int dpm_suspend_noirq(pm_message_t state)
1234 {
1235 	int ret;
1236 
1237 	dpm_noirq_begin();
1238 	ret = dpm_noirq_suspend_devices(state);
1239 	if (ret)
1240 		dpm_resume_noirq(resume_event(state));
1241 
1242 	return ret;
1243 }
1244 
1245 /**
1246  * device_suspend_late - Execute a "late suspend" callback for given device.
1247  * @dev: Device to handle.
1248  * @state: PM transition of the system being carried out.
1249  * @async: If true, the device is being suspended asynchronously.
1250  *
1251  * Runtime PM is disabled for @dev while this function is being executed.
1252  */
1253 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1254 {
1255 	pm_callback_t callback = NULL;
1256 	const char *info = NULL;
1257 	int error = 0;
1258 
1259 	TRACE_DEVICE(dev);
1260 	TRACE_SUSPEND(0);
1261 
1262 	__pm_runtime_disable(dev, false);
1263 
1264 	dpm_wait_for_subordinate(dev, async);
1265 
1266 	if (async_error)
1267 		goto Complete;
1268 
1269 	if (pm_wakeup_pending()) {
1270 		async_error = -EBUSY;
1271 		goto Complete;
1272 	}
1273 
1274 	if (dev->power.syscore || dev->power.direct_complete)
1275 		goto Complete;
1276 
1277 	if (dev->pm_domain) {
1278 		info = "late power domain ";
1279 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1280 	} else if (dev->type && dev->type->pm) {
1281 		info = "late type ";
1282 		callback = pm_late_early_op(dev->type->pm, state);
1283 	} else if (dev->class && dev->class->pm) {
1284 		info = "late class ";
1285 		callback = pm_late_early_op(dev->class->pm, state);
1286 	} else if (dev->bus && dev->bus->pm) {
1287 		info = "late bus ";
1288 		callback = pm_late_early_op(dev->bus->pm, state);
1289 	}
1290 
1291 	if (!callback && dev->driver && dev->driver->pm) {
1292 		info = "late driver ";
1293 		callback = pm_late_early_op(dev->driver->pm, state);
1294 	}
1295 
1296 	error = dpm_run_callback(callback, dev, state, info);
1297 	if (!error)
1298 		dev->power.is_late_suspended = true;
1299 	else
1300 		async_error = error;
1301 
1302 Complete:
1303 	TRACE_SUSPEND(error);
1304 	complete_all(&dev->power.completion);
1305 	return error;
1306 }
1307 
1308 static void async_suspend_late(void *data, async_cookie_t cookie)
1309 {
1310 	struct device *dev = (struct device *)data;
1311 	int error;
1312 
1313 	error = __device_suspend_late(dev, pm_transition, true);
1314 	if (error) {
1315 		dpm_save_failed_dev(dev_name(dev));
1316 		pm_dev_err(dev, pm_transition, " async", error);
1317 	}
1318 	put_device(dev);
1319 }
1320 
1321 static int device_suspend_late(struct device *dev)
1322 {
1323 	reinit_completion(&dev->power.completion);
1324 
1325 	if (is_async(dev)) {
1326 		get_device(dev);
1327 		async_schedule(async_suspend_late, dev);
1328 		return 0;
1329 	}
1330 
1331 	return __device_suspend_late(dev, pm_transition, false);
1332 }
1333 
1334 /**
1335  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1336  * @state: PM transition of the system being carried out.
