1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kallsyms.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/resume-trace.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/async.h> 30 #include <linux/suspend.h> 31 #include <trace/events/power.h> 32 #include <linux/cpuidle.h> 33 #include <linux/timer.h> 34 35 #include "../base.h" 36 #include "power.h" 37 38 typedef int (*pm_callback_t)(struct device *); 39 40 /* 41 * The entries in the dpm_list list are in a depth first order, simply 42 * because children are guaranteed to be discovered after parents, and 43 * are inserted at the back of the list on discovery. 44 * 45 * Since device_pm_add() may be called with a device lock held, 46 * we must never try to acquire a device lock while holding 47 * dpm_list_mutex. 48 */ 49 50 LIST_HEAD(dpm_list); 51 static LIST_HEAD(dpm_prepared_list); 52 static LIST_HEAD(dpm_suspended_list); 53 static LIST_HEAD(dpm_late_early_list); 54 static LIST_HEAD(dpm_noirq_list); 55 56 struct suspend_stats suspend_stats; 57 static DEFINE_MUTEX(dpm_list_mtx); 58 static pm_message_t pm_transition; 59 60 static int async_error; 61 62 static char *pm_verb(int event) 63 { 64 switch (event) { 65 case PM_EVENT_SUSPEND: 66 return "suspend"; 67 case PM_EVENT_RESUME: 68 return "resume"; 69 case PM_EVENT_FREEZE: 70 return "freeze"; 71 case PM_EVENT_QUIESCE: 72 return "quiesce"; 73 case PM_EVENT_HIBERNATE: 74 return "hibernate"; 75 case PM_EVENT_THAW: 76 return "thaw"; 77 case PM_EVENT_RESTORE: 78 return "restore"; 79 case PM_EVENT_RECOVER: 80 return "recover"; 81 default: 82 return "(unknown PM event)"; 83 } 84 } 85 86 /** 87 * device_pm_sleep_init - Initialize system suspend-related device fields. 88 * @dev: Device object being initialized. 89 */ 90 void device_pm_sleep_init(struct device *dev) 91 { 92 dev->power.is_prepared = false; 93 dev->power.is_suspended = false; 94 init_completion(&dev->power.completion); 95 complete_all(&dev->power.completion); 96 dev->power.wakeup = NULL; 97 INIT_LIST_HEAD(&dev->power.entry); 98 } 99 100 /** 101 * device_pm_lock - Lock the list of active devices used by the PM core. 102 */ 103 void device_pm_lock(void) 104 { 105 mutex_lock(&dpm_list_mtx); 106 } 107 108 /** 109 * device_pm_unlock - Unlock the list of active devices used by the PM core. 110 */ 111 void device_pm_unlock(void) 112 { 113 mutex_unlock(&dpm_list_mtx); 114 } 115 116 /** 117 * device_pm_add - Add a device to the PM core's list of active devices. 118 * @dev: Device to add to the list. 119 */ 120 void device_pm_add(struct device *dev) 121 { 122 pr_debug("PM: Adding info for %s:%s\n", 123 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 124 mutex_lock(&dpm_list_mtx); 125 if (dev->parent && dev->parent->power.is_prepared) 126 dev_warn(dev, "parent %s should not be sleeping\n", 127 dev_name(dev->parent)); 128 list_add_tail(&dev->power.entry, &dpm_list); 129 mutex_unlock(&dpm_list_mtx); 130 } 131 132 /** 133 * device_pm_remove - Remove a device from the PM core's list of active devices. 134 * @dev: Device to be removed from the list. 135 */ 136 void device_pm_remove(struct device *dev) 137 { 138 pr_debug("PM: Removing info for %s:%s\n", 139 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 140 complete_all(&dev->power.completion); 141 mutex_lock(&dpm_list_mtx); 142 list_del_init(&dev->power.entry); 143 mutex_unlock(&dpm_list_mtx); 144 device_wakeup_disable(dev); 145 pm_runtime_remove(dev); 146 } 147 148 /** 149 * device_pm_move_before - Move device in the PM core's list of active devices. 150 * @deva: Device to move in dpm_list. 151 * @devb: Device @deva should come before. 152 */ 153 void device_pm_move_before(struct device *deva, struct device *devb) 154 { 155 pr_debug("PM: Moving %s:%s before %s:%s\n", 156 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 157 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 158 /* Delete deva from dpm_list and reinsert before devb. */ 159 list_move_tail(&deva->power.entry, &devb->power.entry); 160 } 161 162 /** 163 * device_pm_move_after - Move device in the PM core's list of active devices. 164 * @deva: Device to move in dpm_list. 165 * @devb: Device @deva should come after. 166 */ 167 void device_pm_move_after(struct device *deva, struct device *devb) 168 { 169 pr_debug("PM: Moving %s:%s after %s:%s\n", 170 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 171 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 172 /* Delete deva from dpm_list and reinsert after devb. */ 173 list_move(&deva->power.entry, &devb->power.entry); 174 } 175 176 /** 177 * device_pm_move_last - Move device to end of the PM core's list of devices. 