xref: /openbmc/linux/drivers/base/power/main.c (revision 84d517f3)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35 
36 #include "../base.h"
37 #include "power.h"
38 
39 typedef int (*pm_callback_t)(struct device *);
40 
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50 
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56 
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60 
61 static int async_error;
62 
63 static char *pm_verb(int event)
64 {
65 	switch (event) {
66 	case PM_EVENT_SUSPEND:
67 		return "suspend";
68 	case PM_EVENT_RESUME:
69 		return "resume";
70 	case PM_EVENT_FREEZE:
71 		return "freeze";
72 	case PM_EVENT_QUIESCE:
73 		return "quiesce";
74 	case PM_EVENT_HIBERNATE:
75 		return "hibernate";
76 	case PM_EVENT_THAW:
77 		return "thaw";
78 	case PM_EVENT_RESTORE:
79 		return "restore";
80 	case PM_EVENT_RECOVER:
81 		return "recover";
82 	default:
83 		return "(unknown PM event)";
84 	}
85 }
86 
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93 	dev->power.is_prepared = false;
94 	dev->power.is_suspended = false;
95 	dev->power.is_noirq_suspended = false;
96 	dev->power.is_late_suspended = false;
97 	init_completion(&dev->power.completion);
98 	complete_all(&dev->power.completion);
99 	dev->power.wakeup = NULL;
100 	INIT_LIST_HEAD(&dev->power.entry);
101 }
102 
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108 	mutex_lock(&dpm_list_mtx);
109 }
110 
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116 	mutex_unlock(&dpm_list_mtx);
117 }
118 
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125 	pr_debug("PM: Adding info for %s:%s\n",
126 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127 	mutex_lock(&dpm_list_mtx);
128 	if (dev->parent && dev->parent->power.is_prepared)
129 		dev_warn(dev, "parent %s should not be sleeping\n",
130 			dev_name(dev->parent));
131 	list_add_tail(&dev->power.entry, &dpm_list);
132 	mutex_unlock(&dpm_list_mtx);
133 }
134 
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141 	pr_debug("PM: Removing info for %s:%s\n",
142 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143 	complete_all(&dev->power.completion);
144 	mutex_lock(&dpm_list_mtx);
145 	list_del_init(&dev->power.entry);
146 	mutex_unlock(&dpm_list_mtx);
147 	device_wakeup_disable(dev);
148 	pm_runtime_remove(dev);
149 }
150 
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158 	pr_debug("PM: Moving %s:%s before %s:%s\n",
159 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 	/* Delete deva from dpm_list and reinsert before devb. */
162 	list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164 
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172 	pr_debug("PM: Moving %s:%s after %s:%s\n",
173 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 	/* Delete deva from dpm_list and reinsert after devb. */
176 	list_move(&deva->power.entry, &devb->power.entry);
177 }
178 
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185 	pr_debug("PM: Moving %s:%s to end of list\n",
186 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 	list_move_tail(&dev->power.entry, &dpm_list);
188 }
189 
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192 	ktime_t calltime = ktime_set(0, 0);
193 
194 	if (pm_print_times_enabled) {
195 		pr_info("calling  %s+ @ %i, parent: %s\n",
196 			dev_name(dev), task_pid_nr(current),
197 			dev->parent ? dev_name(dev->parent) : "none");
198 		calltime = ktime_get();
199 	}
200 
201 	return calltime;
202 }
203 
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205 				  int error, pm_message_t state, char *info)
206 {
207 	ktime_t rettime;
208 	s64 nsecs;
209 
210 	rettime = ktime_get();
211 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212 
213 	if (pm_print_times_enabled) {
214 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215 			error, (unsigned long long)nsecs >> 10);
216 	}
217 
218 	trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event),
219 				    error);
220 }
221 
222 /**
223  * dpm_wait - Wait for a PM operation to complete.
224  * @dev: Device to wait for.
225  * @async: If unset, wait only if the device's power.async_suspend flag is set.
226  */
227 static void dpm_wait(struct device *dev, bool async)
228 {
229 	if (!dev)
230 		return;
231 
232 	if (async || (pm_async_enabled && dev->power.async_suspend))
233 		wait_for_completion(&dev->power.completion);
234 }
235 
236 static int dpm_wait_fn(struct device *dev, void *async_ptr)
237 {
238 	dpm_wait(dev, *((bool *)async_ptr));
239 	return 0;
240 }
241 
242 static void dpm_wait_for_children(struct device *dev, bool async)
243 {
244        device_for_each_child(dev, &async, dpm_wait_fn);
245 }
246 
247 /**
248  * pm_op - Return the PM operation appropriate for given PM event.
249  * @ops: PM operations to choose from.
250  * @state: PM transition of the system being carried out.
251  */
252 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253 {
254 	switch (state.event) {
255 #ifdef CONFIG_SUSPEND
256 	case PM_EVENT_SUSPEND:
257 		return ops->suspend;
258 	case PM_EVENT_RESUME:
259 		return ops->resume;
260 #endif /* CONFIG_SUSPEND */
261 #ifdef CONFIG_HIBERNATE_CALLBACKS
262 	case PM_EVENT_FREEZE:
263 	case PM_EVENT_QUIESCE:
264 		return ops->freeze;
265 	case PM_EVENT_HIBERNATE:
266 		return ops->poweroff;
267 	case PM_EVENT_THAW:
268 	case PM_EVENT_RECOVER:
269 		return ops->thaw;
270 		break;
271 	case PM_EVENT_RESTORE:
272 		return ops->restore;
273 #endif /* CONFIG_HIBERNATE_CALLBACKS */
274 	}
275 
276 	return NULL;
277 }
278 
279 /**
280  * pm_late_early_op - Return the PM operation appropriate for given PM event.
281  * @ops: PM operations to choose from.
282  * @state: PM transition of the system being carried out.
283  *
284  * Runtime PM is disabled for @dev while this function is being executed.
