xref: /openbmc/linux/drivers/base/power/main.c (revision afb46f79)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35 
36 #include "../base.h"
37 #include "power.h"
38 
39 typedef int (*pm_callback_t)(struct device *);
40 
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50 
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56 
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60 
61 static int async_error;
62 
63 static char *pm_verb(int event)
64 {
65 	switch (event) {
66 	case PM_EVENT_SUSPEND:
67 		return "suspend";
68 	case PM_EVENT_RESUME:
69 		return "resume";
70 	case PM_EVENT_FREEZE:
71 		return "freeze";
72 	case PM_EVENT_QUIESCE:
73 		return "quiesce";
74 	case PM_EVENT_HIBERNATE:
75 		return "hibernate";
76 	case PM_EVENT_THAW:
77 		return "thaw";
78 	case PM_EVENT_RESTORE:
79 		return "restore";
80 	case PM_EVENT_RECOVER:
81 		return "recover";
82 	default:
83 		return "(unknown PM event)";
84 	}
85 }
86 
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93 	dev->power.is_prepared = false;
94 	dev->power.is_suspended = false;
95 	dev->power.is_noirq_suspended = false;
96 	dev->power.is_late_suspended = false;
97 	init_completion(&dev->power.completion);
98 	complete_all(&dev->power.completion);
99 	dev->power.wakeup = NULL;
100 	INIT_LIST_HEAD(&dev->power.entry);
101 }
102 
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108 	mutex_lock(&dpm_list_mtx);
109 }
110 
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116 	mutex_unlock(&dpm_list_mtx);
117 }
118 
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125 	pr_debug("PM: Adding info for %s:%s\n",
126 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127 	mutex_lock(&dpm_list_mtx);
128 	if (dev->parent && dev->parent->power.is_prepared)
129 		dev_warn(dev, "parent %s should not be sleeping\n",
130 			dev_name(dev->parent));
131 	list_add_tail(&dev->power.entry, &dpm_list);
132 	mutex_unlock(&dpm_list_mtx);
133 }
134 
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141 	pr_debug("PM: Removing info for %s:%s\n",
142 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143 	complete_all(&dev->power.completion);
144 	mutex_lock(&dpm_list_mtx);
145 	list_del_init(&dev->power.entry);
146 	mutex_unlock(&dpm_list_mtx);
147 	device_wakeup_disable(dev);
148 	pm_runtime_remove(dev);
149 }
150 
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158 	pr_debug("PM: Moving %s:%s before %s:%s\n",
159 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 	/* Delete deva from dpm_list and reinsert before devb. */
162 	list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164 
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172 	pr_debug("PM: Moving %s:%s after %s:%s\n",
173 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 	/* Delete deva from dpm_list and reinsert after devb. */
176 	list_move(&deva->power.entry, &devb->power.entry);
177 }
178 
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185 	pr_debug("PM: Moving %s:%s to end of list\n",
186 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 	list_move_tail(&dev->power.entry, &dpm_list);
188 }
189 
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192 	ktime_t calltime = ktime_set(0, 0);
193 
194 	if (pm_print_times_enabled) {
195 		pr_info("calling  %s+ @ %i, parent: %s\n",
196 			dev_name(dev), task_pid_nr(current),
197 			dev->parent ? dev_name(dev->parent) : "none");
198 		calltime = ktime_get();
199 	}
200 
201 	return calltime;
202 }
203 
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205 				  int error, pm_message_t state, char *info)
206 {
207 	ktime_t rettime;
208 	s64 nsecs;
209 
210 	rettime = ktime_get();
211 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212 
213 	if (pm_print_times_enabled) {
214 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215 			error, (unsigned long long)nsecs >> 10);
216 	}
217 
218 	trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event),
219 				    error);
220 }
221 
222 /**
223  * dpm_wait - Wait for a PM operation to complete.
224  * @dev: Device to wait for.
225  * @async: If unset, wait only if the device's power.async_suspend flag is set.
226  */
227 static void dpm_wait(struct device *dev, bool async)
228 {
229 	if (!dev)
230 		return;
231 
232 	if (async || (pm_async_enabled && dev->power.async_suspend))
233 		wait_for_completion(&dev->power.completion);
234 }
235 
236 static int dpm_wait_fn(struct device *dev, void *async_ptr)
237 {
238 	dpm_wait(dev, *((bool *)async_ptr));
239 	return 0;
240 }
241 
242 static void dpm_wait_for_children(struct device *dev, bool async)
243 {
244        device_for_each_child(dev, &async, dpm_wait_fn);
245 }
246 
247 /**
248  * pm_op - Return the PM operation appropriate for given PM event.
249  * @ops: PM operations to choose from.
250  * @state: PM transition of the system being carried out.
251  */
252 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253 {
254 	switch (state.event) {
255 #ifdef CONFIG_SUSPEND
256 	case PM_EVENT_SUSPEND:
257 		return ops->suspend;
258 	case PM_EVENT_RESUME:
259 		return ops->resume;
260 #endif /* CONFIG_SUSPEND */
261 #ifdef CONFIG_HIBERNATE_CALLBACKS
262 	case PM_EVENT_FREEZE:
263 	case PM_EVENT_QUIESCE:
264 		return ops->freeze;
265 	case PM_EVENT_HIBERNATE:
266 		return ops->poweroff;
267 	case PM_EVENT_THAW:
268 	case PM_EVENT_RECOVER:
269 		return ops->thaw;
270 		break;
271 	case PM_EVENT_RESTORE:
272 		return ops->restore;
273 #endif /* CONFIG_HIBERNATE_CALLBACKS */
274 	}
275 
276 	return NULL;
277 }
278 
279 /**
280  * pm_late_early_op - Return the PM operation appropriate for given PM event.
281  * @ops: PM operations to choose from.
282  * @state: PM transition of the system being carried out.
283  *
284  * Runtime PM is disabled for @dev while this function is being executed.