178 * @dev: Device to move in dpm_list. 179 */ 180 void device_pm_move_last(struct device *dev) 181 { 182 pr_debug("PM: Moving %s:%s to end of list\n", 183 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 184 list_move_tail(&dev->power.entry, &dpm_list); 185 } 186 187 static ktime_t initcall_debug_start(struct device *dev) 188 { 189 ktime_t calltime = ktime_set(0, 0); 190 191 if (pm_print_times_enabled) { 192 pr_info("calling %s+ @ %i, parent: %s\n", 193 dev_name(dev), task_pid_nr(current), 194 dev->parent ? dev_name(dev->parent) : "none"); 195 calltime = ktime_get(); 196 } 197 198 return calltime; 199 } 200 201 static void initcall_debug_report(struct device *dev, ktime_t calltime, 202 int error, pm_message_t state, char *info) 203 { 204 ktime_t rettime; 205 s64 nsecs; 206 207 rettime = ktime_get(); 208 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 209 210 if (pm_print_times_enabled) { 211 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 212 error, (unsigned long long)nsecs >> 10); 213 } 214 215 trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event), 216 error); 217 } 218 219 /** 220 * dpm_wait - Wait for a PM operation to complete. 221 * @dev: Device to wait for. 222 * @async: If unset, wait only if the device's power.async_suspend flag is set. 223 */ 224 static void dpm_wait(struct device *dev, bool async) 225 { 226 if (!dev) 227 return; 228 229 if (async || (pm_async_enabled && dev->power.async_suspend)) 230 wait_for_completion(&dev->power.completion); 231 } 232 233 static int dpm_wait_fn(struct device *dev, void *async_ptr) 234 { 235 dpm_wait(dev, *((bool *)async_ptr)); 236 return 0; 237 } 238 239 static void dpm_wait_for_children(struct device *dev, bool async) 240 { 241 device_for_each_child(dev, &async, dpm_wait_fn); 242 } 243 244 /** 245 * pm_op - Return the PM operation appropriate for given PM event. 246 * @ops: PM operations to choose from. 247 * @state: PM transition of the system being carried out. 248 */ 249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 250 { 251 switch (state.event) { 252 #ifdef CONFIG_SUSPEND 253 case PM_EVENT_SUSPEND: 254 return ops->suspend; 255 case PM_EVENT_RESUME: 256 return ops->resume; 257 #endif /* CONFIG_SUSPEND */ 258 #ifdef CONFIG_HIBERNATE_CALLBACKS 259 case PM_EVENT_FREEZE: 260 case PM_EVENT_QUIESCE: 261 return ops->freeze; 262 case PM_EVENT_HIBERNATE: 263 return ops->poweroff; 264 case PM_EVENT_THAW: 265 case PM_EVENT_RECOVER: 266 return ops->thaw; 267 break; 268 case PM_EVENT_RESTORE: 269 return ops->restore; 270 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 271 } 272 273 return NULL; 274 } 275 276 /** 277 * pm_late_early_op - Return the PM operation appropriate for given PM event. 278 * @ops: PM operations to choose from. 279 * @state: PM transition of the system being carried out. 280 * 281 * Runtime PM is disabled for @dev while this function is being executed. 282 */ 283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 284 pm_message_t state) 285 { 286 switch (state.event) { 287 #ifdef CONFIG_SUSPEND 288 case PM_EVENT_SUSPEND: 289 return ops->suspend_late; 290 case PM_EVENT_RESUME: 291 return ops->resume_early; 292 #endif /* CONFIG_SUSPEND */ 293 #ifdef CONFIG_HIBERNATE_CALLBACKS 294 case PM_EVENT_FREEZE: 295 case PM_EVENT_QUIESCE: 296 return ops->freeze_late; 297 case PM_EVENT_HIBERNATE: 298 return ops->poweroff_late; 299 case PM_EVENT_THAW: 300 case PM_EVENT_RECOVER: 301 return ops->thaw_early; 302 case PM_EVENT_RESTORE: 303 return ops->restore_early; 304 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 305 } 306 307 return NULL; 308 } 309 310 /** 311 * pm_noirq_op - Return the PM operation appropriate for given PM event. 312 * @ops: PM operations to choose from. 313 * @state: PM transition of the system being carried out. 314 * 315 * The driver of @dev will not receive interrupts while this function is being 316 * executed. 317 */ 318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 319 { 320 switch (state.event) { 321 #ifdef CONFIG_SUSPEND 322 case PM_EVENT_SUSPEND: 323 return ops->suspend_noirq; 324 case PM_EVENT_RESUME: 325 return ops->resume_noirq; 326 #endif /* CONFIG_SUSPEND */ 327 #ifdef CONFIG_HIBERNATE_CALLBACKS 328 case PM_EVENT_FREEZE: 329 case PM_EVENT_QUIESCE: 330 return ops->freeze_noirq; 331 case PM_EVENT_HIBERNATE: 332 return ops->poweroff_noirq; 333 case PM_EVENT_THAW: 334 case PM_EVENT_RECOVER: 335 return ops->thaw_noirq; 336 case PM_EVENT_RESTORE: 337 return ops->restore_noirq; 338 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 339 } 340 341 return NULL; 342 } 343 344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 345 { 346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 348 ", may wakeup" : ""); 349 } 350 351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 352 int error) 353 { 354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 355 dev_name(dev), pm_verb(state.event), info, error); 356 } 357 358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 359 { 360 ktime_t calltime; 361 u64 usecs64; 362 int usecs; 363 364 calltime = ktime_get(); 365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 366 do_div(usecs64, NSEC_PER_USEC); 367 usecs = usecs64; 368 if (usecs == 0) 369 usecs = 