xref: /openbmc/linux/drivers/base/power/main.c (revision 93df8a1e)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/timer.h>
36 
37 #include "../base.h"
38 #include "power.h"
39 
40 typedef int (*pm_callback_t)(struct device *);
41 
42 /*
43  * The entries in the dpm_list list are in a depth first order, simply
44  * because children are guaranteed to be discovered after parents, and
45  * are inserted at the back of the list on discovery.
46  *
47  * Since device_pm_add() may be called with a device lock held,
48  * we must never try to acquire a device lock while holding
49  * dpm_list_mutex.
50  */
51 
52 LIST_HEAD(dpm_list);
53 static LIST_HEAD(dpm_prepared_list);
54 static LIST_HEAD(dpm_suspended_list);
55 static LIST_HEAD(dpm_late_early_list);
56 static LIST_HEAD(dpm_noirq_list);
57 
58 struct suspend_stats suspend_stats;
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61 
62 static int async_error;
63 
64 static char *pm_verb(int event)
65 {
66 	switch (event) {
67 	case PM_EVENT_SUSPEND:
68 		return "suspend";
69 	case PM_EVENT_RESUME:
70 		return "resume";
71 	case PM_EVENT_FREEZE:
72 		return "freeze";
73 	case PM_EVENT_QUIESCE:
74 		return "quiesce";
75 	case PM_EVENT_HIBERNATE:
76 		return "hibernate";
77 	case PM_EVENT_THAW:
78 		return "thaw";
79 	case PM_EVENT_RESTORE:
80 		return "restore";
81 	case PM_EVENT_RECOVER:
82 		return "recover";
83 	default:
84 		return "(unknown PM event)";
85 	}
86 }
87 
88 /**
89  * device_pm_sleep_init - Initialize system suspend-related device fields.
90  * @dev: Device object being initialized.
91  */
92 void device_pm_sleep_init(struct device *dev)
93 {
94 	dev->power.is_prepared = false;
95 	dev->power.is_suspended = false;
96 	dev->power.is_noirq_suspended = false;
97 	dev->power.is_late_suspended = false;
98 	init_completion(&dev->power.completion);
99 	complete_all(&dev->power.completion);
100 	dev->power.wakeup = NULL;
101 	INIT_LIST_HEAD(&dev->power.entry);
102 }
103 
104 /**
105  * device_pm_lock - Lock the list of active devices used by the PM core.
106  */
107 void device_pm_lock(void)
108 {
109 	mutex_lock(&dpm_list_mtx);
110 }
111 
112 /**
113  * device_pm_unlock - Unlock the list of active devices used by the PM core.
114  */
115 void device_pm_unlock(void)
116 {
117 	mutex_unlock(&dpm_list_mtx);
118 }
119 
120 /**
121  * device_pm_add - Add a device to the PM core's list of active devices.
122  * @dev: Device to add to the list.
123  */
124 void device_pm_add(struct device *dev)
125 {
126 	pr_debug("PM: Adding info for %s:%s\n",
127 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 	mutex_lock(&dpm_list_mtx);
129 	if (dev->parent && dev->parent->power.is_prepared)
130 		dev_warn(dev, "parent %s should not be sleeping\n",
131 			dev_name(dev->parent));
132 	list_add_tail(&dev->power.entry, &dpm_list);
133 	mutex_unlock(&dpm_list_mtx);
134 }
135 
136 /**
137  * device_pm_remove - Remove a device from the PM core's list of active devices.
138  * @dev: Device to be removed from the list.
139  */
140 void device_pm_remove(struct device *dev)
141 {
142 	pr_debug("PM: Removing info for %s:%s\n",
143 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
144 	complete_all(&dev->power.completion);
145 	mutex_lock(&dpm_list_mtx);
146 	list_del_init(&dev->power.entry);
147 	mutex_unlock(&dpm_list_mtx);
148 	device_wakeup_disable(dev);
149 	pm_runtime_remove(dev);
150 }
151 
152 /**
153  * device_pm_move_before - Move device in the PM core's list of active devices.
154  * @deva: Device to move in dpm_list.
155  * @devb: Device @deva should come before.
156  */
157 void device_pm_move_before(struct device *deva, struct device *devb)
158 {
159 	pr_debug("PM: Moving %s:%s before %s:%s\n",
160 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
161 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
162 	/* Delete deva from dpm_list and reinsert before devb. */
163 	list_move_tail(&deva->power.entry, &devb->power.entry);
164 }
165 
166 /**
167  * device_pm_move_after - Move device in the PM core's list of active devices.
168  * @deva: Device to move in dpm_list.
169  * @devb: Device @deva should come after.
170  */
171 void device_pm_move_after(struct device *deva, struct device *devb)
172 {
173 	pr_debug("PM: Moving %s:%s after %s:%s\n",
174 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
175 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
176 	/* Delete deva from dpm_list and reinsert after devb. */
177 	list_move(&deva->power.entry, &devb->power.entry);
178 }
179 
180 /**
181  * device_pm_move_last - Move device to end of the PM core's list of devices.
182  * @dev: Device to move in dpm_list.
183  */
184 void device_pm_move_last(struct device *dev)
185 {
186 	pr_debug("PM: Moving %s:%s to end of list\n",
187 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
188 	list_move_tail(&dev->power.entry, &dpm_list);
189 }
190 
191 static ktime_t initcall_debug_start(struct device *dev)
192 {
193 	ktime_t calltime = ktime_set(0, 0);
194 
195 	if (pm_print_times_enabled) {
196 		pr_info("calling  %s+ @ %i, parent: %s\n",
197 			dev_name(dev), task_pid_nr(current),
198 			dev->parent ? dev_name(dev->parent) : "none");
199 		calltime = ktime_get();
200 	}
201 
202 	return calltime;
203 }
204 
205 static void initcall_debug_report(struct device *dev, ktime_t calltime,
206 				  int error, pm_message_t state, char *info)
207 {
208 	ktime_t rettime;
209 	s64 nsecs;
210 
211 	rettime = ktime_get();
212 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
213 
214 	if (pm_print_times_enabled) {
215 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
216 			error, (unsigned long long)nsecs >> 10);
217 	}
218 }
219 
220 /**
221  * dpm_wait - Wait for a PM operation to complete.
222  * @dev: Device to wait for.
223  * @async: If unset, wait only if the device's power.async_suspend flag is set.
