1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/mutex.h> 23 #include <linux/pm.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pm-trace.h> 26 #include <linux/pm_wakeirq.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/sched/debug.h> 30 #include <linux/async.h> 31 #include <linux/suspend.h> 32 #include <trace/events/power.h> 33 #include <linux/cpufreq.h> 34 #include <linux/cpuidle.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 struct suspend_stats suspend_stats; 64 static DEFINE_MUTEX(dpm_list_mtx); 65 static pm_message_t pm_transition; 66 67 static int async_error; 68 69 static const char *pm_verb(int event) 70 { 71 switch (event) { 72 case PM_EVENT_SUSPEND: 73 return "suspend"; 74 case PM_EVENT_RESUME: 75 return "resume"; 76 case PM_EVENT_FREEZE: 77 return "freeze"; 78 case PM_EVENT_QUIESCE: 79 return "quiesce"; 80 case PM_EVENT_HIBERNATE: 81 return "hibernate"; 82 case PM_EVENT_THAW: 83 return "thaw"; 84 case PM_EVENT_RESTORE: 85 return "restore"; 86 case PM_EVENT_RECOVER: 87 return "recover"; 88 default: 89 return "(unknown PM event)"; 90 } 91 } 92 93 /** 94 * device_pm_sleep_init - Initialize system suspend-related device fields. 95 * @dev: Device object being initialized. 96 */ 97 void device_pm_sleep_init(struct device *dev) 98 { 99 dev->power.is_prepared = false; 100 dev->power.is_suspended = false; 101 dev->power.is_noirq_suspended = false; 102 dev->power.is_late_suspended = false; 103 init_completion(&dev->power.completion); 104 complete_all(&dev->power.completion); 105 dev->power.wakeup = NULL; 106 INIT_LIST_HEAD(&dev->power.entry); 107 } 108 109 /** 110 * device_pm_lock - Lock the list of active devices used by the PM core. 111 */ 112 void device_pm_lock(void) 113 { 114 mutex_lock(&dpm_list_mtx); 115 } 116 117 /** 118 * device_pm_unlock - Unlock the list of active devices used by the PM core. 119 */ 120 void device_pm_unlock(void) 121 { 122 mutex_unlock(&dpm_list_mtx); 123 } 124 125 /** 126 * device_pm_add - Add a device to the PM core's list of active devices. 127 * @dev: Device to add to the list. 128 */ 129 void device_pm_add(struct device *dev) 130 { 131 /* Skip PM setup/initialization. */ 132 if (device_pm_not_required(dev)) 133 return; 134 135 pr_debug("Adding info for %s:%s\n", 136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 137 device_pm_check_callbacks(dev); 138 mutex_lock(&dpm_list_mtx); 139 if (dev->parent && dev->parent->power.is_prepared) 140 dev_warn(dev, "parent %s should not be sleeping\n", 141 dev_name(dev->parent)); 142 list_add_tail(&dev->power.entry, &dpm_list); 143 dev->power.in_dpm_list = true; 144 mutex_unlock(&dpm_list_mtx); 145 } 146 147 /** 148 * device_pm_remove - Remove a device from the PM core's list of active devices. 149 * @dev: Device to be removed from the list. 150 */ 151 void device_pm_remove(struct device *dev) 152 { 153 if (device_pm_not_required(dev)) 154 return; 155 156 pr_debug("Removing info for %s:%s\n", 157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 158 complete_all(&dev->power.completion); 159 mutex_lock(&dpm_list_mtx); 160 list_del_init(&dev->power.entry); 161 dev->power.in_dpm_list = false; 162 mutex_unlock(&dpm_list_mtx); 163 device_wakeup_disable(dev); 164 pm_runtime_remove(dev); 165 device_pm_check_callbacks(dev); 166 } 167 168 /** 169 * device_pm_move_before - Move device in the PM core's list of active devices. 170 * @deva: Device to move in dpm_list. 171 * @devb: Device @deva should come before. 172 */ 173 void device_pm_move_before(struct device *deva, struct device *devb) 174 { 175 pr_debug("Moving %s:%s before %s:%s\n", 176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 178 /* Delete deva from dpm_list and reinsert before devb. */ 179 list_move_tail(&deva->power.entry, &devb->power.entry); 180 } 181 182 /** 183 * device_pm_move_after - Move device in the PM core's list of active devices. 184 * @deva: Device to move in dpm_list. 185 * @devb: Device @deva should come after. 186 */ 187 void device_pm_move_after(struct device *deva, struct device *devb) 188 { 189 pr_debug("Moving %s:%s after %s:%s\n", 190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 192 /* Delete deva from dpm_list and reinsert after devb. */ 193 list_move(&deva->power.entry, &devb->power.entry); 194 } 195 196 /** 197 * device_pm_move_last - Move device to end of the PM core's list of devices. 198 * @dev: Device to move in dpm_list. 199 */ 200 void device_pm_move_last(struct device *dev) 201 { 202 pr_debug("Moving %s:%s to end of list\n", 203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 204 list_move_tail(&dev->power.entry, &dpm_list); 205 } 206 207 static ktime_t initcall_debug_start(struct device *dev, void *cb) 208 { 209 if (!pm_print_times_enabled) 210 return 0; 211 212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 213 task_pid_nr(current), 214 dev->parent ? dev_name(dev->parent) : "none"); 215 return ktime_get(); 216 } 217 218 static void initcall_debug_report(struct device *dev, ktime_t calltime, 219 void *cb, int error) 220 { 221 ktime_t rettime; 222 s64 nsecs; 223 224 if (!pm_print_times_enabled) 225 return; 226 227 rettime = ktime_get(); 228 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 229 230 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 231 (unsigned long long)nsecs >> 10); 232 } 233 234 /** 235 * dpm_wait - Wait for a PM operation to complete. 