1; 370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 371 info ?: "", info ? " " : "", pm_verb(state.event), 372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 373 } 374 375 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 376 pm_message_t state, char *info) 377 { 378 ktime_t calltime; 379 int error; 380 381 if (!cb) 382 return 0; 383 384 calltime = initcall_debug_start(dev); 385 386 pm_dev_dbg(dev, state, info); 387 error = cb(dev); 388 suspend_report_result(cb, error); 389 390 initcall_debug_report(dev, calltime, error, state, info); 391 392 return error; 393 } 394 395 #ifdef CONFIG_DPM_WATCHDOG 396 struct dpm_watchdog { 397 struct device *dev; 398 struct task_struct *tsk; 399 struct timer_list timer; 400 }; 401 402 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 403 struct dpm_watchdog wd 404 405 /** 406 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 407 * @data: Watchdog object address. 408 * 409 * Called when a driver has timed out suspending or resuming. 410 * There's not much we can do here to recover so panic() to 411 * capture a crash-dump in pstore. 412 */ 413 static void dpm_watchdog_handler(unsigned long data) 414 { 415 struct dpm_watchdog *wd = (void *)data; 416 417 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 418 show_stack(wd->tsk, NULL); 419 panic("%s %s: unrecoverable failure\n", 420 dev_driver_string(wd->dev), dev_name(wd->dev)); 421 } 422 423 /** 424 * dpm_watchdog_set - Enable pm watchdog for given device. 425 * @wd: Watchdog. Must be allocated on the stack. 426 * @dev: Device to handle. 427 */ 428 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 429 { 430 struct timer_list *timer = &wd->timer; 431 432 wd->dev = dev; 433 wd->tsk = current; 434 435 init_timer_on_stack(timer); 436 /* use same timeout value for both suspend and resume */ 437 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 438 timer->function = dpm_watchdog_handler; 439 timer->data = (unsigned long)wd; 440 add_timer(timer); 441 } 442 443 /** 444 * dpm_watchdog_clear - Disable suspend/resume watchdog. 445 * @wd: Watchdog to disable. 446 */ 447 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 448 { 449 struct timer_list *timer = &wd->timer; 450 451 del_timer_sync(timer); 452 destroy_timer_on_stack(timer); 453 } 454 #else 455 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 456 #define dpm_watchdog_set(x, y) 457 #define dpm_watchdog_clear(x) 458 #endif 459 460 /*------------------------- Resume routines -------------------------*/ 461 462 /** 463 * device_resume_noirq - Execute an "early resume" callback for given device. 464 * @dev: Device to handle. 465 * @state: PM transition of the system being carried out. 466 * 467 * The driver of @dev will not receive interrupts while this function is being 468 * executed. 469 */ 470 static int device_resume_noirq(struct device *dev, pm_message_t state) 471 { 472 pm_callback_t callback = NULL; 473 char *info = NULL; 474 int error = 0; 475 476 TRACE_DEVICE(dev); 477 TRACE_RESUME(0); 478 479 if (dev->power.syscore) 480 goto Out; 481 482 if (dev->pm_domain) { 483 info = "noirq power domain "; 484 callback = pm_noirq_op(&dev->pm_domain->ops, state); 485 } else if (dev->type && dev->type->pm) { 486 info = "noirq type "; 487 callback = pm_noirq_op(dev->type->pm, state); 488 } else if (dev->class && dev->class->pm) { 489 info = "noirq class "; 490 callback = pm_noirq_op(dev->class->pm, state); 491 } else if (dev->bus && dev->bus->pm) { 492 info = "noirq bus "; 493 callback = pm_noirq_op(dev->bus->pm, state); 494 } 495 496 if (!callback && dev->driver && dev->driver->pm) { 497 info = "noirq driver "; 498 callback = pm_noirq_op(dev->driver->pm, state); 499 } 500 501 error = dpm_run_callback(callback, dev, state, info); 502 503 Out: 504 TRACE_RESUME(error); 505 return error; 506 } 507 508 /** 509 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 510 * @state: PM transition of the system being carried out. 511 * 512 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and 513 * enable device drivers to receive interrupts. 514 */ 515 static void dpm_resume_noirq(pm_message_t state) 516 { 517 ktime_t starttime = ktime_get(); 518 519 mutex_lock(&dpm_list_mtx); 520 while (!list_empty(&dpm_noirq_list)) { 521 struct device *dev = to_device(dpm_noirq_list.next); 522 int error; 523 524 get_device(dev); 525 list_move_tail(&dev->power.entry, &dpm_late_early_list); 526 mutex_unlock(&dpm_list_mtx); 527 528 error = device_resume_noirq(dev, state); 529 if (error) { 530 suspend_stats.failed_resume_noirq++; 531 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 532 dpm_save_failed_dev(dev_name(dev)); 533 pm_dev_err(dev, state, " noirq", error); 534 } 535 536 mutex_lock(&dpm_list_mtx); 537 put_device(dev); 538 } 539 mutex_unlock(&dpm_list_mtx); 540 dpm_show_time(starttime, state, "noirq"); 541 resume_device_irqs(); 542 cpuidle_resume(); 543 } 544 545 /** 546 * device_resume_early - Execute an "early resume" callback for given device. 