285  */
286 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287 				      pm_message_t state)
288 {
289 	switch (state.event) {
290 #ifdef CONFIG_SUSPEND
291 	case PM_EVENT_SUSPEND:
292 		return ops->suspend_late;
293 	case PM_EVENT_RESUME:
294 		return ops->resume_early;
295 #endif /* CONFIG_SUSPEND */
296 #ifdef CONFIG_HIBERNATE_CALLBACKS
297 	case PM_EVENT_FREEZE:
298 	case PM_EVENT_QUIESCE:
299 		return ops->freeze_late;
300 	case PM_EVENT_HIBERNATE:
301 		return ops->poweroff_late;
302 	case PM_EVENT_THAW:
303 	case PM_EVENT_RECOVER:
304 		return ops->thaw_early;
305 	case PM_EVENT_RESTORE:
306 		return ops->restore_early;
307 #endif /* CONFIG_HIBERNATE_CALLBACKS */
308 	}
309 
310 	return NULL;
311 }
312 
313 /**
314  * pm_noirq_op - Return the PM operation appropriate for given PM event.
315  * @ops: PM operations to choose from.
316  * @state: PM transition of the system being carried out.
317  *
318  * The driver of @dev will not receive interrupts while this function is being
319  * executed.
320  */
321 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322 {
323 	switch (state.event) {
324 #ifdef CONFIG_SUSPEND
325 	case PM_EVENT_SUSPEND:
326 		return ops->suspend_noirq;
327 	case PM_EVENT_RESUME:
328 		return ops->resume_noirq;
329 #endif /* CONFIG_SUSPEND */
330 #ifdef CONFIG_HIBERNATE_CALLBACKS
331 	case PM_EVENT_FREEZE:
332 	case PM_EVENT_QUIESCE:
333 		return ops->freeze_noirq;
334 	case PM_EVENT_HIBERNATE:
335 		return ops->poweroff_noirq;
336 	case PM_EVENT_THAW:
337 	case PM_EVENT_RECOVER:
338 		return ops->thaw_noirq;
339 	case PM_EVENT_RESTORE:
340 		return ops->restore_noirq;
341 #endif /* CONFIG_HIBERNATE_CALLBACKS */
342 	}
343 
344 	return NULL;
345 }
346 
347 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348 {
349 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351 		", may wakeup" : "");
352 }
353 
354 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355 			int error)
356 {
357 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358 		dev_name(dev), pm_verb(state.event), info, error);
359 }
360 
361 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362 {
363 	ktime_t calltime;
364 	u64 usecs64;
365 	int usecs;
366 
367 	calltime = ktime_get();
368 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369 	do_div(usecs64, NSEC_PER_USEC);
370 	usecs = usecs64;
371 	if (usecs == 0)
372 		usecs = 1;
373 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374 		info ?: "", info ? " " : "", pm_verb(state.event),
375 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376 }
377 
378 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379 			    pm_message_t state, char *info)
380 {
381 	ktime_t calltime;
382 	int error;
383 
384 	if (!cb)
385 		return 0;
386 
387 	calltime = initcall_debug_start(dev);
388 
389 	pm_dev_dbg(dev, state, info);
390 	error = cb(dev);
391 	suspend_report_result(cb, error);
392 
393 	initcall_debug_report(dev, calltime, error, state, info);
394 
395 	return error;
396 }
397 
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400 	struct device		*dev;
401 	struct task_struct	*tsk;
402 	struct timer_list	timer;
403 };
404 
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406 	struct dpm_watchdog wd
407 
408 /**
409  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410  * @data: Watchdog object address.
411  *
412  * Called when a driver has timed out suspending or resuming.
413  * There's not much we can do here to recover so panic() to
414  * capture a crash-dump in pstore.
415  */
416 static void dpm_watchdog_handler(unsigned long data)
417 {
418 	struct dpm_watchdog *wd = (void *)data;
419 
420 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421 	show_stack(wd->tsk, NULL);
422 	panic("%s %s: unrecoverable failure\n",
423 		dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425 
426 /**
427  * dpm_watchdog_set - Enable pm watchdog for given device.
428  * @wd: Watchdog. Must be allocated on the stack.
429  * @dev: Device to handle.
430  */
431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433 	struct timer_list *timer = &wd->timer;
434 
435 	wd->dev = dev;
436 	wd->tsk = current;
437 
438 	init_timer_on_stack(timer);
439 	/* use same timeout value for both suspend and resume */
440 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441 	timer->function = dpm_watchdog_handler;
442 	timer->data = (unsigned long)wd;
443 	add_timer(timer);
444 }
445 
446 /**
447  * dpm_watchdog_clear - Disable suspend/resume watchdog.
448  * @wd: Watchdog to disable.
449  */
450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452 	struct timer_list *timer = &wd->timer;
453 
454 	del_timer_sync(timer);
455 	destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462 
463 /*------------------------- Resume routines -------------------------*/
464 
465 /**
466  * device_resume_noirq - Execute an "early resume" callback for given device.
467  * @dev: Device to handle.
468  * @state: PM transition of the system being carried out.
469  *
470  * The driver of @dev will not receive interrupts while this function is being
471  * executed.
472  */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475 	pm_callback_t callback = NULL;
476 	char *info = NULL;
477 	int error = 0;
478 
479 	TRACE_DEVICE(dev);
480 	TRACE_RESUME(0);
481 
482 	if (dev->power.syscore || dev->power.direct_complete)
483 		goto Out;
484 
485 	if (!dev->power.is_noirq_suspended)
486 		goto Out;
487 
488 	dpm_wait(dev->parent, async);
489 
490 	if (dev->pm_domain) {
491 		info = "noirq power domain ";
492 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
493 	} else if (dev->type && dev->type->pm) {
494 		info = "noirq type ";
495 		callback = pm_noirq_op(dev->type->pm, state);
496 	} else if (dev->class && dev->class->pm) {
497 		info = "noirq class ";
498 		callback = pm_noirq_op(dev->class->pm, state);
499 	} else if (dev->bus && dev->bus->pm) {
500 		info = "noirq bus ";
501 		callback = pm_noirq_op(dev->bus->pm, state);
502 	}
503 
504 	if (!callback && dev->driver && dev->driver->pm) {
505 		info = "noirq driver ";
506 		callback = pm_noirq_op(dev->driver->pm, state);
507 	}
508 
509 	error = dpm_run_callback(callback, dev, state, info);
510 	dev->power.is_noirq_suspended = false;
511 
512  Out:
513 	complete_all(&dev->power.completion);
514 	TRACE_RESUME(error);
515 	return error;
516 }
517 
518 static bool is_async(struct device *dev)
519 {
520 	return dev->power.async_suspend && pm_async_enabled
521 		&& !pm_trace_is_enabled();
522 }
523 
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526 	struct device *dev = (struct device *)data;
527 	int error;
528 
529 	error = device_resume_noirq(dev, pm_transition, true);
530 	if (error)
531 		pm_dev_err(dev, pm_transition, " async", error);
532 
533 	put_device(dev);
534 }
535 
536 /**
537  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538  * @state: PM transition of the system being carried out.