285  */
286 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287 				      pm_message_t state)
288 {
289 	switch (state.event) {
290 #ifdef CONFIG_SUSPEND
291 	case PM_EVENT_SUSPEND:
292 		return ops->suspend_late;
293 	case PM_EVENT_RESUME:
294 		return ops->resume_early;
295 #endif /* CONFIG_SUSPEND */
296 #ifdef CONFIG_HIBERNATE_CALLBACKS
297 	case PM_EVENT_FREEZE:
298 	case PM_EVENT_QUIESCE:
299 		return ops->freeze_late;
300 	case PM_EVENT_HIBERNATE:
301 		return ops->poweroff_late;
302 	case PM_EVENT_THAW:
303 	case PM_EVENT_RECOVER:
304 		return ops->thaw_early;
305 	case PM_EVENT_RESTORE:
306 		return ops->restore_early;
307 #endif /* CONFIG_HIBERNATE_CALLBACKS */
308 	}
309 
310 	return NULL;
311 }
312 
313 /**
314  * pm_noirq_op - Return the PM operation appropriate for given PM event.
315  * @ops: PM operations to choose from.
316  * @state: PM transition of the system being carried out.
317  *
318  * The driver of @dev will not receive interrupts while this function is being
319  * executed.
320  */
321 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322 {
323 	switch (state.event) {
324 #ifdef CONFIG_SUSPEND
325 	case PM_EVENT_SUSPEND:
326 		return ops->suspend_noirq;
327 	case PM_EVENT_RESUME:
328 		return ops->resume_noirq;
329 #endif /* CONFIG_SUSPEND */
330 #ifdef CONFIG_HIBERNATE_CALLBACKS
331 	case PM_EVENT_FREEZE:
332 	case PM_EVENT_QUIESCE:
333 		return ops->freeze_noirq;
334 	case PM_EVENT_HIBERNATE:
335 		return ops->poweroff_noirq;
336 	case PM_EVENT_THAW:
337 	case PM_EVENT_RECOVER:
338 		return ops->thaw_noirq;
339 	case PM_EVENT_RESTORE:
340 		return ops->restore_noirq;
341 #endif /* CONFIG_HIBERNATE_CALLBACKS */
342 	}
343 
344 	return NULL;
345 }
346 
347 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348 {
349 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351 		", may wakeup" : "");
352 }
353 
354 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355 			int error)
356 {
357 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358 		dev_name(dev), pm_verb(state.event), info, error);
359 }
360 
361 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362 {
363 	ktime_t calltime;
364 	u64 usecs64;
365 	int usecs;
366 
367 	calltime = ktime_get();
368 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369 	do_div(usecs64, NSEC_PER_USEC);
370 	usecs = usecs64;
371 	if (usecs == 0)
372 		usecs = 1;
373 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374 		info ?: "", info ? " " : "", pm_verb(state.event),
375 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376 }
377 
378 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379 			    pm_message_t state, char *info)
380 {
381 	ktime_t calltime;
382 	int error;
383 
384 	if (!cb)
385 		return 0;
386 
387 	calltime = initcall_debug_start(dev);
388 
389 	pm_dev_dbg(dev, state, info);
390 	error = cb(dev);
391 	suspend_report_result(cb, error);
392 
393 	initcall_debug_report(dev, calltime, error, state, info);
394 
395 	return error;
396 }
397 
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400 	struct device		*dev;
401 	struct task_struct	*tsk;
402 	struct timer_list	timer;
403 };
404 
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406 	struct dpm_watchdog wd
407 
408 /**
409  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410  * @data: Watchdog object address.
411  *
412  * Called when a driver has timed out suspending or resuming.
413  * There's not much we can do here to recover so panic() to
414  * capture a crash-dump in pstore.
415  */
416 static void dpm_watchdog_handler(unsigned long data)
417 {
418 	struct dpm_watchdog *wd = (void *)data;
419 
420 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421 	show_stack(wd->tsk, NULL);
422 	panic("%s %s: unrecoverable failure\n",
423 		dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425 
426 /**
427  * dpm_watchdog_set - Enable pm watchdog for given device.
428  * @wd: Watchdog. Must be allocated on the stack.
429  * @dev: Device to handle.
430  */
431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433 	struct timer_list *timer = &wd->timer;
434 
435 	wd->dev = dev;
436 	wd->tsk = current;
437 
438 	init_timer_on_stack(timer);
439 	/* use same timeout value for both suspend and resume */
440 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441 	timer->function = dpm_watchdog_handler;
442 	timer->data = (unsigned long)wd;
443 	add_timer(timer);
444 }
445 
446 /**
447  * dpm_watchdog_clear - Disable suspend/resume watchdog.
448  * @wd: Watchdog to disable.
449  */
450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452 	struct timer_list *timer = &wd->timer;
453 
454 	del_timer_sync(timer);
455 	destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462 
463 /*------------------------- Resume routines -------------------------*/
464 
465 /**
466  * device_resume_noirq - Execute an "early resume" callback for given device.
467  * @dev: Device to handle.
468  * @state: PM transition of the system being carried out.
469  *
470  * The driver of @dev will not receive interrupts while this function is being
471  * executed.