236 * @dev: Device to wait for. 237 * @async: If unset, wait only if the device's power.async_suspend flag is set. 238 */ 239 static void dpm_wait(struct device *dev, bool async) 240 { 241 if (!dev) 242 return; 243 244 if (async || (pm_async_enabled && dev->power.async_suspend)) 245 wait_for_completion(&dev->power.completion); 246 } 247 248 static int dpm_wait_fn(struct device *dev, void *async_ptr) 249 { 250 dpm_wait(dev, *((bool *)async_ptr)); 251 return 0; 252 } 253 254 static void dpm_wait_for_children(struct device *dev, bool async) 255 { 256 device_for_each_child(dev, &async, dpm_wait_fn); 257 } 258 259 static void dpm_wait_for_suppliers(struct device *dev, bool async) 260 { 261 struct device_link *link; 262 int idx; 263 264 idx = device_links_read_lock(); 265 266 /* 267 * If the supplier goes away right after we've checked the link to it, 268 * we'll wait for its completion to change the state, but that's fine, 269 * because the only things that will block as a result are the SRCU 270 * callbacks freeing the link objects for the links in the list we're 271 * walking. 272 */ 273 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 274 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 275 dpm_wait(link->supplier, async); 276 277 device_links_read_unlock(idx); 278 } 279 280 static bool dpm_wait_for_superior(struct device *dev, bool async) 281 { 282 struct device *parent; 283 284 /* 285 * If the device is resumed asynchronously and the parent's callback 286 * deletes both the device and the parent itself, the parent object may 287 * be freed while this function is running, so avoid that by reference 288 * counting the parent once more unless the device has been deleted 289 * already (in which case return right away). 290 */ 291 mutex_lock(&dpm_list_mtx); 292 293 if (!device_pm_initialized(dev)) { 294 mutex_unlock(&dpm_list_mtx); 295 return false; 296 } 297 298 parent = get_device(dev->parent); 299 300 mutex_unlock(&dpm_list_mtx); 301 302 dpm_wait(parent, async); 303 put_device(parent); 304 305 dpm_wait_for_suppliers(dev, async); 306 307 /* 308 * If the parent's callback has deleted the device, attempting to resume 309 * it would be invalid, so avoid doing that then. 310 */ 311 return device_pm_initialized(dev); 312 } 313 314 static void dpm_wait_for_consumers(struct device *dev, bool async) 315 { 316 struct device_link *link; 317 int idx; 318 319 idx = device_links_read_lock(); 320 321 /* 322 * The status of a device link can only be changed from "dormant" by a 323 * probe, but that cannot happen during system suspend/resume. In 324 * theory it can change to "dormant" at that time, but then it is 325 * reasonable to wait for the target device anyway (eg. if it goes 326 * away, it's better to wait for it to go away completely and then 327 * continue instead of trying to continue in parallel with its 328 * unregistration). 329 */ 330 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 331 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 332 dpm_wait(link->consumer, async); 333 334 device_links_read_unlock(idx); 335 } 336 337 static void dpm_wait_for_subordinate(struct device *dev, bool async) 338 { 339 dpm_wait_for_children(dev, async); 340 dpm_wait_for_consumers(dev, async); 341 } 342 343 /** 344 * pm_op - Return the PM operation appropriate for given PM event. 345 * @ops: PM operations to choose from. 346 * @state: PM transition of the system being carried out. 347 */ 348 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 349 { 350 switch (state.event) { 351 #ifdef CONFIG_SUSPEND 352 case PM_EVENT_SUSPEND: 353 return ops->suspend; 354 case PM_EVENT_RESUME: 355 return ops->resume; 356 #endif /* CONFIG_SUSPEND */ 357 #ifdef CONFIG_HIBERNATE_CALLBACKS 358 case PM_EVENT_FREEZE: 359 case PM_EVENT_QUIESCE: 360 return ops->freeze; 361 case PM_EVENT_HIBERNATE: 362 return ops->poweroff; 363 case PM_EVENT_THAW: 364 case PM_EVENT_RECOVER: 365 return ops->thaw; 366 case PM_EVENT_RESTORE: 367 return ops->restore; 368 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 369 } 370 371 return NULL; 372 } 373 374 /** 375 * pm_late_early_op - Return the PM operation appropriate for given PM event. 376 * @ops: PM operations to choose from. 377 * @state: PM transition of the system being carried out. 378 * 379 * Runtime PM is disabled for @dev while this function is being executed. 380 */ 381 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 382 pm_message_t state) 383 { 384 switch (state.event) { 385 #ifdef CONFIG_SUSPEND 386 case PM_EVENT_SUSPEND: 387 return ops->suspend_late; 388 case PM_EVENT_RESUME: 389 return ops->resume_early; 390 #endif /* CONFIG_SUSPEND */ 391 #ifdef CONFIG_HIBERNATE_CALLBACKS 392 case PM_EVENT_FREEZE: 393 case PM_EVENT_QUIESCE: 394 return ops->freeze_late; 395 case PM_EVENT_HIBERNATE: 396 return ops->poweroff_late; 397 case PM_EVENT_THAW: 398 case PM_EVENT_RECOVER: 399 return ops->thaw_early; 400 case PM_EVENT_RESTORE: 401 return ops->restore_early; 402 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 403 } 404 405 return NULL; 406 } 407 408 /** 409 * pm_noirq_op - Return the PM operation appropriate for given PM event. 410 * @ops: PM operations to choose from. 411 * @state: PM transition of the system being carried out. 412 * 413 * The driver of @dev will not receive interrupts while this function is being 414 * executed. 