1337  */
1338 int dpm_suspend_late(pm_message_t state)
1339 {
1340 	ktime_t starttime = ktime_get();
1341 	int error = 0;
1342 
1343 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1344 	mutex_lock(&dpm_list_mtx);
1345 	pm_transition = state;
1346 	async_error = 0;
1347 
1348 	while (!list_empty(&dpm_suspended_list)) {
1349 		struct device *dev = to_device(dpm_suspended_list.prev);
1350 
1351 		get_device(dev);
1352 		mutex_unlock(&dpm_list_mtx);
1353 
1354 		error = device_suspend_late(dev);
1355 
1356 		mutex_lock(&dpm_list_mtx);
1357 		if (!list_empty(&dev->power.entry))
1358 			list_move(&dev->power.entry, &dpm_late_early_list);
1359 
1360 		if (error) {
1361 			pm_dev_err(dev, state, " late", error);
1362 			dpm_save_failed_dev(dev_name(dev));
1363 			put_device(dev);
1364 			break;
1365 		}
1366 		put_device(dev);
1367 
1368 		if (async_error)
1369 			break;
1370 	}
1371 	mutex_unlock(&dpm_list_mtx);
1372 	async_synchronize_full();
1373 	if (!error)
1374 		error = async_error;
1375 	if (error) {
1376 		suspend_stats.failed_suspend_late++;
1377 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1378 		dpm_resume_early(resume_event(state));
1379 	}
1380 	dpm_show_time(starttime, state, error, "late");
1381 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1382 	return error;
1383 }
1384 
1385 /**
1386  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1387  * @state: PM transition of the system being carried out.
1388  */
1389 int dpm_suspend_end(pm_message_t state)
1390 {
1391 	int error = dpm_suspend_late(state);
1392 	if (error)
1393 		return error;
1394 
1395 	error = dpm_suspend_noirq(state);
1396 	if (error) {
1397 		dpm_resume_early(resume_event(state));
1398 		return error;
1399 	}
1400 
1401 	return 0;
1402 }
1403 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1404 
1405 /**
1406  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1407  * @dev: Device to suspend.
1408  * @state: PM transition of the system being carried out.
1409  * @cb: Suspend callback to execute.
1410  * @info: string description of caller.
1411  */
1412 static int legacy_suspend(struct device *dev, pm_message_t state,
1413 			  int (*cb)(struct device *dev, pm_message_t state),
1414 			  const char *info)
1415 {
1416 	int error;
1417 	ktime_t calltime;
1418 
1419 	calltime = initcall_debug_start(dev);
1420 
1421 	trace_device_pm_callback_start(dev, info, state.event);
1422 	error = cb(dev, state);
1423 	trace_device_pm_callback_end(dev, error);
1424 	suspend_report_result(cb, error);
1425 
1426 	initcall_debug_report(dev, calltime, error, state, info);
1427 
1428 	return error;
1429 }
1430 
1431 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1432 {
1433 	struct device_link *link;
1434 	int idx;
1435 
1436 	idx = device_links_read_lock();
1437 
1438 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1439 		spin_lock_irq(&link->supplier->power.lock);
1440 		link->supplier->power.direct_complete = false;
1441 		spin_unlock_irq(&link->supplier->power.lock);
1442 	}
1443 
1444 	device_links_read_unlock(idx);
1445 }
1446 
1447 /**
1448  * device_suspend - Execute "suspend" callbacks for given device.
1449  * @dev: Device to handle.
1450  * @state: PM transition of the system being carried out.
1451  * @async: If true, the device is being suspended asynchronously.
1452  */
1453 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1454 {
1455 	pm_callback_t callback = NULL;
1456 	const char *info = NULL;
1457 	int error = 0;
1458 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1459 
1460 	TRACE_DEVICE(dev);
1461 	TRACE_SUSPEND(0);
1462 
1463 	dpm_wait_for_subordinate(dev, async);
1464 
1465 	if (async_error)
1466 		goto Complete;
1467 
1468 	/*
1469 	 * If a device configured to wake up the system from sleep states
1470 	 * has been suspended at run time and there's a resume request pending
1471 	 * for it, this is equivalent to the device signaling wakeup, so the
1472 	 * system suspend operation should be aborted.