539  *
540  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541  * enable device drivers to receive interrupts.
542  */
543 static void dpm_resume_noirq(pm_message_t state)
544 {
545 	struct device *dev;
546 	ktime_t starttime = ktime_get();
547 
548 	mutex_lock(&dpm_list_mtx);
549 	pm_transition = state;
550 
551 	/*
552 	 * Advanced the async threads upfront,
553 	 * in case the starting of async threads is
554 	 * delayed by non-async resuming devices.
555 	 */
556 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
557 		reinit_completion(&dev->power.completion);
558 		if (is_async(dev)) {
559 			get_device(dev);
560 			async_schedule(async_resume_noirq, dev);
561 		}
562 	}
563 
564 	while (!list_empty(&dpm_noirq_list)) {
565 		dev = to_device(dpm_noirq_list.next);
566 		get_device(dev);
567 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
568 		mutex_unlock(&dpm_list_mtx);
569 
570 		if (!is_async(dev)) {
571 			int error;
572 
573 			error = device_resume_noirq(dev, state, false);
574 			if (error) {
575 				suspend_stats.failed_resume_noirq++;
576 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
577 				dpm_save_failed_dev(dev_name(dev));
578 				pm_dev_err(dev, state, " noirq", error);
579 			}
580 		}
581 
582 		mutex_lock(&dpm_list_mtx);
583 		put_device(dev);
584 	}
585 	mutex_unlock(&dpm_list_mtx);
586 	async_synchronize_full();
587 	dpm_show_time(starttime, state, "noirq");
588 	resume_device_irqs();
589 	cpuidle_resume();
590 }
591 
592 /**
593  * device_resume_early - Execute an "early resume" callback for given device.
594  * @dev: Device to handle.
595  * @state: PM transition of the system being carried out.
596  *
597  * Runtime PM is disabled for @dev while this function is being executed.
598  */
599 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
600 {
601 	pm_callback_t callback = NULL;
602 	char *info = NULL;
603 	int error = 0;
604 
605 	TRACE_DEVICE(dev);
606 	TRACE_RESUME(0);
607 
608 	if (dev->power.syscore || dev->power.direct_complete)
609 		goto Out;
610 
611 	if (!dev->power.is_late_suspended)
612 		goto Out;
613 
614 	dpm_wait(dev->parent, async);
615 
616 	if (dev->pm_domain) {
617 		info = "early power domain ";
618 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
619 	} else if (dev->type && dev->type->pm) {
620 		info = "early type ";
621 		callback = pm_late_early_op(dev->type->pm, state);
622 	} else if (dev->class && dev->class->pm) {
623 		info = "early class ";
624 		callback = pm_late_early_op(dev->class->pm, state);
625 	} else if (dev->bus && dev->bus->pm) {
626 		info = "early bus ";
627 		callback = pm_late_early_op(dev->bus->pm, state);
628 	}
629 
630 	if (!callback && dev->driver && dev->driver->pm) {
631 		info = "early driver ";
632 		callback = pm_late_early_op(dev->driver->pm, state);
633 	}
634 
635 	error = dpm_run_callback(callback, dev, state, info);
636 	dev->power.is_late_suspended = false;
637 
638  Out:
639 	TRACE_RESUME(error);
640 
641 	pm_runtime_enable(dev);
642 	complete_all(&dev->power.completion);
643 	return error;
644 }
645 
646 static void async_resume_early(void *data, async_cookie_t cookie)
647 {
648 	struct device *dev = (struct device *)data;
649 	int error;
650 
651 	error = device_resume_early(dev, pm_transition, true);
652 	if (error)
653 		pm_dev_err(dev, pm_transition, " async", error);
654 
655 	put_device(dev);
656 }
657 
658 /**
659  * dpm_resume_early - Execute "early resume" callbacks for all devices.
660  * @state: PM transition of the system being carried out.
661  */
662 static void dpm_resume_early(pm_message_t state)
663 {
664 	struct device *dev;
665 	ktime_t starttime = ktime_get();
666 
667 	mutex_lock(&dpm_list_mtx);
668 	pm_transition = state;
669 
670 	/*
671 	 * Advanced the async threads upfront,
672 	 * in case the starting of async threads is
673 	 * delayed by non-async resuming devices.
674 	 */
675 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
676 		reinit_completion(&dev->power.completion);
677 		if (is_async(dev)) {
678 			get_device(dev);
679 			async_schedule(async_resume_early, dev);
680 		}
681 	}
682 
683 	while (!list_empty(&dpm_late_early_list)) {
684 		dev = to_device(dpm_late_early_list.next);
685 		get_device(dev);
686 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
687 		mutex_unlock(&dpm_list_mtx);
688 
689 		if (!is_async(dev)) {
690 			int error;
691 
692 			error = device_resume_early(dev, state, false);
693 			if (error) {
694 				suspend_stats.failed_resume_early++;
695 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
696 				dpm_save_failed_dev(dev_name(dev));
697 				pm_dev_err(dev, state, " early", error);
698 			}
699 		}
700 		mutex_lock(&dpm_list_mtx);
701 		put_device(dev);
702 	}
703 	mutex_unlock(&dpm_list_mtx);
704 	async_synchronize_full();
705 	dpm_show_time(starttime, state, "early");
706 }
707 
708 /**
709  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
710  * @state: PM transition of the system being carried out.