224  */
225 static void dpm_wait(struct device *dev, bool async)
226 {
227 	if (!dev)
228 		return;
229 
230 	if (async || (pm_async_enabled && dev->power.async_suspend))
231 		wait_for_completion(&dev->power.completion);
232 }
233 
234 static int dpm_wait_fn(struct device *dev, void *async_ptr)
235 {
236 	dpm_wait(dev, *((bool *)async_ptr));
237 	return 0;
238 }
239 
240 static void dpm_wait_for_children(struct device *dev, bool async)
241 {
242        device_for_each_child(dev, &async, dpm_wait_fn);
243 }
244 
245 /**
246  * pm_op - Return the PM operation appropriate for given PM event.
247  * @ops: PM operations to choose from.
248  * @state: PM transition of the system being carried out.
249  */
250 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
251 {
252 	switch (state.event) {
253 #ifdef CONFIG_SUSPEND
254 	case PM_EVENT_SUSPEND:
255 		return ops->suspend;
256 	case PM_EVENT_RESUME:
257 		return ops->resume;
258 #endif /* CONFIG_SUSPEND */
259 #ifdef CONFIG_HIBERNATE_CALLBACKS
260 	case PM_EVENT_FREEZE:
261 	case PM_EVENT_QUIESCE:
262 		return ops->freeze;
263 	case PM_EVENT_HIBERNATE:
264 		return ops->poweroff;
265 	case PM_EVENT_THAW:
266 	case PM_EVENT_RECOVER:
267 		return ops->thaw;
268 		break;
269 	case PM_EVENT_RESTORE:
270 		return ops->restore;
271 #endif /* CONFIG_HIBERNATE_CALLBACKS */
272 	}
273 
274 	return NULL;
275 }
276 
277 /**
278  * pm_late_early_op - Return the PM operation appropriate for given PM event.
279  * @ops: PM operations to choose from.
280  * @state: PM transition of the system being carried out.
281  *
282  * Runtime PM is disabled for @dev while this function is being executed.
283  */
284 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
285 				      pm_message_t state)
286 {
287 	switch (state.event) {
288 #ifdef CONFIG_SUSPEND
289 	case PM_EVENT_SUSPEND:
290 		return ops->suspend_late;
291 	case PM_EVENT_RESUME:
292 		return ops->resume_early;
293 #endif /* CONFIG_SUSPEND */
294 #ifdef CONFIG_HIBERNATE_CALLBACKS
295 	case PM_EVENT_FREEZE:
296 	case PM_EVENT_QUIESCE:
297 		return ops->freeze_late;
298 	case PM_EVENT_HIBERNATE:
299 		return ops->poweroff_late;
300 	case PM_EVENT_THAW:
301 	case PM_EVENT_RECOVER:
302 		return ops->thaw_early;
303 	case PM_EVENT_RESTORE:
304 		return ops->restore_early;
305 #endif /* CONFIG_HIBERNATE_CALLBACKS */
306 	}
307 
308 	return NULL;
309 }
310 
311 /**
312  * pm_noirq_op - Return the PM operation appropriate for given PM event.
313  * @ops: PM operations to choose from.
314  * @state: PM transition of the system being carried out.
315  *
316  * The driver of @dev will not receive interrupts while this function is being
317  * executed.
318  */
319 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
320 {
321 	switch (state.event) {
322 #ifdef CONFIG_SUSPEND
323 	case PM_EVENT_SUSPEND:
324 		return ops->suspend_noirq;
325 	case PM_EVENT_RESUME:
326 		return ops->resume_noirq;
327 #endif /* CONFIG_SUSPEND */
328 #ifdef CONFIG_HIBERNATE_CALLBACKS
329 	case PM_EVENT_FREEZE:
330 	case PM_EVENT_QUIESCE:
331 		return ops->freeze_noirq;
332 	case PM_EVENT_HIBERNATE:
333 		return ops->poweroff_noirq;
334 	case PM_EVENT_THAW:
335 	case PM_EVENT_RECOVER:
336 		return ops->thaw_noirq;
337 	case PM_EVENT_RESTORE:
338 		return ops->restore_noirq;
339 #endif /* CONFIG_HIBERNATE_CALLBACKS */
340 	}
341 
342 	return NULL;
343 }
344 
345 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
346 {
347 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
348 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
349 		", may wakeup" : "");
350 }
351 
352 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
353 			int error)
354 {
355 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
356 		dev_name(dev), pm_verb(state.event), info, error);
357 }
358 
359 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
360 {
361 	ktime_t calltime;
362 	u64 usecs64;
363 	int usecs;
364 
365 	calltime = ktime_get();
366 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
367 	do_div(usecs64, NSEC_PER_USEC);
368 	usecs = usecs64;
369 	if (usecs == 0)
370 		usecs = 1;
371 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
372 		info ?: "", info ? " " : "", pm_verb(state.event),
373 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
374 }
375 
376 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
377 			    pm_message_t state, char *info)
378 {
379 	ktime_t calltime;
380 	int error;
381 
382 	if (!cb)
383 		return 0;
384 
385 	calltime = initcall_debug_start(dev);
386 
387 	pm_dev_dbg(dev, state, info);
388 	trace_device_pm_callback_start(dev, info, state.event);
389 	error = cb(dev);
390 	trace_device_pm_callback_end(dev, error);
391 	suspend_report_result(cb, error);
392 
393 	initcall_debug_report(dev, calltime, error, state, info);
394 
395 	return error;
396 }
397 
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400 	struct device		*dev;
401 	struct task_struct	*tsk;
402 	struct timer_list	timer;
403 };
404 
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406 	struct dpm_watchdog wd
407 
408 /**
409  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410  * @data: Watchdog object address.
411  *
412  * Called when a driver has timed out suspending or resuming.
413  * There's not much we can do here to recover so panic() to
414  * capture a crash-dump in pstore.
415  */
416 static void dpm_watchdog_handler(unsigned long data)
417 {
418 	struct dpm_watchdog *wd = (void *)data;
419 
420 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421 	show_stack(wd->tsk, NULL);
422 	panic("%s %s: unrecoverable failure\n",
423 		dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425 
426 /**
427  * dpm_watchdog_set - Enable pm watchdog for given device.
428  * @wd: Watchdog. Must be allocated on the stack.
429  * @dev: Device to handle.
430  */
431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433 	struct timer_list *timer = &wd->timer;
434 
435 	wd->dev = dev;
436 	wd->tsk = current;
437 
438 	init_timer_on_stack(timer);
439 	/* use same timeout value for both suspend and resume */
440 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441 	timer->function = dpm_watchdog_handler;
442 	timer->data = (unsigned long)wd;
443 	add_timer(timer);
444 }
445 
446 /**
447  * dpm_watchdog_clear - Disable suspend/resume watchdog.
448  * @wd: Watchdog to disable.