547 * @dev: Device to handle. 548 * @state: PM transition of the system being carried out. 549 * 550 * Runtime PM is disabled for @dev while this function is being executed. 551 */ 552 static int device_resume_early(struct device *dev, pm_message_t state) 553 { 554 pm_callback_t callback = NULL; 555 char *info = NULL; 556 int error = 0; 557 558 TRACE_DEVICE(dev); 559 TRACE_RESUME(0); 560 561 if (dev->power.syscore) 562 goto Out; 563 564 if (dev->pm_domain) { 565 info = "early power domain "; 566 callback = pm_late_early_op(&dev->pm_domain->ops, state); 567 } else if (dev->type && dev->type->pm) { 568 info = "early type "; 569 callback = pm_late_early_op(dev->type->pm, state); 570 } else if (dev->class && dev->class->pm) { 571 info = "early class "; 572 callback = pm_late_early_op(dev->class->pm, state); 573 } else if (dev->bus && dev->bus->pm) { 574 info = "early bus "; 575 callback = pm_late_early_op(dev->bus->pm, state); 576 } 577 578 if (!callback && dev->driver && dev->driver->pm) { 579 info = "early driver "; 580 callback = pm_late_early_op(dev->driver->pm, state); 581 } 582 583 error = dpm_run_callback(callback, dev, state, info); 584 585 Out: 586 TRACE_RESUME(error); 587 588 pm_runtime_enable(dev); 589 return error; 590 } 591 592 /** 593 * dpm_resume_early - Execute "early resume" callbacks for all devices. 594 * @state: PM transition of the system being carried out. 595 */ 596 static void dpm_resume_early(pm_message_t state) 597 { 598 ktime_t starttime = ktime_get(); 599 600 mutex_lock(&dpm_list_mtx); 601 while (!list_empty(&dpm_late_early_list)) { 602 struct device *dev = to_device(dpm_late_early_list.next); 603 int error; 604 605 get_device(dev); 606 list_move_tail(&dev->power.entry, &dpm_suspended_list); 607 mutex_unlock(&dpm_list_mtx); 608 609 error = device_resume_early(dev, state); 610 if (error) { 611 suspend_stats.failed_resume_early++; 612 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 613 dpm_save_failed_dev(dev_name(dev)); 614 pm_dev_err(dev, state, " early", error); 615 } 616 617 mutex_lock(&dpm_list_mtx); 618 put_device(dev); 619 } 620 mutex_unlock(&dpm_list_mtx); 621 dpm_show_time(starttime, state, "early"); 622 } 623 624 /** 625 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 626 * @state: PM transition of the system being carried out. 627 */ 628 void dpm_resume_start(pm_message_t state) 629 { 630 dpm_resume_noirq(state); 631 dpm_resume_early(state); 632 } 633 EXPORT_SYMBOL_GPL(dpm_resume_start); 634 635 /** 636 * device_resume - Execute "resume" callbacks for given device. 637 * @dev: Device to handle. 638 * @state: PM transition of the system being carried out. 639 * @async: If true, the device is being resumed asynchronously. 640 */ 641 static int device_resume(struct device *dev, pm_message_t state, bool async) 642 { 643 pm_callback_t callback = NULL; 644 char *info = NULL; 645 int error = 0; 646 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 647 648 TRACE_DEVICE(dev); 649 TRACE_RESUME(0); 650 651 if (dev->power.syscore) 652 goto Complete; 653 654 dpm_wait(dev->parent, async); 655 dpm_watchdog_set(&wd, dev); 656 device_lock(dev); 657 658 /* 659 * This is a fib. But we'll allow new children to be added below 660 * a resumed device, even if the device hasn't been completed yet. 661 */ 662 dev->power.is_prepared = false; 663 664 if (!dev->power.is_suspended) 665 goto Unlock; 666 667 if (dev->pm_domain) { 668 info = "power domain "; 669 callback = pm_op(&dev->pm_domain->ops, state); 670 goto Driver; 671 } 672 673 if (dev->type && dev->type->pm) { 674 info = "type "; 675 callback = pm_op(dev->type->pm, state); 676 goto Driver; 677 } 678 679 if (dev->class) { 680 if (dev->class->pm) { 681 info = "class "; 682 callback = pm_op(dev->class->pm, state); 683 goto Driver; 684 } else if (dev->class->resume) { 685 info = "legacy class "; 686 callback = dev->class->resume; 687 goto End; 688 } 689 } 690 691 if (dev->bus) { 692 if (dev->bus->pm) { 693 info = "bus "; 694 callback = pm_op(dev->bus->pm, state); 695 } else if (dev->bus->resume) { 696 info = "legacy bus "; 697 callback = dev->bus->resume; 698 goto End; 699 } 700 } 701 702 Driver: 703 if (!callback && dev->driver && dev->driver->pm) { 704 info = "driver "; 705 callback = pm_op(dev->driver->pm, state); 706 } 707 708 End: 709 error = dpm_run_callback(callback, dev, state, info); 710 dev->power.is_suspended = false; 711 712 Unlock: 713 device_unlock(dev); 714 dpm_watchdog_clear(&wd); 715 716 Complete: 717 complete_all(&dev->power.completion); 718 719 TRACE_RESUME(error); 720 721 return error; 722 } 723 724 static void async_resume(void *data, async_cookie_t cookie) 725 { 726 struct device *dev = (struct device *)data; 727 int error; 728 729 error = device_resume(dev, pm_transition, true); 730 if (error) 731 pm_dev_err(dev, pm_transition, " async", error); 732 put_device(dev); 733 } 734 735 static bool is_async(struct device *dev) 736 { 737 return dev->power.async_suspend && pm_async_enabled 738 && !pm_trace_is_enabled(); 739 } 740 741 /** 742 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 743 * @state: PM transition of the system being carried out. 744 * 745 * Execute the appropriate "resume" callback for all devices whose status 746 * indicates that they are suspended. 