711  */
712 void dpm_resume_start(pm_message_t state)
713 {
714 	dpm_resume_noirq(state);
715 	dpm_resume_early(state);
716 }
717 EXPORT_SYMBOL_GPL(dpm_resume_start);
718 
719 /**
720  * device_resume - Execute "resume" callbacks for given device.
721  * @dev: Device to handle.
722  * @state: PM transition of the system being carried out.
723  * @async: If true, the device is being resumed asynchronously.
724  */
725 static int device_resume(struct device *dev, pm_message_t state, bool async)
726 {
727 	pm_callback_t callback = NULL;
728 	char *info = NULL;
729 	int error = 0;
730 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
731 
732 	TRACE_DEVICE(dev);
733 	TRACE_RESUME(0);
734 
735 	if (dev->power.syscore)
736 		goto Complete;
737 
738 	if (dev->power.direct_complete) {
739 		/* Match the pm_runtime_disable() in __device_suspend(). */
740 		pm_runtime_enable(dev);
741 		goto Complete;
742 	}
743 
744 	dpm_wait(dev->parent, async);
745 	dpm_watchdog_set(&wd, dev);
746 	device_lock(dev);
747 
748 	/*
749 	 * This is a fib.  But we'll allow new children to be added below
750 	 * a resumed device, even if the device hasn't been completed yet.
751 	 */
752 	dev->power.is_prepared = false;
753 
754 	if (!dev->power.is_suspended)
755 		goto Unlock;
756 
757 	if (dev->pm_domain) {
758 		info = "power domain ";
759 		callback = pm_op(&dev->pm_domain->ops, state);
760 		goto Driver;
761 	}
762 
763 	if (dev->type && dev->type->pm) {
764 		info = "type ";
765 		callback = pm_op(dev->type->pm, state);
766 		goto Driver;
767 	}
768 
769 	if (dev->class) {
770 		if (dev->class->pm) {
771 			info = "class ";
772 			callback = pm_op(dev->class->pm, state);
773 			goto Driver;
774 		} else if (dev->class->resume) {
775 			info = "legacy class ";
776 			callback = dev->class->resume;
777 			goto End;
778 		}
779 	}
780 
781 	if (dev->bus) {
782 		if (dev->bus->pm) {
783 			info = "bus ";
784 			callback = pm_op(dev->bus->pm, state);
785 		} else if (dev->bus->resume) {
786 			info = "legacy bus ";
787 			callback = dev->bus->resume;
788 			goto End;
789 		}
790 	}
791 
792  Driver:
793 	if (!callback && dev->driver && dev->driver->pm) {
794 		info = "driver ";
795 		callback = pm_op(dev->driver->pm, state);
796 	}
797 
798  End:
799 	error = dpm_run_callback(callback, dev, state, info);
800 	dev->power.is_suspended = false;
801 
802  Unlock:
803 	device_unlock(dev);
804 	dpm_watchdog_clear(&wd);
805 
806  Complete:
807 	complete_all(&dev->power.completion);
808 
809 	TRACE_RESUME(error);
810 
811 	return error;
812 }
813 
814 static void async_resume(void *data, async_cookie_t cookie)
815 {
816 	struct device *dev = (struct device *)data;
817 	int error;
818 
819 	error = device_resume(dev, pm_transition, true);
820 	if (error)
821 		pm_dev_err(dev, pm_transition, " async", error);
822 	put_device(dev);
823 }
824 
825 /**
826  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
827  * @state: PM transition of the system being carried out.
828  *
829  * Execute the appropriate "resume" callback for all devices whose status
830  * indicates that they are suspended.
831  */
832 void dpm_resume(pm_message_t state)
833 {
834 	struct device *dev;
835 	ktime_t starttime = ktime_get();
836 
837 	might_sleep();
838 
839 	mutex_lock(&dpm_list_mtx);
840 	pm_transition = state;
841 	async_error = 0;
842 
843 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
844 		reinit_completion(&dev->power.completion);
845 		if (is_async(dev)) {
846 			get_device(dev);
847 			async_schedule(async_resume, dev);
848 		}
849 	}
850 
851 	while (!list_empty(&dpm_suspended_list)) {
852 		dev = to_device(dpm_suspended_list.next);
853 		get_device(dev);
854 		if (!is_async(dev)) {
855 			int error;
856 
857 			mutex_unlock(&dpm_list_mtx);
858 
859 			error = device_resume(dev, state, false);
860 			if (error) {
861 				suspend_stats.failed_resume++;
862 				dpm_save_failed_step(SUSPEND_RESUME);
863 				dpm_save_failed_dev(dev_name(dev));
864 				pm_dev_err(dev, state, "", error);
865 			}
866 
867 			mutex_lock(&dpm_list_mtx);
868 		}
869 		if (!list_empty(&dev->power.entry))
870 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
871 		put_device(dev);
872 	}
873 	mutex_unlock(&dpm_list_mtx);
874 	async_synchronize_full();
875 	dpm_show_time(starttime, state, NULL);
876 
877 	cpufreq_resume();
878 }
879 
880 /**
881  * device_complete - Complete a PM transition for given device.
882  * @dev: Device to handle.
883  * @state: PM transition of the system being carried out.
884  */
885 static void device_complete(struct device *dev, pm_message_t state)
886 {
887 	void (*callback)(struct device *) = NULL;
888 	char *info = NULL;
889 
890 	if (dev->power.syscore)
891 		return;
892 
893 	device_lock(dev);
894 
895 	if (dev->pm_domain) {
896 		info = "completing power domain ";
897 		callback = dev->pm_domain->ops.complete;
898 	} else if (dev->type && dev->type->pm) {
899 		info = "completing type ";
900 		callback = dev->type->pm->complete;
901 	} else if (dev->class && dev->class->pm) {
902 		info = "completing class ";
903 		callback = dev->class->pm->complete;
904 	} else if (dev->bus && dev->bus->pm) {
905 		info = "completing bus ";
906 		callback = dev->bus->pm->complete;
907 	}
908 
909 	if (!callback && dev->driver && dev->driver->pm) {
910 		info = "completing driver ";
911 		callback = dev->driver->pm->complete;
912 	}
913 
914 	if (callback) {
915 		pm_dev_dbg(dev, state, info);
916 		callback(dev);
917 	}
918 
919 	device_unlock(dev);
920 
921 	pm_runtime_put(dev);
922 }
923 
924 /**
925  * dpm_complete - Complete a PM transition for all non-sysdev devices.