472  */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475 	pm_callback_t callback = NULL;
476 	char *info = NULL;
477 	int error = 0;
478 
479 	TRACE_DEVICE(dev);
480 	TRACE_RESUME(0);
481 
482 	if (dev->power.syscore)
483 		goto Out;
484 
485 	if (!dev->power.is_noirq_suspended)
486 		goto Out;
487 
488 	dpm_wait(dev->parent, async);
489 
490 	if (dev->pm_domain) {
491 		info = "noirq power domain ";
492 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
493 	} else if (dev->type && dev->type->pm) {
494 		info = "noirq type ";
495 		callback = pm_noirq_op(dev->type->pm, state);
496 	} else if (dev->class && dev->class->pm) {
497 		info = "noirq class ";
498 		callback = pm_noirq_op(dev->class->pm, state);
499 	} else if (dev->bus && dev->bus->pm) {
500 		info = "noirq bus ";
501 		callback = pm_noirq_op(dev->bus->pm, state);
502 	}
503 
504 	if (!callback && dev->driver && dev->driver->pm) {
505 		info = "noirq driver ";
506 		callback = pm_noirq_op(dev->driver->pm, state);
507 	}
508 
509 	error = dpm_run_callback(callback, dev, state, info);
510 	dev->power.is_noirq_suspended = false;
511 
512  Out:
513 	complete_all(&dev->power.completion);
514 	TRACE_RESUME(error);
515 	return error;
516 }
517 
518 static bool is_async(struct device *dev)
519 {
520 	return dev->power.async_suspend && pm_async_enabled
521 		&& !pm_trace_is_enabled();
522 }
523 
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526 	struct device *dev = (struct device *)data;
527 	int error;
528 
529 	error = device_resume_noirq(dev, pm_transition, true);
530 	if (error)
531 		pm_dev_err(dev, pm_transition, " async", error);
532 
533 	put_device(dev);
534 }
535 
536 /**
537  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538  * @state: PM transition of the system being carried out.
539  *
540  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541  * enable device drivers to receive interrupts.
542  */
543 static void dpm_resume_noirq(pm_message_t state)
544 {
545 	struct device *dev;
546 	ktime_t starttime = ktime_get();
547 
548 	mutex_lock(&dpm_list_mtx);
549 	pm_transition = state;
550 
551 	/*
552 	 * Advanced the async threads upfront,
553 	 * in case the starting of async threads is
554 	 * delayed by non-async resuming devices.
555 	 */
556 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
557 		reinit_completion(&dev->power.completion);
558 		if (is_async(dev)) {
559 			get_device(dev);
560 			async_schedule(async_resume_noirq, dev);
561 		}
562 	}
563 
564 	while (!list_empty(&dpm_noirq_list)) {
565 		dev = to_device(dpm_noirq_list.next);
566 		get_device(dev);
567 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
568 		mutex_unlock(&dpm_list_mtx);
569 
570 		if (!is_async(dev)) {
571 			int error;
572 
573 			error = device_resume_noirq(dev, state, false);
574 			if (error) {
575 				suspend_stats.failed_resume_noirq++;
576 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
577 				dpm_save_failed_dev(dev_name(dev));
578 				pm_dev_err(dev, state, " noirq", error);
579 			}
580 		}
581 
582 		mutex_lock(&dpm_list_mtx);
583 		put_device(dev);
584 	}
585 	mutex_unlock(&dpm_list_mtx);
586 	async_synchronize_full();
587 	dpm_show_time(starttime, state, "noirq");
588 	resume_device_irqs();
589 	cpuidle_resume();
590 }
591 
592 /**
593  * device_resume_early - Execute an "early resume" callback for given device.
594  * @dev: Device to handle.
595  * @state: PM transition of the system being carried out.
596  *
597  * Runtime PM is disabled for @dev while this function is being executed.
598  */
599 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
600 {
601 	pm_callback_t callback = NULL;
602 	char *info = NULL;
603 	int error = 0;
604 
605 	TRACE_DEVICE(dev);
606 	TRACE_RESUME(0);
607 
608 	if (dev->power.syscore)
609 		goto Out;
610 
611 	if (!dev->power.is_late_suspended)
612 		goto Out;
613 
614 	dpm_wait(dev->parent, async);
615 
616 	if (dev->pm_domain) {
617 		info = "early power domain ";
618 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
619 	} else if (dev->type && dev->type->pm) {
620 		info = "early type ";
621 		callback = pm_late_early_op(dev->type->pm, state);
622 	} else if (dev->class && dev->class->pm) {
623 		info = "early class ";
624 		callback = pm_late_early_op(dev->class->pm, state);
625 	} else if (dev->bus && dev->bus->pm) {
626 		info = "early bus ";
627 		callback = pm_late_early_op(dev->bus->pm, state);
628 	}
629 
630 	if (!callback && dev->driver && dev->driver->pm) {
631 		info = "early driver ";
632 		callback = pm_late_early_op(dev->driver->pm, state);
633 	}
634 
635 	error = dpm_run_callback(callback, dev, state, info);
636 	dev->power.is_late_suspended = false;
637 
638  Out:
639 	TRACE_RESUME(error);
640 
641 	pm_runtime_enable(dev);
642 	complete_all(&dev->power.completion);
643 	return error;
644 }
645 
646 static void async_resume_early(void *data, async_cookie_t cookie)
647 {
648 	struct device *dev = (struct device *)data;
649 	int error;
650 
651 	error = device_resume_early(dev, pm_transition, true);
652 	if (error)
653 		pm_dev_err(dev, pm_transition, " async", error);
654 
655 	put_device(dev);
656 }
657 
658 /**
659  * dpm_resume_early - Execute "early resume" callbacks for all devices.
660  * @state: PM transition of the system being carried out.
661  */
662 static void dpm_resume_early(pm_message_t state)
663 {
664 	struct device *dev;
665 	ktime_t starttime = ktime_get();
666 
667 	mutex_lock(&dpm_list_mtx);
668 	pm_transition = state;
669 
670 	/*
671 	 * Advanced the async threads upfront,
672 	 * in case the starting of async threads is
673 	 * delayed by non-async resuming devices.
674 	 */
675 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
676 		reinit_completion(&dev->power.completion);
677 		if (is_async(dev)) {
678 			get_device(dev);
679 			async_schedule(async_resume_early, dev);
680 		}
681 	}
682 
683 	while (!list_empty(&dpm_late_early_list)) {
684 		dev = to_device(dpm_late_early_list.next);
685 		get_device(dev);
686 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
687 		mutex_unlock(&dpm_list_mtx);
688 
689 		if (!is_async(dev)) {
690 			int error;
691 
692 			error = device_resume_early(dev, state, false);
693 			if (error) {
694 				suspend_stats.failed_resume_early++;
695 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
696 				dpm_save_failed_dev(dev_name(dev));
697 				pm_dev_err(dev, state, " early", error);
698 			}
699 		}
700 		mutex_lock(&dpm_list_mtx);
701 		put_device(dev);
702 	}
703 	mutex_unlock(&dpm_list_mtx);
704 	async_synchronize_full();
705 	dpm_show_time(starttime, state, "early");
706 }
707 
708 /**
709  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
710  * @state: PM transition of the system being carried out.