415 */ 416 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 417 { 418 switch (state.event) { 419 #ifdef CONFIG_SUSPEND 420 case PM_EVENT_SUSPEND: 421 return ops->suspend_noirq; 422 case PM_EVENT_RESUME: 423 return ops->resume_noirq; 424 #endif /* CONFIG_SUSPEND */ 425 #ifdef CONFIG_HIBERNATE_CALLBACKS 426 case PM_EVENT_FREEZE: 427 case PM_EVENT_QUIESCE: 428 return ops->freeze_noirq; 429 case PM_EVENT_HIBERNATE: 430 return ops->poweroff_noirq; 431 case PM_EVENT_THAW: 432 case PM_EVENT_RECOVER: 433 return ops->thaw_noirq; 434 case PM_EVENT_RESTORE: 435 return ops->restore_noirq; 436 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 437 } 438 439 return NULL; 440 } 441 442 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 443 { 444 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 445 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 446 ", may wakeup" : "", dev->power.driver_flags); 447 } 448 449 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 450 int error) 451 { 452 pr_err("Device %s failed to %s%s: error %d\n", 453 dev_name(dev), pm_verb(state.event), info, error); 454 } 455 456 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 457 const char *info) 458 { 459 ktime_t calltime; 460 u64 usecs64; 461 int usecs; 462 463 calltime = ktime_get(); 464 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 465 do_div(usecs64, NSEC_PER_USEC); 466 usecs = usecs64; 467 if (usecs == 0) 468 usecs = 1; 469 470 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 471 info ?: "", info ? " " : "", pm_verb(state.event), 472 error ? "aborted" : "complete", 473 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 474 } 475 476 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 477 pm_message_t state, const char *info) 478 { 479 ktime_t calltime; 480 int error; 481 482 if (!cb) 483 return 0; 484 485 calltime = initcall_debug_start(dev, cb); 486 487 pm_dev_dbg(dev, state, info); 488 trace_device_pm_callback_start(dev, info, state.event); 489 error = cb(dev); 490 trace_device_pm_callback_end(dev, error); 491 suspend_report_result(cb, error); 492 493 initcall_debug_report(dev, calltime, cb, error); 494 495 return error; 496 } 497 498 #ifdef CONFIG_DPM_WATCHDOG 499 struct dpm_watchdog { 500 struct device *dev; 501 struct task_struct *tsk; 502 struct timer_list timer; 503 }; 504 505 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 506 struct dpm_watchdog wd 507 508 /** 509 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 510 * @t: The timer that PM watchdog depends on. 511 * 512 * Called when a driver has timed out suspending or resuming. 513 * There's not much we can do here to recover so panic() to 514 * capture a crash-dump in pstore. 515 */ 516 static void dpm_watchdog_handler(struct timer_list *t) 517 { 518 struct dpm_watchdog *wd = from_timer(wd, t, timer); 519 520 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 521 show_stack(wd->tsk, NULL, KERN_EMERG); 522 panic("%s %s: unrecoverable failure\n", 523 dev_driver_string(wd->dev), dev_name(wd->dev)); 524 } 525 526 /** 527 * dpm_watchdog_set - Enable pm watchdog for given device. 528 * @wd: Watchdog. Must be allocated on the stack. 529 * @dev: Device to handle. 530 */ 531 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 532 { 533 struct timer_list *timer = &wd->timer; 534 535 wd->dev = dev; 536 wd->tsk = current; 537 538 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 539 /* use same timeout value for both suspend and resume */ 540 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 541 add_timer(timer); 542 } 543 544 /** 545 * dpm_watchdog_clear - Disable suspend/resume watchdog. 546 * @wd: Watchdog to disable. 547 */ 548 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 549 { 550 struct timer_list *timer = &wd->timer; 551 552 del_timer_sync(timer); 553 destroy_timer_on_stack(timer); 554 } 555 #else 556 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 557 #define dpm_watchdog_set(x, y) 558 #define dpm_watchdog_clear(x) 559 #endif 560 561 /*------------------------- Resume routines -------------------------*/ 562 563 /** 564 * dev_pm_skip_resume - System-wide device resume optimization check. 565 * @dev: Target device. 566 * 567 * Return: 568 * - %false if the transition under way is RESTORE. 569 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 570 * - The logical negation of %power.must_resume otherwise (that is, when the 571 * transition under way is RESUME). 572 */ 573 bool dev_pm_skip_resume(struct device *dev) 574 { 575 if (pm_transition.event == PM_EVENT_RESTORE) 576 return false; 577 578 if (pm_transition.event == PM_EVENT_THAW) 579 return dev_pm_skip_suspend(dev); 580 581 return !dev->power.must_resume; 582 } 583 584 /** 585 * device_resume_noirq - Execute a "noirq resume" callback for given device. 586 * @dev: Device to handle. 587 * @state: PM transition of the system being carried out. 588 * @async: If true, the device is being resumed asynchronously. 589 * 590 * The driver of @dev will not receive interrupts while this function is being 591 * executed. 592 */ 593 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 594 { 595 pm_callback_t callback = NULL; 596 const char *info = NULL; 597 bool skip_resume; 598 int error = 0; 599 600 TRACE_DEVICE(dev); 601 TRACE_RESUME(0); 602 603 if (dev->power.syscore || dev->power.direct_complete) 604 goto Out; 605 606 if (!dev->power.is_noirq_suspended) 607 goto Out; 608 609 if (!dpm_wait_for_superior(dev, async)) 610 goto Out; 611 612 skip_resume = dev_pm_skip_resume(dev); 613 /* 614 * If the driver callback is skipped below or by the middle layer 615 * callback and device_resume_early() also skips the driver callback for 616 * this device later, it needs to appear as "suspended" to PM-runtime, 617 * so change its status accordingly. 