449  */
450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452 	struct timer_list *timer = &wd->timer;
453 
454 	del_timer_sync(timer);
455 	destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462 
463 /*------------------------- Resume routines -------------------------*/
464 
465 /**
466  * device_resume_noirq - Execute an "early resume" callback for given device.
467  * @dev: Device to handle.
468  * @state: PM transition of the system being carried out.
469  * @async: If true, the device is being resumed asynchronously.
470  *
471  * The driver of @dev will not receive interrupts while this function is being
472  * executed.
473  */
474 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
475 {
476 	pm_callback_t callback = NULL;
477 	char *info = NULL;
478 	int error = 0;
479 
480 	TRACE_DEVICE(dev);
481 	TRACE_RESUME(0);
482 
483 	if (dev->power.syscore || dev->power.direct_complete)
484 		goto Out;
485 
486 	if (!dev->power.is_noirq_suspended)
487 		goto Out;
488 
489 	dpm_wait(dev->parent, async);
490 
491 	if (dev->pm_domain) {
492 		info = "noirq power domain ";
493 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
494 	} else if (dev->type && dev->type->pm) {
495 		info = "noirq type ";
496 		callback = pm_noirq_op(dev->type->pm, state);
497 	} else if (dev->class && dev->class->pm) {
498 		info = "noirq class ";
499 		callback = pm_noirq_op(dev->class->pm, state);
500 	} else if (dev->bus && dev->bus->pm) {
501 		info = "noirq bus ";
502 		callback = pm_noirq_op(dev->bus->pm, state);
503 	}
504 
505 	if (!callback && dev->driver && dev->driver->pm) {
506 		info = "noirq driver ";
507 		callback = pm_noirq_op(dev->driver->pm, state);
508 	}
509 
510 	error = dpm_run_callback(callback, dev, state, info);
511 	dev->power.is_noirq_suspended = false;
512 
513  Out:
514 	complete_all(&dev->power.completion);
515 	TRACE_RESUME(error);
516 	return error;
517 }
518 
519 static bool is_async(struct device *dev)
520 {
521 	return dev->power.async_suspend && pm_async_enabled
522 		&& !pm_trace_is_enabled();
523 }
524 
525 static void async_resume_noirq(void *data, async_cookie_t cookie)
526 {
527 	struct device *dev = (struct device *)data;
528 	int error;
529 
530 	error = device_resume_noirq(dev, pm_transition, true);
531 	if (error)
532 		pm_dev_err(dev, pm_transition, " async", error);
533 
534 	put_device(dev);
535 }
536 
537 /**
538  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
539  * @state: PM transition of the system being carried out.
540  *
541  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
542  * enable device drivers to receive interrupts.
543  */
544 void dpm_resume_noirq(pm_message_t state)
545 {
546 	struct device *dev;
547 	ktime_t starttime = ktime_get();
548 
549 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
550 	mutex_lock(&dpm_list_mtx);
551 	pm_transition = state;
552 
553 	/*
554 	 * Advanced the async threads upfront,
555 	 * in case the starting of async threads is
556 	 * delayed by non-async resuming devices.
557 	 */
558 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
559 		reinit_completion(&dev->power.completion);
560 		if (is_async(dev)) {
561 			get_device(dev);
562 			async_schedule(async_resume_noirq, dev);
563 		}
564 	}
565 
566 	while (!list_empty(&dpm_noirq_list)) {
567 		dev = to_device(dpm_noirq_list.next);
568 		get_device(dev);
569 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
570 		mutex_unlock(&dpm_list_mtx);
571 
572 		if (!is_async(dev)) {
573 			int error;
574 
575 			error = device_resume_noirq(dev, state, false);
576 			if (error) {
577 				suspend_stats.failed_resume_noirq++;
578 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
579 				dpm_save_failed_dev(dev_name(dev));
580 				pm_dev_err(dev, state, " noirq", error);
581 			}
582 		}
583 
584 		mutex_lock(&dpm_list_mtx);
585 		put_device(dev);
586 	}
587 	mutex_unlock(&dpm_list_mtx);
588 	async_synchronize_full();
589 	dpm_show_time(starttime, state, "noirq");
590 	resume_device_irqs();
591 	device_wakeup_disarm_wake_irqs();
592 	cpuidle_resume();
593 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
594 }
595 
596 /**
597  * device_resume_early - Execute an "early resume" callback for given device.
598  * @dev: Device to handle.
599  * @state: PM transition of the system being carried out.
600  * @async: If true, the device is being resumed asynchronously.
601  *
602  * Runtime PM is disabled for @dev while this function is being executed.
603  */
604 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
605 {
606 	pm_callback_t callback = NULL;
607 	char *info = NULL;
608 	int error = 0;
609 
610 	TRACE_DEVICE(dev);
611 	TRACE_RESUME(0);
612 
613 	if (dev->power.syscore || dev->power.direct_complete)
614 		goto Out;
615 
616 	if (!dev->power.is_late_suspended)
617 		goto Out;
618 
619 	dpm_wait(dev->parent, async);
620 
621 	if (dev->pm_domain) {
622 		info = "early power domain ";
623 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
624 	} else if (dev->type && dev->type->pm) {
625 		info = "early type ";
626 		callback = pm_late_early_op(dev->type->pm, state);
627 	} else if (dev->class && dev->class->pm) {
628 		info = "early class ";
629 		callback = pm_late_early_op(dev->class->pm, state);
630 	} else if (dev->bus && dev->bus->pm) {
631 		info = "early bus ";
632 		callback = pm_late_early_op(dev->bus->pm, state);
633 	}
634 
635 	if (!callback && dev->driver && dev->driver->pm) {
636 		info = "early driver ";
637 		callback = pm_late_early_op(dev->driver->pm, state);
638 	}
639 
640 	error = dpm_run_callback(callback, dev, state, info);
641 	dev->power.is_late_suspended = false;
642 
643  Out:
644 	TRACE_RESUME(error);
645 
646 	pm_runtime_enable(dev);
647 	complete_all(&dev->power.completion);
648 	return error;
649 }
650 
651 static void async_resume_early(void *data, async_cookie_t cookie)
652 {
653 	struct device *dev = (struct device *)data;
654 	int error;
655 
656 	error = device_resume_early(dev, pm_transition, true);
657 	if (error)
658 		pm_dev_err(dev, pm_transition, " async", error);
659 
660 	put_device(dev);
661 }
662 
663 /**
664  * dpm_resume_early - Execute "early resume" callbacks for all devices.
665  * @state: PM transition of the system being carried out.