747 */ 748 void dpm_resume(pm_message_t state) 749 { 750 struct device *dev; 751 ktime_t starttime = ktime_get(); 752 753 might_sleep(); 754 755 mutex_lock(&dpm_list_mtx); 756 pm_transition = state; 757 async_error = 0; 758 759 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 760 reinit_completion(&dev->power.completion); 761 if (is_async(dev)) { 762 get_device(dev); 763 async_schedule(async_resume, dev); 764 } 765 } 766 767 while (!list_empty(&dpm_suspended_list)) { 768 dev = to_device(dpm_suspended_list.next); 769 get_device(dev); 770 if (!is_async(dev)) { 771 int error; 772 773 mutex_unlock(&dpm_list_mtx); 774 775 error = device_resume(dev, state, false); 776 if (error) { 777 suspend_stats.failed_resume++; 778 dpm_save_failed_step(SUSPEND_RESUME); 779 dpm_save_failed_dev(dev_name(dev)); 780 pm_dev_err(dev, state, "", error); 781 } 782 783 mutex_lock(&dpm_list_mtx); 784 } 785 if (!list_empty(&dev->power.entry)) 786 list_move_tail(&dev->power.entry, &dpm_prepared_list); 787 put_device(dev); 788 } 789 mutex_unlock(&dpm_list_mtx); 790 async_synchronize_full(); 791 dpm_show_time(starttime, state, NULL); 792 } 793 794 /** 795 * device_complete - Complete a PM transition for given device. 796 * @dev: Device to handle. 797 * @state: PM transition of the system being carried out. 798 */ 799 static void device_complete(struct device *dev, pm_message_t state) 800 { 801 void (*callback)(struct device *) = NULL; 802 char *info = NULL; 803 804 if (dev->power.syscore) 805 return; 806 807 device_lock(dev); 808 809 if (dev->pm_domain) { 810 info = "completing power domain "; 811 callback = dev->pm_domain->ops.complete; 812 } else if (dev->type && dev->type->pm) { 813 info = "completing type "; 814 callback = dev->type->pm->complete; 815 } else if (dev->class && dev->class->pm) { 816 info = "completing class "; 817 callback = dev->class->pm->complete; 818 } else if (dev->bus && dev->bus->pm) { 819 info = "completing bus "; 820 callback = dev->bus->pm->complete; 821 } 822 823 if (!callback && dev->driver && dev->driver->pm) { 824 info = "completing driver "; 825 callback = dev->driver->pm->complete; 826 } 827 828 if (callback) { 829 pm_dev_dbg(dev, state, info); 830 callback(dev); 831 } 832 833 device_unlock(dev); 834 835 pm_runtime_put(dev); 836 } 837 838 /** 839 * dpm_complete - Complete a PM transition for all non-sysdev devices. 840 * @state: PM transition of the system being carried out. 841 * 842 * Execute the ->complete() callbacks for all devices whose PM status is not 843 * DPM_ON (this allows new devices to be registered). 844 */ 845 void dpm_complete(pm_message_t state) 846 { 847 struct list_head list; 848 849 might_sleep(); 850 851 INIT_LIST_HEAD(&list); 852 mutex_lock(&dpm_list_mtx); 853 while (!list_empty(&dpm_prepared_list)) { 854 struct device *dev = to_device(dpm_prepared_list.prev); 855 856 get_device(dev); 857 dev->power.is_prepared = false; 858 list_move(&dev->power.entry, &list); 859 mutex_unlock(&dpm_list_mtx); 860 861 device_complete(dev, state); 862 863 mutex_lock(&dpm_list_mtx); 864 put_device(dev); 865 } 866 list_splice(&list, &dpm_list); 867 mutex_unlock(&dpm_list_mtx); 868 } 869 870 /** 871 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 872 * @state: PM transition of the system being carried out. 873 * 874 * Execute "resume" callbacks for all devices and complete the PM transition of 875 * the system. 876 */ 877 void dpm_resume_end(pm_message_t state) 878 { 879 dpm_resume(state); 880 dpm_complete(state); 881 } 882 EXPORT_SYMBOL_GPL(dpm_resume_end); 883 884 885 /*------------------------- Suspend routines -------------------------*/ 886 887 /** 888 * resume_event - Return a "resume" message for given "suspend" sleep state. 889 * @sleep_state: PM message representing a sleep state. 890 * 891 * Return a PM message representing the resume event corresponding to given 892 * sleep state. 893 */ 894 static pm_message_t resume_event(pm_message_t sleep_state) 895 { 896 switch (sleep_state.event) { 897 case PM_EVENT_SUSPEND: 898 return PMSG_RESUME; 899 case PM_EVENT_FREEZE: 900 case PM_EVENT_QUIESCE: 901 return PMSG_RECOVER; 902 case PM_EVENT_HIBERNATE: 903 return PMSG_RESTORE; 904 } 905 return PMSG_ON; 906 } 907 908 /** 909 * device_suspend_noirq - Execute a "late suspend" callback for given device. 910 * @dev: Device to handle. 911 * @state: PM transition of the system being carried out. 912 * 913 * The driver of @dev will not receive interrupts while this function is being 914 * executed. 