618 * 619 * Otherwise, the device is going to be resumed, so set its PM-runtime 620 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 621 * to avoid confusing drivers that don't use it. 622 */ 623 if (skip_resume) 624 pm_runtime_set_suspended(dev); 625 else if (dev_pm_skip_suspend(dev)) 626 pm_runtime_set_active(dev); 627 628 if (dev->pm_domain) { 629 info = "noirq power domain "; 630 callback = pm_noirq_op(&dev->pm_domain->ops, state); 631 } else if (dev->type && dev->type->pm) { 632 info = "noirq type "; 633 callback = pm_noirq_op(dev->type->pm, state); 634 } else if (dev->class && dev->class->pm) { 635 info = "noirq class "; 636 callback = pm_noirq_op(dev->class->pm, state); 637 } else if (dev->bus && dev->bus->pm) { 638 info = "noirq bus "; 639 callback = pm_noirq_op(dev->bus->pm, state); 640 } 641 if (callback) 642 goto Run; 643 644 if (skip_resume) 645 goto Skip; 646 647 if (dev->driver && dev->driver->pm) { 648 info = "noirq driver "; 649 callback = pm_noirq_op(dev->driver->pm, state); 650 } 651 652 Run: 653 error = dpm_run_callback(callback, dev, state, info); 654 655 Skip: 656 dev->power.is_noirq_suspended = false; 657 658 Out: 659 complete_all(&dev->power.completion); 660 TRACE_RESUME(error); 661 return error; 662 } 663 664 static bool is_async(struct device *dev) 665 { 666 return dev->power.async_suspend && pm_async_enabled 667 && !pm_trace_is_enabled(); 668 } 669 670 static bool dpm_async_fn(struct device *dev, async_func_t func) 671 { 672 reinit_completion(&dev->power.completion); 673 674 if (is_async(dev)) { 675 get_device(dev); 676 async_schedule_dev(func, dev); 677 return true; 678 } 679 680 return false; 681 } 682 683 static void async_resume_noirq(void *data, async_cookie_t cookie) 684 { 685 struct device *dev = (struct device *)data; 686 int error; 687 688 error = device_resume_noirq(dev, pm_transition, true); 689 if (error) 690 pm_dev_err(dev, pm_transition, " async", error); 691 692 put_device(dev); 693 } 694 695 static void dpm_noirq_resume_devices(pm_message_t state) 696 { 697 struct device *dev; 698 ktime_t starttime = ktime_get(); 699 700 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 701 mutex_lock(&dpm_list_mtx); 702 pm_transition = state; 703 704 /* 705 * Advanced the async threads upfront, 706 * in case the starting of async threads is 707 * delayed by non-async resuming devices. 708 */ 709 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 710 dpm_async_fn(dev, async_resume_noirq); 711 712 while (!list_empty(&dpm_noirq_list)) { 713 dev = to_device(dpm_noirq_list.next); 714 get_device(dev); 715 list_move_tail(&dev->power.entry, &dpm_late_early_list); 716 mutex_unlock(&dpm_list_mtx); 717 718 if (!is_async(dev)) { 719 int error; 720 721 error = device_resume_noirq(dev, state, false); 722 if (error) { 723 suspend_stats.failed_resume_noirq++; 724 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 725 dpm_save_failed_dev(dev_name(dev)); 726 pm_dev_err(dev, state, " noirq", error); 727 } 728 } 729 730 mutex_lock(&dpm_list_mtx); 731 put_device(dev); 732 } 733 mutex_unlock(&dpm_list_mtx); 734 async_synchronize_full(); 735 dpm_show_time(starttime, state, 0, "noirq"); 736 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 737 } 738 739 /** 740 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 741 * @state: PM transition of the system being carried out. 742 * 743 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 744 * allow device drivers' interrupt handlers to be called. 745 */ 746 void dpm_resume_noirq(pm_message_t state) 747 { 748 dpm_noirq_resume_devices(state); 749 750 resume_device_irqs(); 751 device_wakeup_disarm_wake_irqs(); 752 753 cpuidle_resume(); 754 } 755 756 /** 757 * device_resume_early - Execute an "early resume" callback for given device. 758 * @dev: Device to handle. 759 * @state: PM transition of the system being carried out. 760 * @async: If true, the device is being resumed asynchronously. 761 * 762 * Runtime PM is disabled for @dev while this function is being executed. 763 */ 764 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 765 { 766 pm_callback_t callback = NULL; 767 const char *info = NULL; 768 int error = 0; 769 770 TRACE_DEVICE(dev); 771 TRACE_RESUME(0); 772 773 if (dev->power.syscore || dev->power.direct_complete) 774 goto Out; 775 776 if (!dev->power.is_late_suspended) 777 goto Out; 778 779 if (!dpm_wait_for_superior(dev, async)) 780 goto Out; 781 782 if (dev->pm_domain) { 783 info = "early power domain "; 784 callback = pm_late_early_op(&dev->pm_domain->ops, state); 785 } else if (dev->type && dev->type->pm) { 786 info = "early type "; 787 callback = pm_late_early_op(dev->type->pm, state); 788 } else if (dev->class && dev->class->pm) { 789 info = "early class "; 790 callback = pm_late_early_op(dev->class->pm, state); 791 } else if (dev->bus && dev->bus->pm) { 792 info = "early bus "; 793 callback = pm_late_early_op(dev->bus->pm, state); 794 } 795 if (callback) 796 goto Run; 797 798 if (dev_pm_skip_resume(dev)) 799 goto Skip; 800 801 if (dev->driver && dev->driver->pm) { 802 info = "early driver "; 803 callback = pm_late_early_op(dev->driver->pm, state); 804 } 805 806 Run: 807 error = dpm_run_callback(callback, dev, state, info); 808 809 Skip: 810 dev->power.is_late_suspended = false; 811 812 Out: 813 TRACE_RESUME(error); 814 815 pm_runtime_enable(dev); 816 complete_all(&dev->power.completion); 817 return error; 818 } 819 820 static void async_resume_early(void *data, async_cookie_t cookie) 821 { 822 struct device *dev = (struct device *)data; 823 int error; 824 825 error = device_resume_early(dev, pm_transition, true); 826 if (error) 827 pm_dev_err(dev, pm_transition, " async", error); 828 829 put_device(dev); 830 } 831 832 /** 833 * dpm_resume_early - Execute "early resume" callbacks for all devices. 