666  */
667 void dpm_resume_early(pm_message_t state)
668 {
669 	struct device *dev;
670 	ktime_t starttime = ktime_get();
671 
672 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
673 	mutex_lock(&dpm_list_mtx);
674 	pm_transition = state;
675 
676 	/*
677 	 * Advanced the async threads upfront,
678 	 * in case the starting of async threads is
679 	 * delayed by non-async resuming devices.
680 	 */
681 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
682 		reinit_completion(&dev->power.completion);
683 		if (is_async(dev)) {
684 			get_device(dev);
685 			async_schedule(async_resume_early, dev);
686 		}
687 	}
688 
689 	while (!list_empty(&dpm_late_early_list)) {
690 		dev = to_device(dpm_late_early_list.next);
691 		get_device(dev);
692 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
693 		mutex_unlock(&dpm_list_mtx);
694 
695 		if (!is_async(dev)) {
696 			int error;
697 
698 			error = device_resume_early(dev, state, false);
699 			if (error) {
700 				suspend_stats.failed_resume_early++;
701 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
702 				dpm_save_failed_dev(dev_name(dev));
703 				pm_dev_err(dev, state, " early", error);
704 			}
705 		}
706 		mutex_lock(&dpm_list_mtx);
707 		put_device(dev);
708 	}
709 	mutex_unlock(&dpm_list_mtx);
710 	async_synchronize_full();
711 	dpm_show_time(starttime, state, "early");
712 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
713 }
714 
715 /**
716  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
717  * @state: PM transition of the system being carried out.
718  */
719 void dpm_resume_start(pm_message_t state)
720 {
721 	dpm_resume_noirq(state);
722 	dpm_resume_early(state);
723 }
724 EXPORT_SYMBOL_GPL(dpm_resume_start);
725 
726 /**
727  * device_resume - Execute "resume" callbacks for given device.
728  * @dev: Device to handle.
729  * @state: PM transition of the system being carried out.
730  * @async: If true, the device is being resumed asynchronously.
731  */
732 static int device_resume(struct device *dev, pm_message_t state, bool async)
733 {
734 	pm_callback_t callback = NULL;
735 	char *info = NULL;
736 	int error = 0;
737 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
738 
739 	TRACE_DEVICE(dev);
740 	TRACE_RESUME(0);
741 
742 	if (dev->power.syscore)
743 		goto Complete;
744 
745 	if (dev->power.direct_complete) {
746 		/* Match the pm_runtime_disable() in __device_suspend(). */
747 		pm_runtime_enable(dev);
748 		goto Complete;
749 	}
750 
751 	dpm_wait(dev->parent, async);
752 	dpm_watchdog_set(&wd, dev);
753 	device_lock(dev);
754 
755 	/*
756 	 * This is a fib.  But we'll allow new children to be added below
757 	 * a resumed device, even if the device hasn't been completed yet.
758 	 */
759 	dev->power.is_prepared = false;
760 
761 	if (!dev->power.is_suspended)
762 		goto Unlock;
763 
764 	if (dev->pm_domain) {
765 		info = "power domain ";
766 		callback = pm_op(&dev->pm_domain->ops, state);
767 		goto Driver;
768 	}
769 
770 	if (dev->type && dev->type->pm) {
771 		info = "type ";
772 		callback = pm_op(dev->type->pm, state);
773 		goto Driver;
774 	}
775 
776 	if (dev->class) {
777 		if (dev->class->pm) {
778 			info = "class ";
779 			callback = pm_op(dev->class->pm, state);
780 			goto Driver;
781 		} else if (dev->class->resume) {
782 			info = "legacy class ";
783 			callback = dev->class->resume;
784 			goto End;
785 		}
786 	}
787 
788 	if (dev->bus) {
789 		if (dev->bus->pm) {
790 			info = "bus ";
791 			callback = pm_op(dev->bus->pm, state);
792 		} else if (dev->bus->resume) {
793 			info = "legacy bus ";
794 			callback = dev->bus->resume;
795 			goto End;
796 		}
797 	}
798 
799  Driver:
800 	if (!callback && dev->driver && dev->driver->pm) {
801 		info = "driver ";
802 		callback = pm_op(dev->driver->pm, state);
803 	}
804 
805  End:
806 	error = dpm_run_callback(callback, dev, state, info);
807 	dev->power.is_suspended = false;
808 
809  Unlock:
810 	device_unlock(dev);
811 	dpm_watchdog_clear(&wd);
812 
813  Complete:
814 	complete_all(&dev->power.completion);
815 
816 	TRACE_RESUME(error);
817 
818 	return error;
819 }
820 
821 static void async_resume(void *data, async_cookie_t cookie)
822 {
823 	struct device *dev = (struct device *)data;
824 	int error;
825 
826 	error = device_resume(dev, pm_transition, true);
827 	if (error)
828 		pm_dev_err(dev, pm_transition, " async", error);
829 	put_device(dev);
830 }
831 
832 /**
833  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
834  * @state: PM transition of the system being carried out.
835  *
836  * Execute the appropriate "resume" callback for all devices whose status
837  * indicates that they are suspended.
838  */
839 void dpm_resume(pm_message_t state)
840 {
841 	struct device *dev;
842 	ktime_t starttime = ktime_get();
843 
844 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
845 	might_sleep();
846 
847 	mutex_lock(&dpm_list_mtx);
848 	pm_transition = state;
849 	async_error = 0;
850 
851 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
852 		reinit_completion(&dev->power.completion);
853 		if (is_async(dev)) {
854 			get_device(dev);
855 			async_schedule(async_resume, dev);
856 		}
857 	}
858 
859 	while (!list_empty(&dpm_suspended_list)) {
860 		dev = to_device(dpm_suspended_list.next);
861 		get_device(dev);
862 		if (!is_async(dev)) {
863 			int error;
864 
865 			mutex_unlock(&dpm_list_mtx);
866 
867 			error = device_resume(dev, state, false);
868 			if (error) {
869 				suspend_stats.failed_resume++;
870 				dpm_save_failed_step(SUSPEND_RESUME);
871 				dpm_save_failed_dev(dev_name(dev));
872 				pm_dev_err(dev, state, "", error);
873 			}
874 
875 			mutex_lock(&dpm_list_mtx);
876 		}
877 		if (!list_empty(&dev->power.entry))
878 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
879 		put_device(dev);
880 	}
881 	mutex_unlock(&dpm_list_mtx);
882 	async_synchronize_full();
883 	dpm_show_time(starttime, state, NULL);
884 
885 	cpufreq_resume();
886 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
887 }
888 
889 /**
890  * device_complete - Complete a PM transition for given device.
891  * @dev: Device to handle.
892  * @state: PM transition of the system being carried out.