915 */ 916 static int device_suspend_noirq(struct device *dev, pm_message_t state) 917 { 918 pm_callback_t callback = NULL; 919 char *info = NULL; 920 921 if (dev->power.syscore) 922 return 0; 923 924 if (dev->pm_domain) { 925 info = "noirq power domain "; 926 callback = pm_noirq_op(&dev->pm_domain->ops, state); 927 } else if (dev->type && dev->type->pm) { 928 info = "noirq type "; 929 callback = pm_noirq_op(dev->type->pm, state); 930 } else if (dev->class && dev->class->pm) { 931 info = "noirq class "; 932 callback = pm_noirq_op(dev->class->pm, state); 933 } else if (dev->bus && dev->bus->pm) { 934 info = "noirq bus "; 935 callback = pm_noirq_op(dev->bus->pm, state); 936 } 937 938 if (!callback && dev->driver && dev->driver->pm) { 939 info = "noirq driver "; 940 callback = pm_noirq_op(dev->driver->pm, state); 941 } 942 943 return dpm_run_callback(callback, dev, state, info); 944 } 945 946 /** 947 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 948 * @state: PM transition of the system being carried out. 949 * 950 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 951 * handlers for all non-sysdev devices. 952 */ 953 static int dpm_suspend_noirq(pm_message_t state) 954 { 955 ktime_t starttime = ktime_get(); 956 int error = 0; 957 958 cpuidle_pause(); 959 suspend_device_irqs(); 960 mutex_lock(&dpm_list_mtx); 961 while (!list_empty(&dpm_late_early_list)) { 962 struct device *dev = to_device(dpm_late_early_list.prev); 963 964 get_device(dev); 965 mutex_unlock(&dpm_list_mtx); 966 967 error = device_suspend_noirq(dev, state); 968 969 mutex_lock(&dpm_list_mtx); 970 if (error) { 971 pm_dev_err(dev, state, " noirq", error); 972 suspend_stats.failed_suspend_noirq++; 973 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 974 dpm_save_failed_dev(dev_name(dev)); 975 put_device(dev); 976 break; 977 } 978 if (!list_empty(&dev->power.entry)) 979 list_move(&dev->power.entry, &dpm_noirq_list); 980 put_device(dev); 981 982 if (pm_wakeup_pending()) { 983 error = -EBUSY; 984 break; 985 } 986 } 987 mutex_unlock(&dpm_list_mtx); 988 if (error) 989 dpm_resume_noirq(resume_event(state)); 990 else 991 dpm_show_time(starttime, state, "noirq"); 992 return error; 993 } 994 995 /** 996 * device_suspend_late - Execute a "late suspend" callback for given device. 997 * @dev: Device to handle. 998 * @state: PM transition of the system being carried out. 999 * 1000 * Runtime PM is disabled for @dev while this function is being executed. 1001 */ 1002 static int device_suspend_late(struct device *dev, pm_message_t state) 1003 { 1004 pm_callback_t callback = NULL; 1005 char *info = NULL; 1006 1007 __pm_runtime_disable(dev, false); 1008 1009 if (dev->power.syscore) 1010 return 0; 1011 1012 if (dev->pm_domain) { 1013 info = "late power domain "; 1014 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1015 } else if (dev->type && dev->type->pm) { 1016 info = "late type "; 1017 callback = pm_late_early_op(dev->type->pm, state); 1018 } else if (dev->class && dev->class->pm) { 1019 info = "late class "; 1020 callback = pm_late_early_op(dev->class->pm, state); 1021 } else if (dev->bus && dev->bus->pm) { 1022 info = "late bus "; 1023 callback = pm_late_early_op(dev->bus->pm, state); 1024 } 1025 1026 if (!callback && dev->driver && dev->driver->pm) { 1027 info = "late driver "; 1028 callback = pm_late_early_op(dev->driver->pm, state); 1029 } 1030 1031 return dpm_run_callback(callback, dev, state, info); 1032 } 1033 1034 /** 1035 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1036 * @state: PM transition of the system being carried out. 1037 */ 1038 static int dpm_suspend_late(pm_message_t state) 1039 { 1040 ktime_t starttime = ktime_get(); 1041 int error = 0; 1042 1043 mutex_lock(&dpm_list_mtx); 1044 while (!list_empty(&dpm_suspended_list)) { 1045 struct device *dev = to_device(dpm_suspended_list.prev); 1046 1047 get_device(dev); 1048 mutex_unlock(&dpm_list_mtx); 1049 1050 error = device_suspend_late(dev, state); 1051 1052 mutex_lock(&dpm_list_mtx); 1053 if (error) { 1054 pm_dev_err(dev, state, " late", error); 1055 suspend_stats.failed_suspend_late++; 1056 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1057 dpm_save_failed_dev(dev_name(dev)); 1058 put_device(dev); 1059 break; 1060 } 1061 if (!list_empty(&dev->power.entry)) 1062 list_move(&dev->power.entry, &dpm_late_early_list); 1063 put_device(dev); 1064 1065 if (pm_wakeup_pending()) { 1066 error = -EBUSY; 1067 break; 1068 } 1069 } 1070 mutex_unlock(&dpm_list_mtx); 1071 if (error) 1072 dpm_resume_early(resume_event(state)); 1073 else 1074 dpm_show_time(starttime, state, "late"); 1075 1076 return error; 1077 } 1078 1079 /** 1080 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1081 * @state: PM transition of the system being carried out. 1082 */ 1083 int dpm_suspend_end(pm_message_t state) 1084 { 1085 int error = dpm_suspend_late(state); 1086 if (error) 1087 return error; 1088 1089 error = dpm_suspend_noirq(state); 1090 if (error) { 1091 dpm_resume_early(resume_event(state)); 1092 return error; 1093 } 1094 1095 return 0; 1096 } 1097 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1098 1099 /** 1100 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1101 * @dev: Device to suspend. 