834 * @state: PM transition of the system being carried out. 835 */ 836 void dpm_resume_early(pm_message_t state) 837 { 838 struct device *dev; 839 ktime_t starttime = ktime_get(); 840 841 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 842 mutex_lock(&dpm_list_mtx); 843 pm_transition = state; 844 845 /* 846 * Advanced the async threads upfront, 847 * in case the starting of async threads is 848 * delayed by non-async resuming devices. 849 */ 850 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 851 dpm_async_fn(dev, async_resume_early); 852 853 while (!list_empty(&dpm_late_early_list)) { 854 dev = to_device(dpm_late_early_list.next); 855 get_device(dev); 856 list_move_tail(&dev->power.entry, &dpm_suspended_list); 857 mutex_unlock(&dpm_list_mtx); 858 859 if (!is_async(dev)) { 860 int error; 861 862 error = device_resume_early(dev, state, false); 863 if (error) { 864 suspend_stats.failed_resume_early++; 865 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 866 dpm_save_failed_dev(dev_name(dev)); 867 pm_dev_err(dev, state, " early", error); 868 } 869 } 870 mutex_lock(&dpm_list_mtx); 871 put_device(dev); 872 } 873 mutex_unlock(&dpm_list_mtx); 874 async_synchronize_full(); 875 dpm_show_time(starttime, state, 0, "early"); 876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 877 } 878 879 /** 880 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 881 * @state: PM transition of the system being carried out. 882 */ 883 void dpm_resume_start(pm_message_t state) 884 { 885 dpm_resume_noirq(state); 886 dpm_resume_early(state); 887 } 888 EXPORT_SYMBOL_GPL(dpm_resume_start); 889 890 /** 891 * device_resume - Execute "resume" callbacks for given device. 892 * @dev: Device to handle. 893 * @state: PM transition of the system being carried out. 894 * @async: If true, the device is being resumed asynchronously. 895 */ 896 static int device_resume(struct device *dev, pm_message_t state, bool async) 897 { 898 pm_callback_t callback = NULL; 899 const char *info = NULL; 900 int error = 0; 901 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 902 903 TRACE_DEVICE(dev); 904 TRACE_RESUME(0); 905 906 if (dev->power.syscore) 907 goto Complete; 908 909 if (dev->power.direct_complete) { 910 /* Match the pm_runtime_disable() in __device_suspend(). */ 911 pm_runtime_enable(dev); 912 goto Complete; 913 } 914 915 if (!dpm_wait_for_superior(dev, async)) 916 goto Complete; 917 918 dpm_watchdog_set(&wd, dev); 919 device_lock(dev); 920 921 /* 922 * This is a fib. But we'll allow new children to be added below 923 * a resumed device, even if the device hasn't been completed yet. 924 */ 925 dev->power.is_prepared = false; 926 927 if (!dev->power.is_suspended) 928 goto Unlock; 929 930 if (dev->pm_domain) { 931 info = "power domain "; 932 callback = pm_op(&dev->pm_domain->ops, state); 933 goto Driver; 934 } 935 936 if (dev->type && dev->type->pm) { 937 info = "type "; 938 callback = pm_op(dev->type->pm, state); 939 goto Driver; 940 } 941 942 if (dev->class && dev->class->pm) { 943 info = "class "; 944 callback = pm_op(dev->class->pm, state); 945 goto Driver; 946 } 947 948 if (dev->bus) { 949 if (dev->bus->pm) { 950 info = "bus "; 951 callback = pm_op(dev->bus->pm, state); 952 } else if (dev->bus->resume) { 953 info = "legacy bus "; 954 callback = dev->bus->resume; 955 goto End; 956 } 957 } 958 959 Driver: 960 if (!callback && dev->driver && dev->driver->pm) { 961 info = "driver "; 962 callback = pm_op(dev->driver->pm, state); 963 } 964 965 End: 966 error = dpm_run_callback(callback, dev, state, info); 967 dev->power.is_suspended = false; 968 969 Unlock: 970 device_unlock(dev); 971 dpm_watchdog_clear(&wd); 972 973 Complete: 974 complete_all(&dev->power.completion); 975 976 TRACE_RESUME(error); 977 978 return error; 979 } 980 981 static void async_resume(void *data, async_cookie_t cookie) 982 { 983 struct device *dev = (struct device *)data; 984 int error; 985 986 error = device_resume(dev, pm_transition, true); 987 if (error) 988 pm_dev_err(dev, pm_transition, " async", error); 989 put_device(dev); 990 } 991 992 /** 993 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 994 * @state: PM transition of the system being carried out. 995 * 996 * Execute the appropriate "resume" callback for all devices whose status 997 * indicates that they are suspended. 998 */ 999 void dpm_resume(pm_message_t state) 1000 { 1001 struct device *dev; 1002 ktime_t starttime = ktime_get(); 1003 1004 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1005 might_sleep(); 1006 1007 mutex_lock(&dpm_list_mtx); 1008 pm_transition = state; 1009 async_error = 0; 1010 1011 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1012 dpm_async_fn(dev, async_resume); 1013 1014 while (!list_empty(&dpm_suspended_list)) { 1015 dev = to_device(dpm_suspended_list.next); 1016 get_device(dev); 1017 if (!is_async(dev)) { 1018 int error; 1019 1020 mutex_unlock(&dpm_list_mtx); 1021 1022 error = device_resume(dev, state, false); 1023 if (error) { 1024 suspend_stats.failed_resume++; 1025 dpm_save_failed_step(SUSPEND_RESUME); 1026 dpm_save_failed_dev(dev_name(dev)); 1027 pm_dev_err(dev, state, "", error); 1028 } 1029 1030 mutex_lock(&dpm_list_mtx); 1031 } 1032 if (!list_empty(&dev->power.entry)) 1033 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1034 put_device(dev); 1035 } 1036 mutex_unlock(&dpm_list_mtx); 1037 async_synchronize_full(); 1038 dpm_show_time(starttime, state, 0, NULL); 1039 1040 cpufreq_resume(); 1041 devfreq_resume(); 1042 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1043 } 1044 1045 /** 1046 * device_complete - Complete a PM transition for given device. 