711  */
712 void dpm_resume_start(pm_message_t state)
713 {
714 	dpm_resume_noirq(state);
715 	dpm_resume_early(state);
716 }
717 EXPORT_SYMBOL_GPL(dpm_resume_start);
718 
719 /**
720  * device_resume - Execute "resume" callbacks for given device.
721  * @dev: Device to handle.
722  * @state: PM transition of the system being carried out.
723  * @async: If true, the device is being resumed asynchronously.
724  */
725 static int device_resume(struct device *dev, pm_message_t state, bool async)
726 {
727 	pm_callback_t callback = NULL;
728 	char *info = NULL;
729 	int error = 0;
730 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
731 
732 	TRACE_DEVICE(dev);
733 	TRACE_RESUME(0);
734 
735 	if (dev->power.syscore)
736 		goto Complete;
737 
738 	dpm_wait(dev->parent, async);
739 	dpm_watchdog_set(&wd, dev);
740 	device_lock(dev);
741 
742 	/*
743 	 * This is a fib.  But we'll allow new children to be added below
744 	 * a resumed device, even if the device hasn't been completed yet.
745 	 */
746 	dev->power.is_prepared = false;
747 
748 	if (!dev->power.is_suspended)
749 		goto Unlock;
750 
751 	if (dev->pm_domain) {
752 		info = "power domain ";
753 		callback = pm_op(&dev->pm_domain->ops, state);
754 		goto Driver;
755 	}
756 
757 	if (dev->type && dev->type->pm) {
758 		info = "type ";
759 		callback = pm_op(dev->type->pm, state);
760 		goto Driver;
761 	}
762 
763 	if (dev->class) {
764 		if (dev->class->pm) {
765 			info = "class ";
766 			callback = pm_op(dev->class->pm, state);
767 			goto Driver;
768 		} else if (dev->class->resume) {
769 			info = "legacy class ";
770 			callback = dev->class->resume;
771 			goto End;
772 		}
773 	}
774 
775 	if (dev->bus) {
776 		if (dev->bus->pm) {
777 			info = "bus ";
778 			callback = pm_op(dev->bus->pm, state);
779 		} else if (dev->bus->resume) {
780 			info = "legacy bus ";
781 			callback = dev->bus->resume;
782 			goto End;
783 		}
784 	}
785 
786  Driver:
787 	if (!callback && dev->driver && dev->driver->pm) {
788 		info = "driver ";
789 		callback = pm_op(dev->driver->pm, state);
790 	}
791 
792  End:
793 	error = dpm_run_callback(callback, dev, state, info);
794 	dev->power.is_suspended = false;
795 
796  Unlock:
797 	device_unlock(dev);
798 	dpm_watchdog_clear(&wd);
799 
800  Complete:
801 	complete_all(&dev->power.completion);
802 
803 	TRACE_RESUME(error);
804 
805 	return error;
806 }
807 
808 static void async_resume(void *data, async_cookie_t cookie)
809 {
810 	struct device *dev = (struct device *)data;
811 	int error;
812 
813 	error = device_resume(dev, pm_transition, true);
814 	if (error)
815 		pm_dev_err(dev, pm_transition, " async", error);
816 	put_device(dev);
817 }
818 
819 /**
820  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
821  * @state: PM transition of the system being carried out.
822  *
823  * Execute the appropriate "resume" callback for all devices whose status
824  * indicates that they are suspended.
825  */
826 void dpm_resume(pm_message_t state)
827 {
828 	struct device *dev;
829 	ktime_t starttime = ktime_get();
830 
831 	might_sleep();
832 
833 	mutex_lock(&dpm_list_mtx);
834 	pm_transition = state;
835 	async_error = 0;
836 
837 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
838 		reinit_completion(&dev->power.completion);
839 		if (is_async(dev)) {
840 			get_device(dev);
841 			async_schedule(async_resume, dev);
842 		}
843 	}
844 
845 	while (!list_empty(&dpm_suspended_list)) {
846 		dev = to_device(dpm_suspended_list.next);
847 		get_device(dev);
848 		if (!is_async(dev)) {
849 			int error;
850 
851 			mutex_unlock(&dpm_list_mtx);
852 
853 			error = device_resume(dev, state, false);
854 			if (error) {
855 				suspend_stats.failed_resume++;
856 				dpm_save_failed_step(SUSPEND_RESUME);
857 				dpm_save_failed_dev(dev_name(dev));
858 				pm_dev_err(dev, state, "", error);
859 			}
860 
861 			mutex_lock(&dpm_list_mtx);
862 		}
863 		if (!list_empty(&dev->power.entry))
864 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
865 		put_device(dev);
866 	}
867 	mutex_unlock(&dpm_list_mtx);
868 	async_synchronize_full();
869 	dpm_show_time(starttime, state, NULL);
870 
871 	cpufreq_resume();
872 }
873 
874 /**
875  * device_complete - Complete a PM transition for given device.
876  * @dev: Device to handle.
877  * @state: PM transition of the system being carried out.