1102 * @state: PM transition of the system being carried out. 1103 * @cb: Suspend callback to execute. 1104 */ 1105 static int legacy_suspend(struct device *dev, pm_message_t state, 1106 int (*cb)(struct device *dev, pm_message_t state), 1107 char *info) 1108 { 1109 int error; 1110 ktime_t calltime; 1111 1112 calltime = initcall_debug_start(dev); 1113 1114 error = cb(dev, state); 1115 suspend_report_result(cb, error); 1116 1117 initcall_debug_report(dev, calltime, error, state, info); 1118 1119 return error; 1120 } 1121 1122 /** 1123 * device_suspend - Execute "suspend" callbacks for given device. 1124 * @dev: Device to handle. 1125 * @state: PM transition of the system being carried out. 1126 * @async: If true, the device is being suspended asynchronously. 1127 */ 1128 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1129 { 1130 pm_callback_t callback = NULL; 1131 char *info = NULL; 1132 int error = 0; 1133 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1134 1135 dpm_wait_for_children(dev, async); 1136 1137 if (async_error) 1138 goto Complete; 1139 1140 /* 1141 * If a device configured to wake up the system from sleep states 1142 * has been suspended at run time and there's a resume request pending 1143 * for it, this is equivalent to the device signaling wakeup, so the 1144 * system suspend operation should be aborted. 1145 */ 1146 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1147 pm_wakeup_event(dev, 0); 1148 1149 if (pm_wakeup_pending()) { 1150 async_error = -EBUSY; 1151 goto Complete; 1152 } 1153 1154 if (dev->power.syscore) 1155 goto Complete; 1156 1157 dpm_watchdog_set(&wd, dev); 1158 device_lock(dev); 1159 1160 if (dev->pm_domain) { 1161 info = "power domain "; 1162 callback = pm_op(&dev->pm_domain->ops, state); 1163 goto Run; 1164 } 1165 1166 if (dev->type && dev->type->pm) { 1167 info = "type "; 1168 callback = pm_op(dev->type->pm, state); 1169 goto Run; 1170 } 1171 1172 if (dev->class) { 1173 if (dev->class->pm) { 1174 info = "class "; 1175 callback = pm_op(dev->class->pm, state); 1176 goto Run; 1177 } else if (dev->class->suspend) { 1178 pm_dev_dbg(dev, state, "legacy class "); 1179 error = legacy_suspend(dev, state, dev->class->suspend, 1180 "legacy class "); 1181 goto End; 1182 } 1183 } 1184 1185 if (dev->bus) { 1186 if (dev->bus->pm) { 1187 info = "bus "; 1188 callback = pm_op(dev->bus->pm, state); 1189 } else if (dev->bus->suspend) { 1190 pm_dev_dbg(dev, state, "legacy bus "); 1191 error = legacy_suspend(dev, state, dev->bus->suspend, 1192 "legacy bus "); 1193 goto End; 1194 } 1195 } 1196 1197 Run: 1198 if (!callback && dev->driver && dev->driver->pm) { 1199 info = "driver "; 1200 callback = pm_op(dev->driver->pm, state); 1201 } 1202 1203 error = dpm_run_callback(callback, dev, state, info); 1204 1205 End: 1206 if (!error) { 1207 dev->power.is_suspended = true; 1208 if (dev->power.wakeup_path 1209 && dev->parent && !dev->parent->power.ignore_children) 1210 dev->parent->power.wakeup_path = true; 1211 } 1212 1213 device_unlock(dev); 1214 dpm_watchdog_clear(&wd); 1215 1216 Complete: 1217 complete_all(&dev->power.completion); 1218 if (error) 1219 async_error = error; 1220 1221 return error; 1222 } 1223 1224 static void async_suspend(void *data, async_cookie_t cookie) 1225 { 1226 struct device *dev = (struct device *)data; 1227 int error; 1228 1229 error = __device_suspend(dev, pm_transition, true); 1230 if (error) { 1231 dpm_save_failed_dev(dev_name(dev)); 1232 pm_dev_err(dev, pm_transition, " async", error); 1233 } 1234 1235 put_device(dev); 1236 } 1237 1238 static int device_suspend(struct device *dev) 1239 { 1240 reinit_completion(&dev->power.completion); 1241 1242 if (pm_async_enabled && dev->power.async_suspend) { 1243 get_device(dev); 1244 async_schedule(async_suspend, dev); 1245 return 0; 1246 } 1247 1248 return __device_suspend(dev, pm_transition, false); 1249 } 1250 1251 /** 1252 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1253 * @state: PM transition of the system being carried out. 1254 */ 1255 int dpm_suspend(pm_message_t state) 1256 { 1257 ktime_t starttime = ktime_get(); 1258 int error = 0; 1259 1260 might_sleep(); 1261 1262 mutex_lock(&dpm_list_mtx); 1263 pm_transition = state; 1264 async_error = 0; 1265 while (!list_empty(&dpm_prepared_list)) { 1266 struct device *dev = to_device(dpm_prepared_list.prev); 1267 1268 get_device(dev); 1269 mutex_unlock(&dpm_list_mtx); 1270 1271 error = device_suspend(dev); 1272 1273 mutex_lock(&dpm_list_mtx); 1274 if (error) { 1275 pm_dev_err(dev, state, "", error); 1276 dpm_save_failed_dev(dev_name(dev)); 1277 put_device(dev); 1278 break; 1279 } 1280 if (!list_empty(&dev->power.entry)) 1281 list_move(&dev->power.entry, &dpm_suspended_list); 1282 put_device(dev); 1283 if (async_error) 1284 break; 1285 } 1286 mutex_unlock(&dpm_list_mtx); 1287 async_synchronize_full(); 1288 if (!error) 1289 error = async_error; 1290 if (error) { 1291 suspend_stats.failed_suspend++; 1292 dpm_save_failed_step(SUSPEND_SUSPEND); 1293 } else 1294 dpm_show_time(starttime, state, NULL); 1295 return error; 1296 } 1297 1298 /** 1299 * device_prepare - Prepare a device for system power transition. 