926  * @state: PM transition of the system being carried out.
927  *
928  * Execute the ->complete() callbacks for all devices whose PM status is not
929  * DPM_ON (this allows new devices to be registered).
930  */
931 void dpm_complete(pm_message_t state)
932 {
933 	struct list_head list;
934 
935 	might_sleep();
936 
937 	INIT_LIST_HEAD(&list);
938 	mutex_lock(&dpm_list_mtx);
939 	while (!list_empty(&dpm_prepared_list)) {
940 		struct device *dev = to_device(dpm_prepared_list.prev);
941 
942 		get_device(dev);
943 		dev->power.is_prepared = false;
944 		list_move(&dev->power.entry, &list);
945 		mutex_unlock(&dpm_list_mtx);
946 
947 		device_complete(dev, state);
948 
949 		mutex_lock(&dpm_list_mtx);
950 		put_device(dev);
951 	}
952 	list_splice(&list, &dpm_list);
953 	mutex_unlock(&dpm_list_mtx);
954 }
955 
956 /**
957  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
958  * @state: PM transition of the system being carried out.
959  *
960  * Execute "resume" callbacks for all devices and complete the PM transition of
961  * the system.
962  */
963 void dpm_resume_end(pm_message_t state)
964 {
965 	dpm_resume(state);
966 	dpm_complete(state);
967 }
968 EXPORT_SYMBOL_GPL(dpm_resume_end);
969 
970 
971 /*------------------------- Suspend routines -------------------------*/
972 
973 /**
974  * resume_event - Return a "resume" message for given "suspend" sleep state.
975  * @sleep_state: PM message representing a sleep state.
976  *
977  * Return a PM message representing the resume event corresponding to given
978  * sleep state.
979  */
980 static pm_message_t resume_event(pm_message_t sleep_state)
981 {
982 	switch (sleep_state.event) {
983 	case PM_EVENT_SUSPEND:
984 		return PMSG_RESUME;
985 	case PM_EVENT_FREEZE:
986 	case PM_EVENT_QUIESCE:
987 		return PMSG_RECOVER;
988 	case PM_EVENT_HIBERNATE:
989 		return PMSG_RESTORE;
990 	}
991 	return PMSG_ON;
992 }
993 
994 /**
995  * device_suspend_noirq - Execute a "late suspend" callback for given device.
996  * @dev: Device to handle.
997  * @state: PM transition of the system being carried out.
998  *
999  * The driver of @dev will not receive interrupts while this function is being
1000  * executed.
1001  */
1002 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1003 {
1004 	pm_callback_t callback = NULL;
1005 	char *info = NULL;
1006 	int error = 0;
1007 
1008 	if (async_error)
1009 		goto Complete;
1010 
1011 	if (pm_wakeup_pending()) {
1012 		async_error = -EBUSY;
1013 		goto Complete;
1014 	}
1015 
1016 	if (dev->power.syscore || dev->power.direct_complete)
1017 		goto Complete;
1018 
1019 	dpm_wait_for_children(dev, async);
1020 
1021 	if (dev->pm_domain) {
1022 		info = "noirq power domain ";
1023 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1024 	} else if (dev->type && dev->type->pm) {
1025 		info = "noirq type ";
1026 		callback = pm_noirq_op(dev->type->pm, state);
1027 	} else if (dev->class && dev->class->pm) {
1028 		info = "noirq class ";
1029 		callback = pm_noirq_op(dev->class->pm, state);
1030 	} else if (dev->bus && dev->bus->pm) {
1031 		info = "noirq bus ";
1032 		callback = pm_noirq_op(dev->bus->pm, state);
1033 	}
1034 
1035 	if (!callback && dev->driver && dev->driver->pm) {
1036 		info = "noirq driver ";
1037 		callback = pm_noirq_op(dev->driver->pm, state);
1038 	}
1039 
1040 	error = dpm_run_callback(callback, dev, state, info);
1041 	if (!error)
1042 		dev->power.is_noirq_suspended = true;
1043 	else
1044 		async_error = error;
1045 
1046 Complete:
1047 	complete_all(&dev->power.completion);
1048 	return error;
1049 }
1050 
1051 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1052 {
1053 	struct device *dev = (struct device *)data;
1054 	int error;
1055 
1056 	error = __device_suspend_noirq(dev, pm_transition, true);
1057 	if (error) {
1058 		dpm_save_failed_dev(dev_name(dev));
1059 		pm_dev_err(dev, pm_transition, " async", error);
1060 	}
1061 
1062 	put_device(dev);
1063 }
1064 
1065 static int device_suspend_noirq(struct device *dev)
1066 {
1067 	reinit_completion(&dev->power.completion);
1068 
1069 	if (pm_async_enabled && dev->power.async_suspend) {
1070 		get_device(dev);
1071 		async_schedule(async_suspend_noirq, dev);
1072 		return 0;
1073 	}
1074 	return __device_suspend_noirq(dev, pm_transition, false);
1075 }
1076 
1077 /**
1078  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1079  * @state: PM transition of the system being carried out.
1080  *
1081  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1082  * handlers for all non-sysdev devices.