1047 * @dev: Device to handle. 1048 * @state: PM transition of the system being carried out. 1049 */ 1050 static void device_complete(struct device *dev, pm_message_t state) 1051 { 1052 void (*callback)(struct device *) = NULL; 1053 const char *info = NULL; 1054 1055 if (dev->power.syscore) 1056 return; 1057 1058 device_lock(dev); 1059 1060 if (dev->pm_domain) { 1061 info = "completing power domain "; 1062 callback = dev->pm_domain->ops.complete; 1063 } else if (dev->type && dev->type->pm) { 1064 info = "completing type "; 1065 callback = dev->type->pm->complete; 1066 } else if (dev->class && dev->class->pm) { 1067 info = "completing class "; 1068 callback = dev->class->pm->complete; 1069 } else if (dev->bus && dev->bus->pm) { 1070 info = "completing bus "; 1071 callback = dev->bus->pm->complete; 1072 } 1073 1074 if (!callback && dev->driver && dev->driver->pm) { 1075 info = "completing driver "; 1076 callback = dev->driver->pm->complete; 1077 } 1078 1079 if (callback) { 1080 pm_dev_dbg(dev, state, info); 1081 callback(dev); 1082 } 1083 1084 device_unlock(dev); 1085 1086 pm_runtime_put(dev); 1087 } 1088 1089 /** 1090 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1091 * @state: PM transition of the system being carried out. 1092 * 1093 * Execute the ->complete() callbacks for all devices whose PM status is not 1094 * DPM_ON (this allows new devices to be registered). 1095 */ 1096 void dpm_complete(pm_message_t state) 1097 { 1098 struct list_head list; 1099 1100 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1101 might_sleep(); 1102 1103 INIT_LIST_HEAD(&list); 1104 mutex_lock(&dpm_list_mtx); 1105 while (!list_empty(&dpm_prepared_list)) { 1106 struct device *dev = to_device(dpm_prepared_list.prev); 1107 1108 get_device(dev); 1109 dev->power.is_prepared = false; 1110 list_move(&dev->power.entry, &list); 1111 mutex_unlock(&dpm_list_mtx); 1112 1113 trace_device_pm_callback_start(dev, "", state.event); 1114 device_complete(dev, state); 1115 trace_device_pm_callback_end(dev, 0); 1116 1117 mutex_lock(&dpm_list_mtx); 1118 put_device(dev); 1119 } 1120 list_splice(&list, &dpm_list); 1121 mutex_unlock(&dpm_list_mtx); 1122 1123 /* Allow device probing and trigger re-probing of deferred devices */ 1124 device_unblock_probing(); 1125 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1126 } 1127 1128 /** 1129 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1130 * @state: PM transition of the system being carried out. 1131 * 1132 * Execute "resume" callbacks for all devices and complete the PM transition of 1133 * the system. 1134 */ 1135 void dpm_resume_end(pm_message_t state) 1136 { 1137 dpm_resume(state); 1138 dpm_complete(state); 1139 } 1140 EXPORT_SYMBOL_GPL(dpm_resume_end); 1141 1142 1143 /*------------------------- Suspend routines -------------------------*/ 1144 1145 /** 1146 * resume_event - Return a "resume" message for given "suspend" sleep state. 1147 * @sleep_state: PM message representing a sleep state. 1148 * 1149 * Return a PM message representing the resume event corresponding to given 1150 * sleep state. 1151 */ 1152 static pm_message_t resume_event(pm_message_t sleep_state) 1153 { 1154 switch (sleep_state.event) { 1155 case PM_EVENT_SUSPEND: 1156 return PMSG_RESUME; 1157 case PM_EVENT_FREEZE: 1158 case PM_EVENT_QUIESCE: 1159 return PMSG_RECOVER; 1160 case PM_EVENT_HIBERNATE: 1161 return PMSG_RESTORE; 1162 } 1163 return PMSG_ON; 1164 } 1165 1166 static void dpm_superior_set_must_resume(struct device *dev) 1167 { 1168 struct device_link *link; 1169 int idx; 1170 1171 if (dev->parent) 1172 dev->parent->power.must_resume = true; 1173 1174 idx = device_links_read_lock(); 1175 1176 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1177 link->supplier->power.must_resume = true; 1178 1179 device_links_read_unlock(idx); 1180 } 1181 1182 /** 1183 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1184 * @dev: Device to handle. 1185 * @state: PM transition of the system being carried out. 1186 * @async: If true, the device is being suspended asynchronously. 1187 * 1188 * The driver of @dev will not receive interrupts while this function is being 1189 * executed. 1190 */ 1191 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1192 { 1193 pm_callback_t callback = NULL; 1194 const char *info = NULL; 1195 int error = 0; 1196 1197 TRACE_DEVICE(dev); 1198 TRACE_SUSPEND(0); 1199 1200 dpm_wait_for_subordinate(dev, async); 1201 1202 if (async_error) 1203 goto Complete; 1204 1205 if (dev->power.syscore || dev->power.direct_complete) 1206 goto Complete; 1207 1208 if (dev->pm_domain) { 1209 info = "noirq power domain "; 1210 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1211 } else if (dev->type && dev->type->pm) { 1212 info = "noirq type "; 1213 callback = pm_noirq_op(dev->type->pm, state); 1214 } else if (dev->class && dev->class->pm) { 1215 info = "noirq class "; 1216 callback = pm_noirq_op(dev->class->pm, state); 1217 } else if (dev->bus && dev->bus->pm) { 1218 info = "noirq bus "; 1219 callback = pm_noirq_op(dev->bus->pm, state); 1220 } 1221 if (callback) 1222 goto Run; 1223 1224 if (dev_pm_skip_suspend(dev)) 1225 goto Skip; 1226 1227 if (dev->driver && dev->driver->pm) { 1228 info = "noirq driver "; 1229 callback = pm_noirq_op(dev->driver->pm, state); 1230 } 1231 1232 Run: 1233 error = dpm_run_callback(callback, dev, state, info); 1234 if (error) { 1235 async_error = error; 1236 goto Complete; 1237 } 1238 1239 Skip: 1240 dev->power.is_noirq_suspended = true; 1241 1242 /* 1243 * Skipping the resume of devices that were in use right before the 1244 * system suspend (as indicated by their PM-runtime usage counters) 1245 * would be suboptimal. Also resume them if doing that is not allowed 1246 * to be skipped. 