1473 	 */
1474 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1475 		pm_wakeup_event(dev, 0);
1476 
1477 	if (pm_wakeup_pending()) {
1478 		async_error = -EBUSY;
1479 		goto Complete;
1480 	}
1481 
1482 	if (dev->power.syscore)
1483 		goto Complete;
1484 
1485 	if (dev->power.direct_complete) {
1486 		if (pm_runtime_status_suspended(dev)) {
1487 			pm_runtime_disable(dev);
1488 			if (pm_runtime_status_suspended(dev))
1489 				goto Complete;
1490 
1491 			pm_runtime_enable(dev);
1492 		}
1493 		dev->power.direct_complete = false;
1494 	}
1495 
1496 	dpm_watchdog_set(&wd, dev);
1497 	device_lock(dev);
1498 
1499 	if (dev->pm_domain) {
1500 		info = "power domain ";
1501 		callback = pm_op(&dev->pm_domain->ops, state);
1502 		goto Run;
1503 	}
1504 
1505 	if (dev->type && dev->type->pm) {
1506 		info = "type ";
1507 		callback = pm_op(dev->type->pm, state);
1508 		goto Run;
1509 	}
1510 
1511 	if (dev->class) {
1512 		if (dev->class->pm) {
1513 			info = "class ";
1514 			callback = pm_op(dev->class->pm, state);
1515 			goto Run;
1516 		} else if (dev->class->suspend) {
1517 			pm_dev_dbg(dev, state, "legacy class ");
1518 			error = legacy_suspend(dev, state, dev->class->suspend,
1519 						"legacy class ");
1520 			goto End;
1521 		}
1522 	}
1523 
1524 	if (dev->bus) {
1525 		if (dev->bus->pm) {
1526 			info = "bus ";
1527 			callback = pm_op(dev->bus->pm, state);
1528 		} else if (dev->bus->suspend) {
1529 			pm_dev_dbg(dev, state, "legacy bus ");
1530 			error = legacy_suspend(dev, state, dev->bus->suspend,
1531 						"legacy bus ");
1532 			goto End;
1533 		}
1534 	}
1535 
1536  Run:
1537 	if (!callback && dev->driver && dev->driver->pm) {
1538 		info = "driver ";
1539 		callback = pm_op(dev->driver->pm, state);
1540 	}
1541 
1542 	error = dpm_run_callback(callback, dev, state, info);
1543 
1544  End:
1545 	if (!error) {
1546 		struct device *parent = dev->parent;
1547 
1548 		dev->power.is_suspended = true;
1549 		if (parent) {
1550 			spin_lock_irq(&parent->power.lock);
1551 
1552 			dev->parent->power.direct_complete = false;
1553 			if (dev->power.wakeup_path
1554 			    && !dev->parent->power.ignore_children)
1555 				dev->parent->power.wakeup_path = true;
1556 
1557 			spin_unlock_irq(&parent->power.lock);
1558 		}
1559 		dpm_clear_suppliers_direct_complete(dev);
1560 	}
1561 
1562 	device_unlock(dev);
1563 	dpm_watchdog_clear(&wd);
1564 
1565  Complete:
1566 	if (error)
1567 		async_error = error;
1568 
1569 	complete_all(&dev->power.completion);
1570 	TRACE_SUSPEND(error);
1571 	return error;
1572 }
1573 
1574 static void async_suspend(void *data, async_cookie_t cookie)
1575 {
1576 	struct device *dev = (struct device *)data;
1577 	int error;
1578 
1579 	error = __device_suspend(dev, pm_transition, true);
1580 	if (error) {
1581 		dpm_save_failed_dev(dev_name(dev));
1582 		pm_dev_err(dev, pm_transition, " async", error);
1583 	}
1584 
1585 	put_device(dev);
1586 }
1587 
1588 static int device_suspend(struct device *dev)
1589 {
1590 	reinit_completion(&dev->power.completion);
1591 
1592 	if (is_async(dev)) {
1593 		get_device(dev);
1594 		async_schedule(async_suspend, dev);
1595 		return 0;
1596 	}
1597 
1598 	return __device_suspend(dev, pm_transition, false);
1599 }
1600 
1601 /**
1602  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1603  * @state: PM transition of the system being carried out.