1083  */
1084 static int dpm_suspend_noirq(pm_message_t state)
1085 {
1086 	ktime_t starttime = ktime_get();
1087 	int error = 0;
1088 
1089 	cpuidle_pause();
1090 	suspend_device_irqs();
1091 	mutex_lock(&dpm_list_mtx);
1092 	pm_transition = state;
1093 	async_error = 0;
1094 
1095 	while (!list_empty(&dpm_late_early_list)) {
1096 		struct device *dev = to_device(dpm_late_early_list.prev);
1097 
1098 		get_device(dev);
1099 		mutex_unlock(&dpm_list_mtx);
1100 
1101 		error = device_suspend_noirq(dev);
1102 
1103 		mutex_lock(&dpm_list_mtx);
1104 		if (error) {
1105 			pm_dev_err(dev, state, " noirq", error);
1106 			dpm_save_failed_dev(dev_name(dev));
1107 			put_device(dev);
1108 			break;
1109 		}
1110 		if (!list_empty(&dev->power.entry))
1111 			list_move(&dev->power.entry, &dpm_noirq_list);
1112 		put_device(dev);
1113 
1114 		if (async_error)
1115 			break;
1116 	}
1117 	mutex_unlock(&dpm_list_mtx);
1118 	async_synchronize_full();
1119 	if (!error)
1120 		error = async_error;
1121 
1122 	if (error) {
1123 		suspend_stats.failed_suspend_noirq++;
1124 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1125 		dpm_resume_noirq(resume_event(state));
1126 	} else {
1127 		dpm_show_time(starttime, state, "noirq");
1128 	}
1129 	return error;
1130 }
1131 
1132 /**
1133  * device_suspend_late - Execute a "late suspend" callback for given device.
1134  * @dev: Device to handle.
1135  * @state: PM transition of the system being carried out.
1136  *
1137  * Runtime PM is disabled for @dev while this function is being executed.
1138  */
1139 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1140 {
1141 	pm_callback_t callback = NULL;
1142 	char *info = NULL;
1143 	int error = 0;
1144 
1145 	__pm_runtime_disable(dev, false);
1146 
1147 	if (async_error)
1148 		goto Complete;
1149 
1150 	if (pm_wakeup_pending()) {
1151 		async_error = -EBUSY;
1152 		goto Complete;
1153 	}
1154 
1155 	if (dev->power.syscore || dev->power.direct_complete)
1156 		goto Complete;
1157 
1158 	dpm_wait_for_children(dev, async);
1159 
1160 	if (dev->pm_domain) {
1161 		info = "late power domain ";
1162 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1163 	} else if (dev->type && dev->type->pm) {
1164 		info = "late type ";
1165 		callback = pm_late_early_op(dev->type->pm, state);
1166 	} else if (dev->class && dev->class->pm) {
1167 		info = "late class ";
1168 		callback = pm_late_early_op(dev->class->pm, state);
1169 	} else if (dev->bus && dev->bus->pm) {
1170 		info = "late bus ";
1171 		callback = pm_late_early_op(dev->bus->pm, state);
1172 	}
1173 
1174 	if (!callback && dev->driver && dev->driver->pm) {
1175 		info = "late driver ";
1176 		callback = pm_late_early_op(dev->driver->pm, state);
1177 	}
1178 
1179 	error = dpm_run_callback(callback, dev, state, info);
1180 	if (!error)
1181 		dev->power.is_late_suspended = true;
1182 	else
1183 		async_error = error;
1184 
1185 Complete:
1186 	complete_all(&dev->power.completion);
1187 	return error;
1188 }
1189 
1190 static void async_suspend_late(void *data, async_cookie_t cookie)
1191 {
1192 	struct device *dev = (struct device *)data;
1193 	int error;
1194 
1195 	error = __device_suspend_late(dev, pm_transition, true);
1196 	if (error) {
1197 		dpm_save_failed_dev(dev_name(dev));
1198 		pm_dev_err(dev, pm_transition, " async", error);
1199 	}
1200 	put_device(dev);
1201 }
1202 
1203 static int device_suspend_late(struct device *dev)
1204 {
1205 	reinit_completion(&dev->power.completion);
1206 
1207 	if (pm_async_enabled && dev->power.async_suspend) {
1208 		get_device(dev);
1209 		async_schedule(async_suspend_late, dev);
1210 		return 0;
1211 	}
1212 
1213 	return __device_suspend_late(dev, pm_transition, false);
1214 }
1215 
1216 /**
1217  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1218  * @state: PM transition of the system being carried out.
1219  */
1220 static int dpm_suspend_late(pm_message_t state)
1221 {
1222 	ktime_t starttime = ktime_get();
1223 	int error = 0;
1224 
1225 	mutex_lock(&dpm_list_mtx);
1226 	pm_transition = state;
1227 	async_error = 0;
1228 
1229 	while (!list_empty(&dpm_suspended_list)) {
1230 		struct device *dev = to_device(dpm_suspended_list.prev);
1231 
1232 		get_device(dev);
1233 		mutex_unlock(&dpm_list_mtx);
1234 
1235 		error = device_suspend_late(dev);
1236 
1237 		mutex_lock(&dpm_list_mtx);
1238 		if (error) {
1239 			pm_dev_err(dev, state, " late", error);
1240 			dpm_save_failed_dev(dev_name(dev));
1241 			put_device(dev);
1242 			break;
1243 		}
1244 		if (!list_empty(&dev->power.entry))
1245 			list_move(&dev->power.entry, &dpm_late_early_list);
1246 		put_device(dev);
1247 
1248 		if (async_error)
1249 			break;
1250 	}
1251 	mutex_unlock(&dpm_list_mtx);
1252 	async_synchronize_full();
1253 	if (error) {
1254 		suspend_stats.failed_suspend_late++;
1255 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1256 		dpm_resume_early(resume_event(state));
1257 	} else {
1258 		dpm_show_time(starttime, state, "late");
1259 	}
1260 	return error;
1261 }
1262 
1263 /**
1264  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1265  * @state: PM transition of the system being carried out.
1266  */
1267 int dpm_suspend_end(pm_message_t state)
1268 {
1269 	int error = dpm_suspend_late(state);
1270 	if (error)
1271 		return error;
1272 
1273 	error = dpm_suspend_noirq(state);
1274 	if (error) {
1275 		dpm_resume_early(resume_event(state));
1276 		return error;
1277 	}
1278 
1279 	return 0;
1280 }
1281 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1282 
1283 /**
1284  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1285  * @dev: Device to suspend.
1286  * @state: PM transition of the system being carried out.
1287  * @cb: Suspend callback to execute.