893  */
894 static void device_complete(struct device *dev, pm_message_t state)
895 {
896 	void (*callback)(struct device *) = NULL;
897 	char *info = NULL;
898 
899 	if (dev->power.syscore)
900 		return;
901 
902 	device_lock(dev);
903 
904 	if (dev->pm_domain) {
905 		info = "completing power domain ";
906 		callback = dev->pm_domain->ops.complete;
907 	} else if (dev->type && dev->type->pm) {
908 		info = "completing type ";
909 		callback = dev->type->pm->complete;
910 	} else if (dev->class && dev->class->pm) {
911 		info = "completing class ";
912 		callback = dev->class->pm->complete;
913 	} else if (dev->bus && dev->bus->pm) {
914 		info = "completing bus ";
915 		callback = dev->bus->pm->complete;
916 	}
917 
918 	if (!callback && dev->driver && dev->driver->pm) {
919 		info = "completing driver ";
920 		callback = dev->driver->pm->complete;
921 	}
922 
923 	if (callback) {
924 		pm_dev_dbg(dev, state, info);
925 		callback(dev);
926 	}
927 
928 	device_unlock(dev);
929 
930 	pm_runtime_put(dev);
931 }
932 
933 /**
934  * dpm_complete - Complete a PM transition for all non-sysdev devices.
935  * @state: PM transition of the system being carried out.
936  *
937  * Execute the ->complete() callbacks for all devices whose PM status is not
938  * DPM_ON (this allows new devices to be registered).
939  */
940 void dpm_complete(pm_message_t state)
941 {
942 	struct list_head list;
943 
944 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
945 	might_sleep();
946 
947 	INIT_LIST_HEAD(&list);
948 	mutex_lock(&dpm_list_mtx);
949 	while (!list_empty(&dpm_prepared_list)) {
950 		struct device *dev = to_device(dpm_prepared_list.prev);
951 
952 		get_device(dev);
953 		dev->power.is_prepared = false;
954 		list_move(&dev->power.entry, &list);
955 		mutex_unlock(&dpm_list_mtx);
956 
957 		trace_device_pm_callback_start(dev, "", state.event);
958 		device_complete(dev, state);
959 		trace_device_pm_callback_end(dev, 0);
960 
961 		mutex_lock(&dpm_list_mtx);
962 		put_device(dev);
963 	}
964 	list_splice(&list, &dpm_list);
965 	mutex_unlock(&dpm_list_mtx);
966 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
967 }
968 
969 /**
970  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
971  * @state: PM transition of the system being carried out.
972  *
973  * Execute "resume" callbacks for all devices and complete the PM transition of
974  * the system.
975  */
976 void dpm_resume_end(pm_message_t state)
977 {
978 	dpm_resume(state);
979 	dpm_complete(state);
980 }
981 EXPORT_SYMBOL_GPL(dpm_resume_end);
982 
983 
984 /*------------------------- Suspend routines -------------------------*/
985 
986 /**
987  * resume_event - Return a "resume" message for given "suspend" sleep state.
988  * @sleep_state: PM message representing a sleep state.
989  *
990  * Return a PM message representing the resume event corresponding to given
991  * sleep state.
992  */
993 static pm_message_t resume_event(pm_message_t sleep_state)
994 {
995 	switch (sleep_state.event) {
996 	case PM_EVENT_SUSPEND:
997 		return PMSG_RESUME;
998 	case PM_EVENT_FREEZE:
999 	case PM_EVENT_QUIESCE:
1000 		return PMSG_RECOVER;
1001 	case PM_EVENT_HIBERNATE:
1002 		return PMSG_RESTORE;
1003 	}
1004 	return PMSG_ON;
1005 }
1006 
1007 /**
1008  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1009  * @dev: Device to handle.
1010  * @state: PM transition of the system being carried out.
1011  * @async: If true, the device is being suspended asynchronously.
1012  *
1013  * The driver of @dev will not receive interrupts while this function is being
1014  * executed.
1015  */
1016 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1017 {
1018 	pm_callback_t callback = NULL;
1019 	char *info = NULL;
1020 	int error = 0;
1021 
1022 	TRACE_DEVICE(dev);
1023 	TRACE_SUSPEND(0);
1024 
1025 	if (async_error)
1026 		goto Complete;
1027 
1028 	if (pm_wakeup_pending()) {
1029 		async_error = -EBUSY;
1030 		goto Complete;
1031 	}
1032 
1033 	if (dev->power.syscore || dev->power.direct_complete)
1034 		goto Complete;
1035 
1036 	dpm_wait_for_children(dev, async);
1037 
1038 	if (dev->pm_domain) {
1039 		info = "noirq power domain ";
1040 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1041 	} else if (dev->type && dev->type->pm) {
1042 		info = "noirq type ";
1043 		callback = pm_noirq_op(dev->type->pm, state);
1044 	} else if (dev->class && dev->class->pm) {
1045 		info = "noirq class ";
1046 		callback = pm_noirq_op(dev->class->pm, state);
1047 	} else if (dev->bus && dev->bus->pm) {
1048 		info = "noirq bus ";
1049 		callback = pm_noirq_op(dev->bus->pm, state);
1050 	}
1051 
1052 	if (!callback && dev->driver && dev->driver->pm) {
1053 		info = "noirq driver ";
1054 		callback = pm_noirq_op(dev->driver->pm, state);
1055 	}
1056 
1057 	error = dpm_run_callback(callback, dev, state, info);
1058 	if (!error)
1059 		dev->power.is_noirq_suspended = true;
1060 	else
1061 		async_error = error;
1062 
1063 Complete:
1064 	complete_all(&dev->power.completion);
1065 	TRACE_SUSPEND(error);
1066 	return error;
1067 }
1068 
1069 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1070 {
1071 	struct device *dev = (struct device *)data;
1072 	int error;
1073 
1074 	error = __device_suspend_noirq(dev, pm_transition, true);
1075 	if (error) {
1076 		dpm_save_failed_dev(dev_name(dev));
1077 		pm_dev_err(dev, pm_transition, " async", error);
1078 	}
1079 
1080 	put_device(dev);
1081 }
1082 
1083 static int device_suspend_noirq(struct device *dev)
1084 {
1085 	reinit_completion(&dev->power.completion);
1086 
1087 	if (is_async(dev)) {
1088 		get_device(dev);
1089 		async_schedule(async_suspend_noirq, dev);
1090 		return 0;
1091 	}
1092 	return __device_suspend_noirq(dev, pm_transition, false);
1093 }
1094 
1095 /**
1096  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1097  * @state: PM transition of the system being carried out.
1098  *
1099  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1100  * handlers for all non-sysdev devices.