1300 * @dev: Device to handle. 1301 * @state: PM transition of the system being carried out. 1302 * 1303 * Execute the ->prepare() callback(s) for given device. No new children of the 1304 * device may be registered after this function has returned. 1305 */ 1306 static int device_prepare(struct device *dev, pm_message_t state) 1307 { 1308 int (*callback)(struct device *) = NULL; 1309 char *info = NULL; 1310 int error = 0; 1311 1312 if (dev->power.syscore) 1313 return 0; 1314 1315 /* 1316 * If a device's parent goes into runtime suspend at the wrong time, 1317 * it won't be possible to resume the device. To prevent this we 1318 * block runtime suspend here, during the prepare phase, and allow 1319 * it again during the complete phase. 1320 */ 1321 pm_runtime_get_noresume(dev); 1322 1323 device_lock(dev); 1324 1325 dev->power.wakeup_path = device_may_wakeup(dev); 1326 1327 if (dev->pm_domain) { 1328 info = "preparing power domain "; 1329 callback = dev->pm_domain->ops.prepare; 1330 } else if (dev->type && dev->type->pm) { 1331 info = "preparing type "; 1332 callback = dev->type->pm->prepare; 1333 } else if (dev->class && dev->class->pm) { 1334 info = "preparing class "; 1335 callback = dev->class->pm->prepare; 1336 } else if (dev->bus && dev->bus->pm) { 1337 info = "preparing bus "; 1338 callback = dev->bus->pm->prepare; 1339 } 1340 1341 if (!callback && dev->driver && dev->driver->pm) { 1342 info = "preparing driver "; 1343 callback = dev->driver->pm->prepare; 1344 } 1345 1346 if (callback) { 1347 error = callback(dev); 1348 suspend_report_result(callback, error); 1349 } 1350 1351 device_unlock(dev); 1352 1353 if (error) 1354 pm_runtime_put(dev); 1355 1356 return error; 1357 } 1358 1359 /** 1360 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1361 * @state: PM transition of the system being carried out. 1362 * 1363 * Execute the ->prepare() callback(s) for all devices. 1364 */ 1365 int dpm_prepare(pm_message_t state) 1366 { 1367 int error = 0; 1368 1369 might_sleep(); 1370 1371 mutex_lock(&dpm_list_mtx); 1372 while (!list_empty(&dpm_list)) { 1373 struct device *dev = to_device(dpm_list.next); 1374 1375 get_device(dev); 1376 mutex_unlock(&dpm_list_mtx); 1377 1378 error = device_prepare(dev, state); 1379 1380 mutex_lock(&dpm_list_mtx); 1381 if (error) { 1382 if (error == -EAGAIN) { 1383 put_device(dev); 1384 error = 0; 1385 continue; 1386 } 1387 printk(KERN_INFO "PM: Device %s not prepared " 1388 "for power transition: code %d\n", 1389 dev_name(dev), error); 1390 put_device(dev); 1391 break; 1392 } 1393 dev->power.is_prepared = true; 1394 if (!list_empty(&dev->power.entry)) 1395 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1396 put_device(dev); 1397 } 1398 mutex_unlock(&dpm_list_mtx); 1399 return error; 1400 } 1401 1402 /** 1403 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1404 * @state: PM transition of the system being carried out. 1405 * 1406 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1407 * callbacks for them. 1408 */ 1409 int dpm_suspend_start(pm_message_t state) 1410 { 1411 int error; 1412 1413 error = dpm_prepare(state); 1414 if (error) { 1415 suspend_stats.failed_prepare++; 1416 dpm_save_failed_step(SUSPEND_PREPARE); 1417 } else 1418 error = dpm_suspend(state); 1419 return error; 1420 } 1421 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1422 1423 void __suspend_report_result(const char *function, void *fn, int ret) 1424 { 1425 if (ret) 1426 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1427 } 1428 EXPORT_SYMBOL_GPL(__suspend_report_result); 1429 1430 /** 1431 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1432 * @dev: Device to wait for. 1433 * @subordinate: Device that needs to wait for @dev. 1434 */ 1435 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1436 { 1437 dpm_wait(dev, subordinate->power.async_suspend); 1438 return async_error; 1439 } 1440 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1441 1442 /** 1443 * dpm_for_each_dev - device iterator. 1444 * @data: data for the callback. 1445 * @fn: function to be called for each device. 1446 * 1447 * Iterate over devices in dpm_list, and call @fn for each device, 1448 * passing it @data. 1449 */ 1450 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1451 { 1452 struct device *dev; 1453 1454 if (!fn) 1455 return; 1456 1457 device_pm_lock(); 1458 list_for_each_entry(dev, &dpm_list, power.entry) 1459 fn(dev, data); 1460 device_pm_unlock(); 1461 } 1462 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1463