1288  */
1289 static int legacy_suspend(struct device *dev, pm_message_t state,
1290 			  int (*cb)(struct device *dev, pm_message_t state),
1291 			  char *info)
1292 {
1293 	int error;
1294 	ktime_t calltime;
1295 
1296 	calltime = initcall_debug_start(dev);
1297 
1298 	error = cb(dev, state);
1299 	suspend_report_result(cb, error);
1300 
1301 	initcall_debug_report(dev, calltime, error, state, info);
1302 
1303 	return error;
1304 }
1305 
1306 /**
1307  * device_suspend - Execute "suspend" callbacks for given device.
1308  * @dev: Device to handle.
1309  * @state: PM transition of the system being carried out.
1310  * @async: If true, the device is being suspended asynchronously.
1311  */
1312 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1313 {
1314 	pm_callback_t callback = NULL;
1315 	char *info = NULL;
1316 	int error = 0;
1317 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1318 
1319 	dpm_wait_for_children(dev, async);
1320 
1321 	if (async_error)
1322 		goto Complete;
1323 
1324 	/*
1325 	 * If a device configured to wake up the system from sleep states
1326 	 * has been suspended at run time and there's a resume request pending
1327 	 * for it, this is equivalent to the device signaling wakeup, so the
1328 	 * system suspend operation should be aborted.
1329 	 */
1330 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1331 		pm_wakeup_event(dev, 0);
1332 
1333 	if (pm_wakeup_pending()) {
1334 		async_error = -EBUSY;
1335 		goto Complete;
1336 	}
1337 
1338 	if (dev->power.syscore)
1339 		goto Complete;
1340 
1341 	if (dev->power.direct_complete) {
1342 		if (pm_runtime_status_suspended(dev)) {
1343 			pm_runtime_disable(dev);
1344 			if (pm_runtime_suspended_if_enabled(dev))
1345 				goto Complete;
1346 
1347 			pm_runtime_enable(dev);
1348 		}
1349 		dev->power.direct_complete = false;
1350 	}
1351 
1352 	dpm_watchdog_set(&wd, dev);
1353 	device_lock(dev);
1354 
1355 	if (dev->pm_domain) {
1356 		info = "power domain ";
1357 		callback = pm_op(&dev->pm_domain->ops, state);
1358 		goto Run;
1359 	}
1360 
1361 	if (dev->type && dev->type->pm) {
1362 		info = "type ";
1363 		callback = pm_op(dev->type->pm, state);
1364 		goto Run;
1365 	}
1366 
1367 	if (dev->class) {
1368 		if (dev->class->pm) {
1369 			info = "class ";
1370 			callback = pm_op(dev->class->pm, state);
1371 			goto Run;
1372 		} else if (dev->class->suspend) {
1373 			pm_dev_dbg(dev, state, "legacy class ");
1374 			error = legacy_suspend(dev, state, dev->class->suspend,
1375 						"legacy class ");
1376 			goto End;
1377 		}
1378 	}
1379 
1380 	if (dev->bus) {
1381 		if (dev->bus->pm) {
1382 			info = "bus ";
1383 			callback = pm_op(dev->bus->pm, state);
1384 		} else if (dev->bus->suspend) {
1385 			pm_dev_dbg(dev, state, "legacy bus ");
1386 			error = legacy_suspend(dev, state, dev->bus->suspend,
1387 						"legacy bus ");
1388 			goto End;
1389 		}
1390 	}
1391 
1392  Run:
1393 	if (!callback && dev->driver && dev->driver->pm) {
1394 		info = "driver ";
1395 		callback = pm_op(dev->driver->pm, state);
1396 	}
1397 
1398 	error = dpm_run_callback(callback, dev, state, info);
1399 
1400  End:
1401 	if (!error) {
1402 		struct device *parent = dev->parent;
1403 
1404 		dev->power.is_suspended = true;
1405 		if (parent) {
1406 			spin_lock_irq(&parent->power.lock);
1407 
1408 			dev->parent->power.direct_complete = false;
1409 			if (dev->power.wakeup_path
1410 			    && !dev->parent->power.ignore_children)
1411 				dev->parent->power.wakeup_path = true;
1412 
1413 			spin_unlock_irq(&parent->power.lock);
1414 		}
1415 	}
1416 
1417 	device_unlock(dev);
1418 	dpm_watchdog_clear(&wd);
1419 
1420  Complete:
1421 	complete_all(&dev->power.completion);
1422 	if (error)
1423 		async_error = error;
1424 
1425 	return error;
1426 }
1427 
1428 static void async_suspend(void *data, async_cookie_t cookie)
1429 {
1430 	struct device *dev = (struct device *)data;
1431 	int error;
1432 
1433 	error = __device_suspend(dev, pm_transition, true);
1434 	if (error) {
1435 		dpm_save_failed_dev(dev_name(dev));
1436 		pm_dev_err(dev, pm_transition, " async", error);
1437 	}
1438 
1439 	put_device(dev);
1440 }
1441 
1442 static int device_suspend(struct device *dev)
1443 {
1444 	reinit_completion(&dev->power.completion);
1445 
1446 	if (pm_async_enabled && dev->power.async_suspend) {
1447 		get_device(dev);
1448 		async_schedule(async_suspend, dev);
1449 		return 0;
1450 	}
1451 
1452 	return __device_suspend(dev, pm_transition, false);
1453 }
1454 
1455 /**
1456  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1457  * @state: PM transition of the system being carried out.
1458  */
1459 int dpm_suspend(pm_message_t state)
1460 {
1461 	ktime_t starttime = ktime_get();
1462 	int error = 0;
1463 
1464 	might_sleep();
1465 
1466 	cpufreq_suspend();
1467 
1468 	mutex_lock(&dpm_list_mtx);
1469 	pm_transition = state;
1470 	async_error = 0;
1471 	while (!list_empty(&dpm_prepared_list)) {
1472 		struct device *dev = to_device(dpm_prepared_list.prev);
1473 
1474 		get_device(dev);
1475 		mutex_unlock(&dpm_list_mtx);
1476 
1477 		error = device_suspend(dev);
1478 
1479 		mutex_lock(&dpm_list_mtx);
1480 		if (error) {
1481 			pm_dev_err(dev, state, "", error);
1482 			dpm_save_failed_dev(dev_name(dev));
1483 			put_device(dev);
1484 			break;
1485 		}
1486 		if (!list_empty(&dev->power.entry))
1487 			list_move(&dev->power.entry, &dpm_suspended_list);
1488 		put_device(dev);
1489 		if (async_error)
1490 			break;
1491 	}
1492 	mutex_unlock(&dpm_list_mtx);
1493 	async_synchronize_full();
1494 	if (!error)
1495 		error = async_error;
1496 	if (error) {
1497 		suspend_stats.failed_suspend++;
1498 		dpm_save_failed_step(SUSPEND_SUSPEND);
1499 	} else
1500 		dpm_show_time(starttime, state, NULL);
1501 	return error;
1502 }
1503 
1504 /**
1505  * device_prepare - Prepare a device for system power transition.