1247 */ 1248 if (atomic_read(&dev->power.usage_count) > 1 || 1249 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1250 dev->power.may_skip_resume)) 1251 dev->power.must_resume = true; 1252 1253 if (dev->power.must_resume) 1254 dpm_superior_set_must_resume(dev); 1255 1256 Complete: 1257 complete_all(&dev->power.completion); 1258 TRACE_SUSPEND(error); 1259 return error; 1260 } 1261 1262 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1263 { 1264 struct device *dev = (struct device *)data; 1265 int error; 1266 1267 error = __device_suspend_noirq(dev, pm_transition, true); 1268 if (error) { 1269 dpm_save_failed_dev(dev_name(dev)); 1270 pm_dev_err(dev, pm_transition, " async", error); 1271 } 1272 1273 put_device(dev); 1274 } 1275 1276 static int device_suspend_noirq(struct device *dev) 1277 { 1278 if (dpm_async_fn(dev, async_suspend_noirq)) 1279 return 0; 1280 1281 return __device_suspend_noirq(dev, pm_transition, false); 1282 } 1283 1284 static int dpm_noirq_suspend_devices(pm_message_t state) 1285 { 1286 ktime_t starttime = ktime_get(); 1287 int error = 0; 1288 1289 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1290 mutex_lock(&dpm_list_mtx); 1291 pm_transition = state; 1292 async_error = 0; 1293 1294 while (!list_empty(&dpm_late_early_list)) { 1295 struct device *dev = to_device(dpm_late_early_list.prev); 1296 1297 get_device(dev); 1298 mutex_unlock(&dpm_list_mtx); 1299 1300 error = device_suspend_noirq(dev); 1301 1302 mutex_lock(&dpm_list_mtx); 1303 if (error) { 1304 pm_dev_err(dev, state, " noirq", error); 1305 dpm_save_failed_dev(dev_name(dev)); 1306 put_device(dev); 1307 break; 1308 } 1309 if (!list_empty(&dev->power.entry)) 1310 list_move(&dev->power.entry, &dpm_noirq_list); 1311 put_device(dev); 1312 1313 if (async_error) 1314 break; 1315 } 1316 mutex_unlock(&dpm_list_mtx); 1317 async_synchronize_full(); 1318 if (!error) 1319 error = async_error; 1320 1321 if (error) { 1322 suspend_stats.failed_suspend_noirq++; 1323 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1324 } 1325 dpm_show_time(starttime, state, error, "noirq"); 1326 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1327 return error; 1328 } 1329 1330 /** 1331 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1332 * @state: PM transition of the system being carried out. 1333 * 1334 * Prevent device drivers' interrupt handlers from being called and invoke 1335 * "noirq" suspend callbacks for all non-sysdev devices. 1336 */ 1337 int dpm_suspend_noirq(pm_message_t state) 1338 { 1339 int ret; 1340 1341 cpuidle_pause(); 1342 1343 device_wakeup_arm_wake_irqs(); 1344 suspend_device_irqs(); 1345 1346 ret = dpm_noirq_suspend_devices(state); 1347 if (ret) 1348 dpm_resume_noirq(resume_event(state)); 1349 1350 return ret; 1351 } 1352 1353 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1354 { 1355 struct device *parent = dev->parent; 1356 1357 if (!parent) 1358 return; 1359 1360 spin_lock_irq(&parent->power.lock); 1361 1362 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1363 parent->power.wakeup_path = true; 1364 1365 spin_unlock_irq(&parent->power.lock); 1366 } 1367 1368 /** 1369 * __device_suspend_late - Execute a "late suspend" callback for given device. 1370 * @dev: Device to handle. 1371 * @state: PM transition of the system being carried out. 1372 * @async: If true, the device is being suspended asynchronously. 1373 * 1374 * Runtime PM is disabled for @dev while this function is being executed. 1375 */ 1376 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1377 { 1378 pm_callback_t callback = NULL; 1379 const char *info = NULL; 1380 int error = 0; 1381 1382 TRACE_DEVICE(dev); 1383 TRACE_SUSPEND(0); 1384 1385 __pm_runtime_disable(dev, false); 1386 1387 dpm_wait_for_subordinate(dev, async); 1388 1389 if (async_error) 1390 goto Complete; 1391 1392 if (pm_wakeup_pending()) { 1393 async_error = -EBUSY; 1394 goto Complete; 1395 } 1396 1397 if (dev->power.syscore || dev->power.direct_complete) 1398 goto Complete; 1399 1400 if (dev->pm_domain) { 1401 info = "late power domain "; 1402 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1403 } else if (dev->type && dev->type->pm) { 1404 info = "late type "; 1405 callback = pm_late_early_op(dev->type->pm, state); 1406 } else if (dev->class && dev->class->pm) { 1407 info = "late class "; 1408 callback = pm_late_early_op(dev->class->pm, state); 1409 } else if (dev->bus && dev->bus->pm) { 1410 info = "late bus "; 1411 callback = pm_late_early_op(dev->bus->pm, state); 1412 } 1413 if (callback) 1414 goto Run; 1415 1416 if (dev_pm_skip_suspend(dev)) 1417 goto Skip; 1418 1419 if (dev->driver && dev->driver->pm) { 1420 info = "late driver "; 1421 callback = pm_late_early_op(dev->driver->pm, state); 1422 } 1423 1424 Run: 1425 error = dpm_run_callback(callback, dev, state, info); 1426 if (error) { 1427 async_error = error; 1428 goto Complete; 1429 } 1430 dpm_propagate_wakeup_to_parent(dev); 1431 1432 Skip: 1433 dev->power.is_late_suspended = true; 1434 1435 Complete: 1436 TRACE_SUSPEND(error); 1437 complete_all(&dev->power.completion); 1438 return error; 1439 } 1440 1441 static void async_suspend_late(void *data, async_cookie_t cookie) 1442 { 1443 struct device *dev = (struct device *)data; 1444 int error; 1445 1446 