1604  */
1605 int dpm_suspend(pm_message_t state)
1606 {
1607 	ktime_t starttime = ktime_get();
1608 	int error = 0;
1609 
1610 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1611 	might_sleep();
1612 
1613 	cpufreq_suspend();
1614 
1615 	mutex_lock(&dpm_list_mtx);
1616 	pm_transition = state;
1617 	async_error = 0;
1618 	while (!list_empty(&dpm_prepared_list)) {
1619 		struct device *dev = to_device(dpm_prepared_list.prev);
1620 
1621 		get_device(dev);
1622 		mutex_unlock(&dpm_list_mtx);
1623 
1624 		error = device_suspend(dev);
1625 
1626 		mutex_lock(&dpm_list_mtx);
1627 		if (error) {
1628 			pm_dev_err(dev, state, "", error);
1629 			dpm_save_failed_dev(dev_name(dev));
1630 			put_device(dev);
1631 			break;
1632 		}
1633 		if (!list_empty(&dev->power.entry))
1634 			list_move(&dev->power.entry, &dpm_suspended_list);
1635 		put_device(dev);
1636 		if (async_error)
1637 			break;
1638 	}
1639 	mutex_unlock(&dpm_list_mtx);
1640 	async_synchronize_full();
1641 	if (!error)
1642 		error = async_error;
1643 	if (error) {
1644 		suspend_stats.failed_suspend++;
1645 		dpm_save_failed_step(SUSPEND_SUSPEND);
1646 	}
1647 	dpm_show_time(starttime, state, error, NULL);
1648 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1649 	return error;
1650 }
1651 
1652 /**
1653  * device_prepare - Prepare a device for system power transition.
1654  * @dev: Device to handle.
1655  * @state: PM transition of the system being carried out.
1656  *
1657  * Execute the ->prepare() callback(s) for given device.  No new children of the
1658  * device may be registered after this function has returned.
1659  */
1660 static int device_prepare(struct device *dev, pm_message_t state)
1661 {
1662 	int (*callback)(struct device *) = NULL;
1663 	int ret = 0;
1664 
1665 	if (dev->power.syscore)
1666 		return 0;
1667 
1668 	/*
1669 	 * If a device's parent goes into runtime suspend at the wrong time,
1670 	 * it won't be possible to resume the device.  To prevent this we
1671 	 * block runtime suspend here, during the prepare phase, and allow
1672 	 * it again during the complete phase.
1673 	 */
1674 	pm_runtime_get_noresume(dev);
1675 
1676 	device_lock(dev);
1677 
1678 	dev->power.wakeup_path = device_may_wakeup(dev);
1679 
1680 	if (dev->power.no_pm_callbacks) {
1681 		ret = 1;	/* Let device go direct_complete */
1682 		goto unlock;
1683 	}
1684 
1685 	if (dev->pm_domain)
1686 		callback = dev->pm_domain->ops.prepare;
1687 	else if (dev->type && dev->type->pm)
1688 		callback = dev->type->pm->prepare;
1689 	else if (dev->class && dev->class->pm)
1690 		callback = dev->class->pm->prepare;
1691 	else if (dev->bus && dev->bus->pm)
1692 		callback = dev->bus->pm->prepare;
1693 
1694 	if (!callback && dev->driver && dev->driver->pm)
1695 		callback = dev->driver->pm->prepare;
1696 
1697 	if (callback)
1698 		ret = callback(dev);
1699 
1700 unlock:
1701 	device_unlock(dev);
1702 
1703 	if (ret < 0) {
1704 		suspend_report_result(callback, ret);
1705 		pm_runtime_put(dev);
1706 		return ret;
1707 	}
1708 	/*
1709 	 * A positive return value from ->prepare() means "this device appears
1710 	 * to be runtime-suspended and its state is fine, so if it really is
1711 	 * runtime-suspended, you can leave it in that state provided that you
1712 	 * will do the same thing with all of its descendants".  This only
1713 	 * applies to suspend transitions, however.
1714 	 */
1715 	spin_lock_irq(&dev->power.lock);
1716 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1717 	spin_unlock_irq(&dev->power.lock);
1718 	return 0;
1719 }
1720 
1721 /**
1722  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1723  * @state: PM transition of the system being carried out.
1724  *
1725  * Execute the ->prepare() callback(s) for all devices.
1726  */
1727 int dpm_prepare(pm_message_t state)
1728 {
1729 	int error = 0;
1730 
1731 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1732 	might_sleep();
1733 
1734 	/*
1735 	 * Give a chance for the known devices to complete their probes, before
1736 	 * disable probing of devices. This sync point is important at least
1737 	 * at boot time + hibernation restore.