878  */
879 static void device_complete(struct device *dev, pm_message_t state)
880 {
881 	void (*callback)(struct device *) = NULL;
882 	char *info = NULL;
883 
884 	if (dev->power.syscore)
885 		return;
886 
887 	device_lock(dev);
888 
889 	if (dev->pm_domain) {
890 		info = "completing power domain ";
891 		callback = dev->pm_domain->ops.complete;
892 	} else if (dev->type && dev->type->pm) {
893 		info = "completing type ";
894 		callback = dev->type->pm->complete;
895 	} else if (dev->class && dev->class->pm) {
896 		info = "completing class ";
897 		callback = dev->class->pm->complete;
898 	} else if (dev->bus && dev->bus->pm) {
899 		info = "completing bus ";
900 		callback = dev->bus->pm->complete;
901 	}
902 
903 	if (!callback && dev->driver && dev->driver->pm) {
904 		info = "completing driver ";
905 		callback = dev->driver->pm->complete;
906 	}
907 
908 	if (callback) {
909 		pm_dev_dbg(dev, state, info);
910 		callback(dev);
911 	}
912 
913 	device_unlock(dev);
914 
915 	pm_runtime_put(dev);
916 }
917 
918 /**
919  * dpm_complete - Complete a PM transition for all non-sysdev devices.
920  * @state: PM transition of the system being carried out.
921  *
922  * Execute the ->complete() callbacks for all devices whose PM status is not
923  * DPM_ON (this allows new devices to be registered).
924  */
925 void dpm_complete(pm_message_t state)
926 {
927 	struct list_head list;
928 
929 	might_sleep();
930 
931 	INIT_LIST_HEAD(&list);
932 	mutex_lock(&dpm_list_mtx);
933 	while (!list_empty(&dpm_prepared_list)) {
934 		struct device *dev = to_device(dpm_prepared_list.prev);
935 
936 		get_device(dev);
937 		dev->power.is_prepared = false;
938 		list_move(&dev->power.entry, &list);
939 		mutex_unlock(&dpm_list_mtx);
940 
941 		device_complete(dev, state);
942 
943 		mutex_lock(&dpm_list_mtx);
944 		put_device(dev);
945 	}
946 	list_splice(&list, &dpm_list);
947 	mutex_unlock(&dpm_list_mtx);
948 }
949 
950 /**
951  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
952  * @state: PM transition of the system being carried out.
953  *
954  * Execute "resume" callbacks for all devices and complete the PM transition of
955  * the system.
956  */
957 void dpm_resume_end(pm_message_t state)
958 {
959 	dpm_resume(state);
960 	dpm_complete(state);
961 }
962 EXPORT_SYMBOL_GPL(dpm_resume_end);
963 
964 
965 /*------------------------- Suspend routines -------------------------*/
966 
967 /**
968  * resume_event - Return a "resume" message for given "suspend" sleep state.
969  * @sleep_state: PM message representing a sleep state.
970  *
971  * Return a PM message representing the resume event corresponding to given
972  * sleep state.
973  */
974 static pm_message_t resume_event(pm_message_t sleep_state)
975 {
976 	switch (sleep_state.event) {
977 	case PM_EVENT_SUSPEND:
978 		return PMSG_RESUME;
979 	case PM_EVENT_FREEZE:
980 	case PM_EVENT_QUIESCE:
981 		return PMSG_RECOVER;
982 	case PM_EVENT_HIBERNATE:
983 		return PMSG_RESTORE;
984 	}
985 	return PMSG_ON;
986 }
987 
988 /**
989  * device_suspend_noirq - Execute a "late suspend" callback for given device.
990  * @dev: Device to handle.
991  * @state: PM transition of the system being carried out.
992  *
993  * The driver of @dev will not receive interrupts while this function is being
994  * executed.
995  */
996 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
997 {
998 	pm_callback_t callback = NULL;
999 	char *info = NULL;
1000 	int error = 0;
1001 
1002 	if (async_error)
1003 		goto Complete;
1004 
1005 	if (pm_wakeup_pending()) {
1006 		async_error = -EBUSY;
1007 		goto Complete;
1008 	}
1009 
1010 	if (dev->power.syscore)
1011 		goto Complete;
1012 
1013 	dpm_wait_for_children(dev, async);
1014 
1015 	if (dev->pm_domain) {
1016 		info = "noirq power domain ";
1017 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1018 	} else if (dev->type && dev->type->pm) {
1019 		info = "noirq type ";
1020 		callback = pm_noirq_op(dev->type->pm, state);
1021 	} else if (dev->class && dev->class->pm) {
1022 		info = "noirq class ";
1023 		callback = pm_noirq_op(dev->class->pm, state);
1024 	} else if (dev->bus && dev->bus->pm) {
1025 		info = "noirq bus ";
1026 		callback = pm_noirq_op(dev->bus->pm, state);
1027 	}
1028 
1029 	if (!callback && dev->driver && dev->driver->pm) {
1030 		info = "noirq driver ";
1031 		callback = pm_noirq_op(dev->driver->pm, state);
1032 	}
1033 
1034 	error = dpm_run_callback(callback, dev, state, info);
1035 	if (!error)
1036 		dev->power.is_noirq_suspended = true;
1037 	else
1038 		async_error = error;
1039 
1040 Complete:
1041 	complete_all(&dev->power.completion);
1042 	return error;
1043 }
1044 
1045 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1046 {
1047 	struct device *dev = (struct device *)data;
1048 	int error;
1049 
1050 	error = __device_suspend_noirq(dev, pm_transition, true);
1051 	if (error) {
1052 		dpm_save_failed_dev(dev_name(dev));
1053 		pm_dev_err(dev, pm_transition, " async", error);
1054 	}
1055 
1056 	put_device(dev);
1057 }
1058 
1059 static int device_suspend_noirq(struct device *dev)
1060 {
1061 	reinit_completion(&dev->power.completion);
1062 
1063 	if (pm_async_enabled && dev->power.async_suspend) {
1064 		get_device(dev);
1065 		async_schedule(async_suspend_noirq, dev);
1066 		return 0;
1067 	}
1068 	return __device_suspend_noirq(dev, pm_transition, false);
1069 }
1070 
1071 /**
1072  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1073  * @state: PM transition of the system being carried out.
1074  *
1075  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1076  * handlers for all non-sysdev devices.