1101  */
1102 int dpm_suspend_noirq(pm_message_t state)
1103 {
1104 	ktime_t starttime = ktime_get();
1105 	int error = 0;
1106 
1107 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1108 	cpuidle_pause();
1109 	device_wakeup_arm_wake_irqs();
1110 	suspend_device_irqs();
1111 	mutex_lock(&dpm_list_mtx);
1112 	pm_transition = state;
1113 	async_error = 0;
1114 
1115 	while (!list_empty(&dpm_late_early_list)) {
1116 		struct device *dev = to_device(dpm_late_early_list.prev);
1117 
1118 		get_device(dev);
1119 		mutex_unlock(&dpm_list_mtx);
1120 
1121 		error = device_suspend_noirq(dev);
1122 
1123 		mutex_lock(&dpm_list_mtx);
1124 		if (error) {
1125 			pm_dev_err(dev, state, " noirq", error);
1126 			dpm_save_failed_dev(dev_name(dev));
1127 			put_device(dev);
1128 			break;
1129 		}
1130 		if (!list_empty(&dev->power.entry))
1131 			list_move(&dev->power.entry, &dpm_noirq_list);
1132 		put_device(dev);
1133 
1134 		if (async_error)
1135 			break;
1136 	}
1137 	mutex_unlock(&dpm_list_mtx);
1138 	async_synchronize_full();
1139 	if (!error)
1140 		error = async_error;
1141 
1142 	if (error) {
1143 		suspend_stats.failed_suspend_noirq++;
1144 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1145 		dpm_resume_noirq(resume_event(state));
1146 	} else {
1147 		dpm_show_time(starttime, state, "noirq");
1148 	}
1149 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1150 	return error;
1151 }
1152 
1153 /**
1154  * device_suspend_late - Execute a "late suspend" callback for given device.
1155  * @dev: Device to handle.
1156  * @state: PM transition of the system being carried out.
1157  * @async: If true, the device is being suspended asynchronously.
1158  *
1159  * Runtime PM is disabled for @dev while this function is being executed.
1160  */
1161 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1162 {
1163 	pm_callback_t callback = NULL;
1164 	char *info = NULL;
1165 	int error = 0;
1166 
1167 	TRACE_DEVICE(dev);
1168 	TRACE_SUSPEND(0);
1169 
1170 	__pm_runtime_disable(dev, false);
1171 
1172 	if (async_error)
1173 		goto Complete;
1174 
1175 	if (pm_wakeup_pending()) {
1176 		async_error = -EBUSY;
1177 		goto Complete;
1178 	}
1179 
1180 	if (dev->power.syscore || dev->power.direct_complete)
1181 		goto Complete;
1182 
1183 	dpm_wait_for_children(dev, async);
1184 
1185 	if (dev->pm_domain) {
1186 		info = "late power domain ";
1187 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1188 	} else if (dev->type && dev->type->pm) {
1189 		info = "late type ";
1190 		callback = pm_late_early_op(dev->type->pm, state);
1191 	} else if (dev->class && dev->class->pm) {
1192 		info = "late class ";
1193 		callback = pm_late_early_op(dev->class->pm, state);
1194 	} else if (dev->bus && dev->bus->pm) {
1195 		info = "late bus ";
1196 		callback = pm_late_early_op(dev->bus->pm, state);
1197 	}
1198 
1199 	if (!callback && dev->driver && dev->driver->pm) {
1200 		info = "late driver ";
1201 		callback = pm_late_early_op(dev->driver->pm, state);
1202 	}
1203 
1204 	error = dpm_run_callback(callback, dev, state, info);
1205 	if (!error)
1206 		dev->power.is_late_suspended = true;
1207 	else
1208 		async_error = error;
1209 
1210 Complete:
1211 	TRACE_SUSPEND(error);
1212 	complete_all(&dev->power.completion);
1213 	return error;
1214 }
1215 
1216 static void async_suspend_late(void *data, async_cookie_t cookie)
1217 {
1218 	struct device *dev = (struct device *)data;
1219 	int error;
1220 
1221 	error = __device_suspend_late(dev, pm_transition, true);
1222 	if (error) {
1223 		dpm_save_failed_dev(dev_name(dev));
1224 		pm_dev_err(dev, pm_transition, " async", error);
1225 	}
1226 	put_device(dev);
1227 }
1228 
1229 static int device_suspend_late(struct device *dev)
1230 {
1231 	reinit_completion(&dev->power.completion);
1232 
1233 	if (is_async(dev)) {
1234 		get_device(dev);
1235 		async_schedule(async_suspend_late, dev);
1236 		return 0;
1237 	}
1238 
1239 	return __device_suspend_late(dev, pm_transition, false);
1240 }
1241 
1242 /**
1243  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1244  * @state: PM transition of the system being carried out.
1245  */
1246 int dpm_suspend_late(pm_message_t state)
1247 {
1248 	ktime_t starttime = ktime_get();
1249 	int error = 0;
1250 
1251 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1252 	mutex_lock(&dpm_list_mtx);
1253 	pm_transition = state;
1254 	async_error = 0;
1255 
1256 	while (!list_empty(&dpm_suspended_list)) {
1257 		struct device *dev = to_device(dpm_suspended_list.prev);
1258 
1259 		get_device(dev);
1260 		mutex_unlock(&dpm_list_mtx);
1261 
1262 		error = device_suspend_late(dev);
1263 
1264 		mutex_lock(&dpm_list_mtx);
1265 		if (error) {
1266 			pm_dev_err(dev, state, " late", error);
1267 			dpm_save_failed_dev(dev_name(dev));
1268 			put_device(dev);
1269 			break;
1270 		}
1271 		if (!list_empty(&dev->power.entry))
1272 			list_move(&dev->power.entry, &dpm_late_early_list);
1273 		put_device(dev);
1274 
1275 		if (async_error)
1276 			break;
1277 	}
1278 	mutex_unlock(&dpm_list_mtx);
1279 	async_synchronize_full();
1280 	if (!error)
1281 		error = async_error;
1282 	if (error) {
1283 		suspend_stats.failed_suspend_late++;
1284 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1285 		dpm_resume_early(resume_event(state));
1286 	} else {
1287 		dpm_show_time(starttime, state, "late");
1288 	}
1289 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1290 	return error;
1291 }
1292 
1293 /**
1294  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1295  * @state: PM transition of the system being carried out.
1296  */
1297 int dpm_suspend_end(pm_message_t state)
1298 {
1299 	int error = dpm_suspend_late(state);
1300 	if (error)
1301 		return error;
1302 
1303 	error = dpm_suspend_noirq(state);
1304 	if (error) {
1305 		dpm_resume_early(resume_event(state));
1306 		return error;
1307 	}
1308 
1309 	return 0;
1310 }
1311 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1312 
1313 /**
1314  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1315  * @dev: Device to suspend.