1738 	 */
1739 	wait_for_device_probe();
1740 	/*
1741 	 * It is unsafe if probing of devices will happen during suspend or
1742 	 * hibernation and system behavior will be unpredictable in this case.
1743 	 * So, let's prohibit device's probing here and defer their probes
1744 	 * instead. The normal behavior will be restored in dpm_complete().
1745 	 */
1746 	device_block_probing();
1747 
1748 	mutex_lock(&dpm_list_mtx);
1749 	while (!list_empty(&dpm_list)) {
1750 		struct device *dev = to_device(dpm_list.next);
1751 
1752 		get_device(dev);
1753 		mutex_unlock(&dpm_list_mtx);
1754 
1755 		trace_device_pm_callback_start(dev, "", state.event);
1756 		error = device_prepare(dev, state);
1757 		trace_device_pm_callback_end(dev, error);
1758 
1759 		mutex_lock(&dpm_list_mtx);
1760 		if (error) {
1761 			if (error == -EAGAIN) {
1762 				put_device(dev);
1763 				error = 0;
1764 				continue;
1765 			}
1766 			printk(KERN_INFO "PM: Device %s not prepared "
1767 				"for power transition: code %d\n",
1768 				dev_name(dev), error);
1769 			put_device(dev);
1770 			break;
1771 		}
1772 		dev->power.is_prepared = true;
1773 		if (!list_empty(&dev->power.entry))
1774 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1775 		put_device(dev);
1776 	}
1777 	mutex_unlock(&dpm_list_mtx);
1778 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1779 	return error;
1780 }
1781 
1782 /**
1783  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1784  * @state: PM transition of the system being carried out.
1785  *
1786  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1787  * callbacks for them.
1788  */
1789 int dpm_suspend_start(pm_message_t state)
1790 {
1791 	int error;
1792 
1793 	error = dpm_prepare(state);
1794 	if (error) {
1795 		suspend_stats.failed_prepare++;
1796 		dpm_save_failed_step(SUSPEND_PREPARE);
1797 	} else
1798 		error = dpm_suspend(state);
1799 	return error;
1800 }
1801 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1802 
1803 void __suspend_report_result(const char *function, void *fn, int ret)
1804 {
1805 	if (ret)
1806 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1807 }
1808 EXPORT_SYMBOL_GPL(__suspend_report_result);
1809 
1810 /**
1811  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1812  * @dev: Device to wait for.
1813  * @subordinate: Device that needs to wait for @dev.
1814  */
1815 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1816 {
1817 	dpm_wait(dev, subordinate->power.async_suspend);
1818 	return async_error;
1819 }
1820 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1821 
1822 /**
1823  * dpm_for_each_dev - device iterator.
1824  * @data: data for the callback.
1825  * @fn: function to be called for each device.
1826  *
1827  * Iterate over devices in dpm_list, and call @fn for each device,
1828  * passing it @data.
1829  */
1830 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1831 {
1832 	struct device *dev;
1833 
1834 	if (!fn)
1835 		return;
1836 
1837 	device_pm_lock();
1838 	list_for_each_entry(dev, &dpm_list, power.entry)
1839 		fn(dev, data);
1840 	device_pm_unlock();
1841 }
1842 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1843 
1844 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1845 {
1846 	if (!ops)
1847 		return true;
1848 
1849 	return !ops->prepare &&
1850 	       !ops->suspend &&
1851 	       !ops->suspend_late &&
1852 	       !ops->suspend_noirq &&
1853 	       !ops->resume_noirq &&
1854 	       !ops->resume_early &&
1855 	       !ops->resume &&
1856 	       !ops->complete;
1857 }
1858 
1859 void device_pm_check_callbacks(struct device *dev)
1860 {
1861 	spin_lock_irq(&dev->power.lock);
1862 	dev->power.no_pm_callbacks =
1863 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1864 		 !dev->bus->suspend && !dev->bus->resume)) &&
1865 		(!dev->class || (pm_ops_is_empty(dev->class->pm) &&
1866 		 !dev->class->suspend && !dev->class->resume)) &&
1867 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1868 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1869 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1870 		 !dev->driver->suspend && !dev->driver->resume));
1871 	spin_unlock_irq(&dev->power.lock);
1872 }
1873