1077  */
1078 static int dpm_suspend_noirq(pm_message_t state)
1079 {
1080 	ktime_t starttime = ktime_get();
1081 	int error = 0;
1082 
1083 	cpuidle_pause();
1084 	suspend_device_irqs();
1085 	mutex_lock(&dpm_list_mtx);
1086 	pm_transition = state;
1087 	async_error = 0;
1088 
1089 	while (!list_empty(&dpm_late_early_list)) {
1090 		struct device *dev = to_device(dpm_late_early_list.prev);
1091 
1092 		get_device(dev);
1093 		mutex_unlock(&dpm_list_mtx);
1094 
1095 		error = device_suspend_noirq(dev);
1096 
1097 		mutex_lock(&dpm_list_mtx);
1098 		if (error) {
1099 			pm_dev_err(dev, state, " noirq", error);
1100 			dpm_save_failed_dev(dev_name(dev));
1101 			put_device(dev);
1102 			break;
1103 		}
1104 		if (!list_empty(&dev->power.entry))
1105 			list_move(&dev->power.entry, &dpm_noirq_list);
1106 		put_device(dev);
1107 
1108 		if (async_error)
1109 			break;
1110 	}
1111 	mutex_unlock(&dpm_list_mtx);
1112 	async_synchronize_full();
1113 	if (!error)
1114 		error = async_error;
1115 
1116 	if (error) {
1117 		suspend_stats.failed_suspend_noirq++;
1118 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1119 		dpm_resume_noirq(resume_event(state));
1120 	} else {
1121 		dpm_show_time(starttime, state, "noirq");
1122 	}
1123 	return error;
1124 }
1125 
1126 /**
1127  * device_suspend_late - Execute a "late suspend" callback for given device.
1128  * @dev: Device to handle.
1129  * @state: PM transition of the system being carried out.
1130  *
1131  * Runtime PM is disabled for @dev while this function is being executed.
1132  */
1133 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1134 {
1135 	pm_callback_t callback = NULL;
1136 	char *info = NULL;
1137 	int error = 0;
1138 
1139 	__pm_runtime_disable(dev, false);
1140 
1141 	if (async_error)
1142 		goto Complete;
1143 
1144 	if (pm_wakeup_pending()) {
1145 		async_error = -EBUSY;
1146 		goto Complete;
1147 	}
1148 
1149 	if (dev->power.syscore)
1150 		goto Complete;
1151 
1152 	dpm_wait_for_children(dev, async);
1153 
1154 	if (dev->pm_domain) {
1155 		info = "late power domain ";
1156 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1157 	} else if (dev->type && dev->type->pm) {
1158 		info = "late type ";
1159 		callback = pm_late_early_op(dev->type->pm, state);
1160 	} else if (dev->class && dev->class->pm) {
1161 		info = "late class ";
1162 		callback = pm_late_early_op(dev->class->pm, state);
1163 	} else if (dev->bus && dev->bus->pm) {
1164 		info = "late bus ";
1165 		callback = pm_late_early_op(dev->bus->pm, state);
1166 	}
1167 
1168 	if (!callback && dev->driver && dev->driver->pm) {
1169 		info = "late driver ";
1170 		callback = pm_late_early_op(dev->driver->pm, state);
1171 	}
1172 
1173 	error = dpm_run_callback(callback, dev, state, info);
1174 	if (!error)
1175 		dev->power.is_late_suspended = true;
1176 	else
1177 		async_error = error;
1178 
1179 Complete:
1180 	complete_all(&dev->power.completion);
1181 	return error;
1182 }
1183 
1184 static void async_suspend_late(void *data, async_cookie_t cookie)
1185 {
1186 	struct device *dev = (struct device *)data;
1187 	int error;
1188 
1189 	error = __device_suspend_late(dev, pm_transition, true);
1190 	if (error) {
1191 		dpm_save_failed_dev(dev_name(dev));
1192 		pm_dev_err(dev, pm_transition, " async", error);
1193 	}
1194 	put_device(dev);
1195 }
1196 
1197 static int device_suspend_late(struct device *dev)
1198 {
1199 	reinit_completion(&dev->power.completion);
1200 
1201 	if (pm_async_enabled && dev->power.async_suspend) {
1202 		get_device(dev);
1203 		async_schedule(async_suspend_late, dev);
1204 		return 0;
1205 	}
1206 
1207 	return __device_suspend_late(dev, pm_transition, false);
1208 }
1209 
1210 /**
1211  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1212  * @state: PM transition of the system being carried out.
1213  */
1214 static int dpm_suspend_late(pm_message_t state)
1215 {
1216 	ktime_t starttime = ktime_get();
1217 	int error = 0;
1218 
1219 	mutex_lock(&dpm_list_mtx);
1220 	pm_transition = state;
1221 	async_error = 0;
1222 
1223 	while (!list_empty(&dpm_suspended_list)) {
1224 		struct device *dev = to_device(dpm_suspended_list.prev);
1225 
1226 		get_device(dev);
1227 		mutex_unlock(&dpm_list_mtx);
1228 
1229 		error = device_suspend_late(dev);
1230 
1231 		mutex_lock(&dpm_list_mtx);
1232 		if (error) {
1233 			pm_dev_err(dev, state, " late", error);
1234 			dpm_save_failed_dev(dev_name(dev));
1235 			put_device(dev);
1236 			break;
1237 		}
1238 		if (!list_empty(&dev->power.entry))
1239 			list_move(&dev->power.entry, &dpm_late_early_list);
1240 		put_device(dev);
1241 
1242 		if (async_error)
1243 			break;
1244 	}
1245 	mutex_unlock(&dpm_list_mtx);
1246 	async_synchronize_full();
1247 	if (error) {
1248 		suspend_stats.failed_suspend_late++;
1249 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1250 		dpm_resume_early(resume_event(state));
1251 	} else {
1252 		dpm_show_time(starttime, state, "late");
1253 	}
1254 	return error;
1255 }
1256 
1257 /**
1258  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1259  * @state: PM transition of the system being carried out.