1506  * @dev: Device to handle.
1507  * @state: PM transition of the system being carried out.
1508  *
1509  * Execute the ->prepare() callback(s) for given device.  No new children of the
1510  * device may be registered after this function has returned.
1511  */
1512 static int device_prepare(struct device *dev, pm_message_t state)
1513 {
1514 	int (*callback)(struct device *) = NULL;
1515 	char *info = NULL;
1516 	int ret = 0;
1517 
1518 	if (dev->power.syscore)
1519 		return 0;
1520 
1521 	/*
1522 	 * If a device's parent goes into runtime suspend at the wrong time,
1523 	 * it won't be possible to resume the device.  To prevent this we
1524 	 * block runtime suspend here, during the prepare phase, and allow
1525 	 * it again during the complete phase.
1526 	 */
1527 	pm_runtime_get_noresume(dev);
1528 
1529 	device_lock(dev);
1530 
1531 	dev->power.wakeup_path = device_may_wakeup(dev);
1532 
1533 	if (dev->pm_domain) {
1534 		info = "preparing power domain ";
1535 		callback = dev->pm_domain->ops.prepare;
1536 	} else if (dev->type && dev->type->pm) {
1537 		info = "preparing type ";
1538 		callback = dev->type->pm->prepare;
1539 	} else if (dev->class && dev->class->pm) {
1540 		info = "preparing class ";
1541 		callback = dev->class->pm->prepare;
1542 	} else if (dev->bus && dev->bus->pm) {
1543 		info = "preparing bus ";
1544 		callback = dev->bus->pm->prepare;
1545 	}
1546 
1547 	if (!callback && dev->driver && dev->driver->pm) {
1548 		info = "preparing driver ";
1549 		callback = dev->driver->pm->prepare;
1550 	}
1551 
1552 	if (callback)
1553 		ret = callback(dev);
1554 
1555 	device_unlock(dev);
1556 
1557 	if (ret < 0) {
1558 		suspend_report_result(callback, ret);
1559 		pm_runtime_put(dev);
1560 		return ret;
1561 	}
1562 	/*
1563 	 * A positive return value from ->prepare() means "this device appears
1564 	 * to be runtime-suspended and its state is fine, so if it really is
1565 	 * runtime-suspended, you can leave it in that state provided that you
1566 	 * will do the same thing with all of its descendants".  This only
1567 	 * applies to suspend transitions, however.
1568 	 */
1569 	spin_lock_irq(&dev->power.lock);
1570 	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1571 	spin_unlock_irq(&dev->power.lock);
1572 	return 0;
1573 }
1574 
1575 /**
1576  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1577  * @state: PM transition of the system being carried out.
1578  *
1579  * Execute the ->prepare() callback(s) for all devices.
1580  */
1581 int dpm_prepare(pm_message_t state)
1582 {
1583 	int error = 0;
1584 
1585 	might_sleep();
1586 
1587 	mutex_lock(&dpm_list_mtx);
1588 	while (!list_empty(&dpm_list)) {
1589 		struct device *dev = to_device(dpm_list.next);
1590 
1591 		get_device(dev);
1592 		mutex_unlock(&dpm_list_mtx);
1593 
1594 		error = device_prepare(dev, state);
1595 
1596 		mutex_lock(&dpm_list_mtx);
1597 		if (error) {
1598 			if (error == -EAGAIN) {
1599 				put_device(dev);
1600 				error = 0;
1601 				continue;
1602 			}
1603 			printk(KERN_INFO "PM: Device %s not prepared "
1604 				"for power transition: code %d\n",
1605 				dev_name(dev), error);
1606 			put_device(dev);
1607 			break;
1608 		}
1609 		dev->power.is_prepared = true;
1610 		if (!list_empty(&dev->power.entry))
1611 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1612 		put_device(dev);
1613 	}
1614 	mutex_unlock(&dpm_list_mtx);
1615 	return error;
1616 }
1617 
1618 /**
1619  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1620  * @state: PM transition of the system being carried out.
1621  *
1622  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1623  * callbacks for them.
1624  */
1625 int dpm_suspend_start(pm_message_t state)
1626 {
1627 	int error;
1628 
1629 	error = dpm_prepare(state);
1630 	if (error) {
1631 		suspend_stats.failed_prepare++;
1632 		dpm_save_failed_step(SUSPEND_PREPARE);
1633 	} else
1634 		error = dpm_suspend(state);
1635 	return error;
1636 }
1637 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1638 
1639 void __suspend_report_result(const char *function, void *fn, int ret)
1640 {
1641 	if (ret)
1642 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1643 }
1644 EXPORT_SYMBOL_GPL(__suspend_report_result);
1645 
1646 /**
1647  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1648  * @dev: Device to wait for.
1649  * @subordinate: Device that needs to wait for @dev.
1650  */
1651 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1652 {
1653 	dpm_wait(dev, subordinate->power.async_suspend);
1654 	return async_error;
1655 }
1656 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1657 
1658 /**
1659  * dpm_for_each_dev - device iterator.
1660  * @data: data for the callback.
1661  * @fn: function to be called for each device.
1662  *
1663  * Iterate over devices in dpm_list, and call @fn for each device,
1664  * passing it @data.
1665  */
1666 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1667 {
1668 	struct device *dev;
1669 
1670 	if (!fn)
1671 		return;
1672 
1673 	device_pm_lock();
1674 	list_for_each_entry(dev, &dpm_list, power.entry)
1675 		fn(dev, data);
1676 	device_pm_unlock();
1677 }
1678 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1679