1316  * @state: PM transition of the system being carried out.
1317  * @cb: Suspend callback to execute.
1318  * @info: string description of caller.
1319  */
1320 static int legacy_suspend(struct device *dev, pm_message_t state,
1321 			  int (*cb)(struct device *dev, pm_message_t state),
1322 			  char *info)
1323 {
1324 	int error;
1325 	ktime_t calltime;
1326 
1327 	calltime = initcall_debug_start(dev);
1328 
1329 	trace_device_pm_callback_start(dev, info, state.event);
1330 	error = cb(dev, state);
1331 	trace_device_pm_callback_end(dev, error);
1332 	suspend_report_result(cb, error);
1333 
1334 	initcall_debug_report(dev, calltime, error, state, info);
1335 
1336 	return error;
1337 }
1338 
1339 /**
1340  * device_suspend - Execute "suspend" callbacks for given device.
1341  * @dev: Device to handle.
1342  * @state: PM transition of the system being carried out.
1343  * @async: If true, the device is being suspended asynchronously.
1344  */
1345 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1346 {
1347 	pm_callback_t callback = NULL;
1348 	char *info = NULL;
1349 	int error = 0;
1350 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1351 
1352 	TRACE_DEVICE(dev);
1353 	TRACE_SUSPEND(0);
1354 
1355 	dpm_wait_for_children(dev, async);
1356 
1357 	if (async_error)
1358 		goto Complete;
1359 
1360 	/*
1361 	 * If a device configured to wake up the system from sleep states
1362 	 * has been suspended at run time and there's a resume request pending
1363 	 * for it, this is equivalent to the device signaling wakeup, so the
1364 	 * system suspend operation should be aborted.
1365 	 */
1366 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1367 		pm_wakeup_event(dev, 0);
1368 
1369 	if (pm_wakeup_pending()) {
1370 		async_error = -EBUSY;
1371 		goto Complete;
1372 	}
1373 
1374 	if (dev->power.syscore)
1375 		goto Complete;
1376 
1377 	if (dev->power.direct_complete) {
1378 		if (pm_runtime_status_suspended(dev)) {
1379 			pm_runtime_disable(dev);
1380 			if (pm_runtime_suspended_if_enabled(dev))
1381 				goto Complete;
1382 
1383 			pm_runtime_enable(dev);
1384 		}
1385 		dev->power.direct_complete = false;
1386 	}
1387 
1388 	dpm_watchdog_set(&wd, dev);
1389 	device_lock(dev);
1390 
1391 	if (dev->pm_domain) {
1392 		info = "power domain ";
1393 		callback = pm_op(&dev->pm_domain->ops, state);
1394 		goto Run;
1395 	}
1396 
1397 	if (dev->type && dev->type->pm) {
1398 		info = "type ";
1399 		callback = pm_op(dev->type->pm, state);
1400 		goto Run;
1401 	}
1402 
1403 	if (dev->class) {
1404 		if (dev->class->pm) {
1405 			info = "class ";
1406 			callback = pm_op(dev->class->pm, state);
1407 			goto Run;
1408 		} else if (dev->class->suspend) {
1409 			pm_dev_dbg(dev, state, "legacy class ");
1410 			error = legacy_suspend(dev, state, dev->class->suspend,
1411 						"legacy class ");
1412 			goto End;
1413 		}
1414 	}
1415 
1416 	if (dev->bus) {
1417 		if (dev->bus->pm) {
1418 			info = "bus ";
1419 			callback = pm_op(dev->bus->pm, state);
1420 		} else if (dev->bus->suspend) {
1421 			pm_dev_dbg(dev, state, "legacy bus ");
1422 			error = legacy_suspend(dev, state, dev->bus->suspend,
1423 						"legacy bus ");
1424 			goto End;
1425 		}
1426 	}
1427 
1428  Run:
1429 	if (!callback && dev->driver && dev->driver->pm) {
1430 		info = "driver ";
1431 		callback = pm_op(dev->driver->pm, state);
1432 	}
1433 
1434 	error = dpm_run_callback(callback, dev, state, info);
1435 
1436  End:
1437 	if (!error) {
1438 		struct device *parent = dev->parent;
1439 
1440 		dev->power.is_suspended = true;
1441 		if (parent) {
1442 			spin_lock_irq(&parent->power.lock);
1443 
1444 			dev->parent->power.direct_complete = false;
1445 			if (dev->power.wakeup_path
1446 			    && !dev->parent->power.ignore_children)
1447 				dev->parent->power.wakeup_path = true;
1448 
1449 			spin_unlock_irq(&parent->power.lock);
1450 		}
1451 	}
1452 
1453 	device_unlock(dev);
1454 	dpm_watchdog_clear(&wd);
1455 
1456  Complete:
1457 	complete_all(&dev->power.completion);
1458 	if (error)
1459 		async_error = error;
1460 
1461 	TRACE_SUSPEND(error);
1462 	return error;
1463 }
1464 
1465 static void async_suspend(void *data, async_cookie_t cookie)
1466 {
1467 	struct device *dev = (struct device *)data;
1468 	int error;
1469 
1470 	error = __device_suspend(dev, pm_transition, true);
1471 	if (error) {
1472 		dpm_save_failed_dev(dev_name(dev));
1473 		pm_dev_err(dev, pm_transition, " async", error);
1474 	}
1475 
1476 	put_device(dev);
1477 }
1478 
1479 static int device_suspend(struct device *dev)
1480 {
1481 	reinit_completion(&dev->power.completion);
1482 
1483 	if (is_async(dev)) {
1484 		get_device(dev);
1485 		async_schedule(async_suspend, dev);
1486 		return 0;
1487 	}
1488 
1489 	return __device_suspend(dev, pm_transition, false);
1490 }
1491 
1492 /**
1493  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1494  * @state: PM transition of the system being carried out.