1260  */
1261 int dpm_suspend_end(pm_message_t state)
1262 {
1263 	int error = dpm_suspend_late(state);
1264 	if (error)
1265 		return error;
1266 
1267 	error = dpm_suspend_noirq(state);
1268 	if (error) {
1269 		dpm_resume_early(resume_event(state));
1270 		return error;
1271 	}
1272 
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1276 
1277 /**
1278  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1279  * @dev: Device to suspend.
1280  * @state: PM transition of the system being carried out.
1281  * @cb: Suspend callback to execute.
1282  */
1283 static int legacy_suspend(struct device *dev, pm_message_t state,
1284 			  int (*cb)(struct device *dev, pm_message_t state),
1285 			  char *info)
1286 {
1287 	int error;
1288 	ktime_t calltime;
1289 
1290 	calltime = initcall_debug_start(dev);
1291 
1292 	error = cb(dev, state);
1293 	suspend_report_result(cb, error);
1294 
1295 	initcall_debug_report(dev, calltime, error, state, info);
1296 
1297 	return error;
1298 }
1299 
1300 /**
1301  * device_suspend - Execute "suspend" callbacks for given device.
1302  * @dev: Device to handle.
1303  * @state: PM transition of the system being carried out.
1304  * @async: If true, the device is being suspended asynchronously.
1305  */
1306 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1307 {
1308 	pm_callback_t callback = NULL;
1309 	char *info = NULL;
1310 	int error = 0;
1311 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1312 
1313 	dpm_wait_for_children(dev, async);
1314 
1315 	if (async_error)
1316 		goto Complete;
1317 
1318 	/*
1319 	 * If a device configured to wake up the system from sleep states
1320 	 * has been suspended at run time and there's a resume request pending
1321 	 * for it, this is equivalent to the device signaling wakeup, so the
1322 	 * system suspend operation should be aborted.
1323 	 */
1324 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1325 		pm_wakeup_event(dev, 0);
1326 
1327 	if (pm_wakeup_pending()) {
1328 		async_error = -EBUSY;
1329 		goto Complete;
1330 	}
1331 
1332 	if (dev->power.syscore)
1333 		goto Complete;
1334 
1335 	dpm_watchdog_set(&wd, dev);
1336 	device_lock(dev);
1337 
1338 	if (dev->pm_domain) {
1339 		info = "power domain ";
1340 		callback = pm_op(&dev->pm_domain->ops, state);
1341 		goto Run;
1342 	}
1343 
1344 	if (dev->type && dev->type->pm) {
1345 		info = "type ";
1346 		callback = pm_op(dev->type->pm, state);
1347 		goto Run;
1348 	}
1349 
1350 	if (dev->class) {
1351 		if (dev->class->pm) {
1352 			info = "class ";
1353 			callback = pm_op(dev->class->pm, state);
1354 			goto Run;
1355 		} else if (dev->class->suspend) {
1356 			pm_dev_dbg(dev, state, "legacy class ");
1357 			error = legacy_suspend(dev, state, dev->class->suspend,
1358 						"legacy class ");
1359 			goto End;
1360 		}
1361 	}
1362 
1363 	if (dev->bus) {
1364 		if (dev->bus->pm) {
1365 			info = "bus ";
1366 			callback = pm_op(dev->bus->pm, state);
1367 		} else if (dev->bus->suspend) {
1368 			pm_dev_dbg(dev, state, "legacy bus ");
1369 			error = legacy_suspend(dev, state, dev->bus->suspend,
1370 						"legacy bus ");
1371 			goto End;
1372 		}
1373 	}
1374 
1375  Run:
1376 	if (!callback && dev->driver && dev->driver->pm) {
1377 		info = "driver ";
1378 		callback = pm_op(dev->driver->pm, state);
1379 	}
1380 
1381 	error = dpm_run_callback(callback, dev, state, info);
1382 
1383  End:
1384 	if (!error) {
1385 		dev->power.is_suspended = true;
1386 		if (dev->power.wakeup_path
1387 		    && dev->parent && !dev->parent->power.ignore_children)
1388 			dev->parent->power.wakeup_path = true;
1389 	}
1390 
1391 	device_unlock(dev);
1392 	dpm_watchdog_clear(&wd);
1393 
1394  Complete:
1395 	complete_all(&dev->power.completion);
1396 	if (error)
1397 		async_error = error;
1398 
1399 	return error;
1400 }
1401 
1402 static void async_suspend(void *data, async_cookie_t cookie)
1403 {
1404 	struct device *dev = (struct device *)data;
1405 	int error;
1406 
1407 	error = __device_suspend(dev, pm_transition, true);
1408 	if (error) {
1409 		dpm_save_failed_dev(dev_name(dev));
1410 		pm_dev_err(dev, pm_transition, " async", error);
1411 	}
1412 
1413 	put_device(dev);
1414 }
1415 
1416 static int device_suspend(struct device *dev)
1417 {
1418 	reinit_completion(&dev->power.completion);
1419 
1420 	if (pm_async_enabled && dev->power.async_suspend) {
1421 		get_device(dev);
1422 		async_schedule(async_suspend, dev);
1423 		return 0;
1424 	}
1425 
1426 	return __device_suspend(dev, pm_transition, false);
1427 }
1428 
1429 /**
1430  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1431  * @state: PM transition of the system being carried out.
1432  */
1433 int dpm_suspend(pm_message_t state)
1434 {
1435 	ktime_t starttime = ktime_get();
1436 	int error = 0;
1437 
1438 	might_sleep();
1439 
1440 	cpufreq_suspend();
1441 
1442 	mutex_lock(&dpm_list_mtx);
1443 	pm_transition = state;
1444 	async_error = 0;
1445 	while (!list_empty(&dpm_prepared_list)) {
1446 		struct device *dev = to_device(dpm_prepared_list.prev);
1447 
1448 		get_device(dev);
1449 		mutex_unlock(&dpm_list_mtx);
1450 
1451 		error = device_suspend(dev);
1452 
1453 		mutex_lock(&dpm_list_mtx);
1454 		if (error) {
1455 			pm_dev_err(dev, state, "", error);
1456 			dpm_save_failed_dev(dev_name(dev));
1457 			put_device(dev);
1458 			break;
1459 		}
1460 		if (!list_empty(&dev->power.entry))
1461 			list_move(&dev->power.entry, &dpm_suspended_list);
1462 		put_device(dev);
1463 		if (async_error)
1464 			break;
1465 	}
1466 	mutex_unlock(&dpm_list_mtx);
1467 	async_synchronize_full();
1468 	if (!error)
1469 		error = async_error;
1470 	if (error) {
1471 		suspend_stats.failed_suspend++;
1472 		dpm_save_failed_step(SUSPEND_SUSPEND);
1473 	} else
1474 		dpm_show_time(starttime, state, NULL);
1475 	return error;
1476 }
1477 
1478 /**
1479  * device_prepare - Prepare a device for system power transition.
1480  * @dev: Device to handle.
1481  * @state: PM transition of the system being carried out.
1482  *
1483  * Execute the ->prepare() callback(s) for given device.  No new children of the
1484  * device may be registered after this function has returned.
1485  */
1486 static int device_prepare(struct device *dev, pm_message_t state)
1487 {
1488 	int (*callback)(struct device *) = NULL;
1489 	char *info = NULL;
1490 	int error = 0;
1491 
1492 	if (dev->power.syscore)
1493 		return 0;
1494 
1495 	/*
1496 	 * If a device's parent goes into runtime suspend at the wrong time,
1497 	 * it won't be possible to resume the device.  To prevent this we
1498 	 * block runtime suspend here, during the prepare phase, and allow
1499 	 * it again during the complete phase.
1500 	 */
1501 	pm_runtime_get_noresume(dev);
1502 
1503 	device_lock(dev);
1504 
1505 	dev->power.wakeup_path = device_may_wakeup(dev);
1506 
1507 	if (dev->pm_domain) {
1508 		info = "preparing power domain ";
1509 		callback = dev->pm_domain->ops.prepare;
1510 	} else if (dev->type && dev->type->pm) {
1511 		info = "preparing type ";
1512 		callback = dev->type->pm->prepare;
1513 	} else if (dev->class && dev->class->pm) {
1514 		info = "preparing class ";
1515 		callback = dev->class->pm->prepare;
1516 	} else if (dev->bus && dev->bus->pm) {
1517 		info = "preparing bus ";
1518 		callback = dev->bus->pm->prepare;
1519 	}
1520 
1521 	if (!callback && dev->driver && dev->driver->pm) {
1522 		info = "preparing driver ";
1523 		callback = dev->driver->pm->prepare;
1524 	}
1525 
1526 	if (callback) {
1527 		error = callback(dev);
1528 		suspend_report_result(callback, error);
1529 	}
1530 
1531 	device_unlock(dev);
1532 
1533 	if (error)
1534 		pm_runtime_put(dev);
1535 
1536 	return error;
1537 }
1538 
1539 /**
1540  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1541  * @state: PM transition of the system being carried out.
1542  *
1543  * Execute the ->prepare() callback(s) for all devices.
1544  */
1545 int dpm_prepare(pm_message_t state)
1546 {
1547 	int error = 0;
1548 
1549 	might_sleep();
1550 
1551 	mutex_lock(&dpm_list_mtx);
1552 	while (!list_empty(&dpm_list)) {
1553 		struct device *dev = to_device(dpm_list.next);
1554 
1555 		get_device(dev);
1556 		mutex_unlock(&dpm_list_mtx);
1557 
1558 		error = device_prepare(dev, state);
1559 
1560 		mutex_lock(&dpm_list_mtx);
1561 		if (error) {
1562 			if (error == -EAGAIN) {
1563 				put_device(dev);
1564 				error = 0;
1565 				continue;
1566 			}
1567 			printk(KERN_INFO "PM: Device %s not prepared "
1568 				"for power transition: code %d\n",
1569 				dev_name(dev), error);
1570 			put_device(dev);
1571 			break;
1572 		}
1573 		dev->power.is_prepared = true;
1574 		if (!list_empty(&dev->power.entry))
1575 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1576 		put_device(dev);
1577 	}
1578 	mutex_unlock(&dpm_list_mtx);
1579 	return error;
1580 }
1581 
1582 /**
1583  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1584  * @state: PM transition of the system being carried out.
1585  *
1586  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1587  * callbacks for them.
1588  */
1589 int dpm_suspend_start(pm_message_t state)
1590 {
1591 	int error;
1592 
1593 	error = dpm_prepare(state);
1594 	if (error) {
1595 		suspend_stats.failed_prepare++;
1596 		dpm_save_failed_step(SUSPEND_PREPARE);
1597 	} else
1598 		error = dpm_suspend(state);
1599 	return error;
1600 }
1601 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1602 
1603 void __suspend_report_result(const char *function, void *fn, int ret)
1604 {
1605 	if (ret)
1606 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1607 }
1608 EXPORT_SYMBOL_GPL(__suspend_report_result);
1609 
1610 /**
1611  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1612  * @dev: Device to wait for.
1613  * @subordinate: Device that needs to wait for @dev.
1614  */
1615 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1616 {
1617 	dpm_wait(dev, subordinate->power.async_suspend);
1618 	return async_error;
1619 }
1620 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1621 
1622 /**
1623  * dpm_for_each_dev - device iterator.
1624  * @data: data for the callback.
1625  * @fn: function to be called for each device.
1626  *
1627  * Iterate over devices in dpm_list, and call @fn for each device,
1628  * passing it @data.
1629  */
1630 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1631 {
1632 	struct device *dev;
1633 
1634 	if (!fn)
1635 		return;
1636 
1637 	device_pm_lock();
1638 	list_for_each_entry(dev, &dpm_list, power.entry)
1639 		fn(dev, data);
1640 	device_pm_unlock();
1641 }
1642 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1643