1495  */
1496 int dpm_suspend(pm_message_t state)
1497 {
1498 	ktime_t starttime = ktime_get();
1499 	int error = 0;
1500 
1501 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1502 	might_sleep();
1503 
1504 	cpufreq_suspend();
1505 
1506 	mutex_lock(&dpm_list_mtx);
1507 	pm_transition = state;
1508 	async_error = 0;
1509 	while (!list_empty(&dpm_prepared_list)) {
1510 		struct device *dev = to_device(dpm_prepared_list.prev);
1511 
1512 		get_device(dev);
1513 		mutex_unlock(&dpm_list_mtx);
1514 
1515 		error = device_suspend(dev);
1516 
1517 		mutex_lock(&dpm_list_mtx);
1518 		if (error) {
1519 			pm_dev_err(dev, state, "", error);
1520 			dpm_save_failed_dev(dev_name(dev));
1521 			put_device(dev);
1522 			break;
1523 		}
1524 		if (!list_empty(&dev->power.entry))
1525 			list_move(&dev->power.entry, &dpm_suspended_list);
1526 		put_device(dev);
1527 		if (async_error)
1528 			break;
1529 	}
1530 	mutex_unlock(&dpm_list_mtx);
1531 	async_synchronize_full();
1532 	if (!error)
1533 		error = async_error;
1534 	if (error) {
1535 		suspend_stats.failed_suspend++;
1536 		dpm_save_failed_step(SUSPEND_SUSPEND);
1537 	} else
1538 		dpm_show_time(starttime, state, NULL);
1539 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1540 	return error;
1541 }
1542 
1543 /**
1544  * device_prepare - Prepare a device for system power transition.
1545  * @dev: Device to handle.
1546  * @state: PM transition of the system being carried out.
1547  *
1548  * Execute the ->prepare() callback(s) for given device.  No new children of the
1549  * device may be registered after this function has returned.
1550  */
1551 static int device_prepare(struct device *dev, pm_message_t state)
1552 {
1553 	int (*callback)(struct device *) = NULL;
1554 	char *info = NULL;
1555 	int ret = 0;
1556 
1557 	if (dev->power.syscore)
1558 		return 0;
1559 
1560 	/*
1561 	 * If a device's parent goes into runtime suspend at the wrong time,
1562 	 * it won't be possible to resume the device.  To prevent this we
1563 	 * block runtime suspend here, during the prepare phase, and allow
1564 	 * it again during the complete phase.
1565 	 */
1566 	pm_runtime_get_noresume(dev);
1567 
1568 	device_lock(dev);
1569 
1570 	dev->power.wakeup_path = device_may_wakeup(dev);
1571 
1572 	if (dev->pm_domain) {
1573 		info = "preparing power domain ";
1574 		callback = dev->pm_domain->ops.prepare;
1575 	} else if (dev->type && dev->type->pm) {
1576 		info = "preparing type ";
1577 		callback = dev->type->pm->prepare;
1578 	} else if (dev->class && dev->class->pm) {
1579 		info = "preparing class ";
1580 		callback = dev->class->pm->prepare;
1581 	} else if (dev->bus && dev->bus->pm) {
1582 		info = "preparing bus ";
1583 		callback = dev->bus->pm->prepare;
1584 	}
1585 
1586 	if (!callback && dev->driver && dev->driver->pm) {
1587 		info = "preparing driver ";
1588 		callback = dev->driver->pm->prepare;
1589 	}
1590 
1591 	if (callback)
1592 		ret = callback(dev);
1593 
1594 	device_unlock(dev);
1595 
1596 	if (ret < 0) {
1597 		suspend_report_result(callback, ret);
1598 		pm_runtime_put(dev);
1599 		return ret;
1600 	}
1601 	/*
1602 	 * A positive return value from ->prepare() means "this device appears
1603 	 * to be runtime-suspended and its state is fine, so if it really is
1604 	 * runtime-suspended, you can leave it in that state provided that you
1605 	 * will do the same thing with all of its descendants".  This only
1606 	 * applies to suspend transitions, however.
1607 	 */
1608 	spin_lock_irq(&dev->power.lock);
1609 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1610 	spin_unlock_irq(&dev->power.lock);
1611 	return 0;
1612 }
1613 
1614 /**
1615  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1616  * @state: PM transition of the system being carried out.
1617  *
1618  * Execute the ->prepare() callback(s) for all devices.
1619  */
1620 int dpm_prepare(pm_message_t state)
1621 {
1622 	int error = 0;
1623 
1624 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1625 	might_sleep();
1626 
1627 	mutex_lock(&dpm_list_mtx);
1628 	while (!list_empty(&dpm_list)) {
1629 		struct device *dev = to_device(dpm_list.next);
1630 
1631 		get_device(dev);
1632 		mutex_unlock(&dpm_list_mtx);
1633 
1634 		trace_device_pm_callback_start(dev, "", state.event);
1635 		error = device_prepare(dev, state);
1636 		trace_device_pm_callback_end(dev, error);
1637 
1638 		mutex_lock(&dpm_list_mtx);
1639 		if (error) {
1640 			if (error == -EAGAIN) {
1641 				put_device(dev);
1642 				error = 0;
1643 				continue;
1644 			}
1645 			printk(KERN_INFO "PM: Device %s not prepared "
1646 				"for power transition: code %d\n",
1647 				dev_name(dev), error);
1648 			put_device(dev);
1649 			break;
1650 		}
1651 		dev->power.is_prepared = true;
1652 		if (!list_empty(&dev->power.entry))
1653 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1654 		put_device(dev);
1655 	}
1656 	mutex_unlock(&dpm_list_mtx);
1657 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1658 	return error;
1659 }
1660 
1661 /**
1662  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1663  * @state: PM transition of the system being carried out.
1664  *
1665  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1666  * callbacks for them.
1667  */
1668 int dpm_suspend_start(pm_message_t state)
1669 {
1670 	int error;
1671 
1672 	error = dpm_prepare(state);
1673 	if (error) {
1674 		suspend_stats.failed_prepare++;
1675 		dpm_save_failed_step(SUSPEND_PREPARE);
1676 	} else
1677 		error = dpm_suspend(state);
1678 	return error;
1679 }
1680 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1681 
1682 void __suspend_report_result(const char *function, void *fn, int ret)
1683 {
1684 	if (ret)
1685 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1686 }
1687 EXPORT_SYMBOL_GPL(__suspend_report_result);
1688 
1689 /**
1690  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1691  * @dev: Device to wait for.
1692  * @subordinate: Device that needs to wait for @dev.
1693  */
1694 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1695 {
1696 	dpm_wait(dev, subordinate->power.async_suspend);
1697 	return async_error;
1698 }
1699 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1700 
1701 /**
1702  * dpm_for_each_dev - device iterator.
1703  * @data: data for the callback.
1704  * @fn: function to be called for each device.
1705  *
1706  * Iterate over devices in dpm_list, and call @fn for each device,
1707  * passing it @data.
1708  */
1709 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1710 {
1711 	struct device *dev;
1712 
1713 	if (!fn)
1714 		return;
1715 
1716 	device_pm_lock();
1717 	list_for_each_entry(dev, &dpm_list, power.entry)
1718 		fn(dev, data);
1719 	device_pm_unlock();
1720 }
1721 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1722