error = __device_suspend_late(dev, pm_transition, true); 1447 if (error) { 1448 dpm_save_failed_dev(dev_name(dev)); 1449 pm_dev_err(dev, pm_transition, " async", error); 1450 } 1451 put_device(dev); 1452 } 1453 1454 static int device_suspend_late(struct device *dev) 1455 { 1456 if (dpm_async_fn(dev, async_suspend_late)) 1457 return 0; 1458 1459 return __device_suspend_late(dev, pm_transition, false); 1460 } 1461 1462 /** 1463 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1464 * @state: PM transition of the system being carried out. 1465 */ 1466 int dpm_suspend_late(pm_message_t state) 1467 { 1468 ktime_t starttime = ktime_get(); 1469 int error = 0; 1470 1471 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1472 mutex_lock(&dpm_list_mtx); 1473 pm_transition = state; 1474 async_error = 0; 1475 1476 while (!list_empty(&dpm_suspended_list)) { 1477 struct device *dev = to_device(dpm_suspended_list.prev); 1478 1479 get_device(dev); 1480 mutex_unlock(&dpm_list_mtx); 1481 1482 error = device_suspend_late(dev); 1483 1484 mutex_lock(&dpm_list_mtx); 1485 if (!list_empty(&dev->power.entry)) 1486 list_move(&dev->power.entry, &dpm_late_early_list); 1487 1488 if (error) { 1489 pm_dev_err(dev, state, " late", error); 1490 dpm_save_failed_dev(dev_name(dev)); 1491 put_device(dev); 1492 break; 1493 } 1494 put_device(dev); 1495 1496 if (async_error) 1497 break; 1498 } 1499 mutex_unlock(&dpm_list_mtx); 1500 async_synchronize_full(); 1501 if (!error) 1502 error = async_error; 1503 if (error) { 1504 suspend_stats.failed_suspend_late++; 1505 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1506 dpm_resume_early(resume_event(state)); 1507 } 1508 dpm_show_time(starttime, state, error, "late"); 1509 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1510 return error; 1511 } 1512 1513 /** 1514 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1515 * @state: PM transition of the system being carried out. 1516 */ 1517 int dpm_suspend_end(pm_message_t state) 1518 { 1519 ktime_t starttime = ktime_get(); 1520 int error; 1521 1522 error = dpm_suspend_late(state); 1523 if (error) 1524 goto out; 1525 1526 error = dpm_suspend_noirq(state); 1527 if (error) 1528 dpm_resume_early(resume_event(state)); 1529 1530 out: 1531 dpm_show_time(starttime, state, error, "end"); 1532 return error; 1533 } 1534 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1535 1536 /** 1537 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1538 * @dev: Device to suspend. 1539 * @state: PM transition of the system being carried out. 1540 * @cb: Suspend callback to execute. 1541 * @info: string description of caller. 1542 */ 1543 static int legacy_suspend(struct device *dev, pm_message_t state, 1544 int (*cb)(struct device *dev, pm_message_t state), 1545 const char *info) 1546 { 1547 int error; 1548 ktime_t calltime; 1549 1550 calltime = initcall_debug_start(dev, cb); 1551 1552 trace_device_pm_callback_start(dev, info, state.event); 1553 error = cb(dev, state); 1554 trace_device_pm_callback_end(dev, error); 1555 suspend_report_result(cb, error); 1556 1557 initcall_debug_report(dev, calltime, cb, error); 1558 1559 return error; 1560 } 1561 1562 static void dpm_clear_superiors_direct_complete(struct device *dev) 1563 { 1564 struct device_link *link; 1565 int idx; 1566 1567 if (dev->parent) { 1568 spin_lock_irq(&dev->parent->power.lock); 1569 dev->parent->power.direct_complete = false; 1570 spin_unlock_irq(&dev->parent->power.lock); 1571 } 1572 1573 idx = device_links_read_lock(); 1574 1575 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1576 spin_lock_irq(&link->supplier->power.lock); 1577 link->supplier->power.direct_complete = false; 1578 spin_unlock_irq(&link->supplier->power.lock); 1579 } 1580 1581 device_links_read_unlock(idx); 1582 } 1583 1584 /** 1585 * __device_suspend - Execute "suspend" callbacks for given device. 1586 * @dev: Device to handle. 1587 * @state: PM transition of the system being carried out. 1588 * @async: If true, the device is being suspended asynchronously. 1589 */ 1590 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1591 { 1592 pm_callback_t callback = NULL; 1593 const char *info = NULL; 1594 int error = 0; 1595 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1596 1597 TRACE_DEVICE(dev); 1598 TRACE_SUSPEND(0); 1599 1600 dpm_wait_for_subordinate(dev, async); 1601 1602 if (async_error) { 1603 dev->power.direct_complete = false; 1604 goto Complete; 1605 } 1606 1607 /* 1608 * Wait for possible runtime PM transitions of the device in progress 1609 * to complete and if there's a runtime resume request pending for it, 1610 * resume it before proceeding with invoking the system-wide suspend 1611 * callbacks for it. 1612 * 1613 * If the system-wide suspend callbacks below change the configuration 1614 * of the device, they must disable runtime PM for it or otherwise 1615 * ensure that its runtime-resume callbacks will not be confused by that 1616 * change in case they are invoked going forward. 1617 */ 1618 pm_runtime_barrier(dev); 1619 1620 if (pm_wakeup_pending()) { 1621 dev->power.direct_complete = false; 1622 async_error = -EBUSY; 1623 goto Complete; 1624 } 1625 1626 if (dev->power.syscore) 1627 goto Complete; 1628 1629 /* Avoid direct_complete to let wakeup_path propagate. */ 1630 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1631 dev->power.direct_complete = false; 1632 1633 if (dev->power.direct_complete) { 1634 if (pm_runtime_status_suspended(dev)) { 1635 pm_runtime_disable(dev); 1636 if (pm_runtime_status_suspended(dev)) { 1637 pm_dev_dbg(dev, state, "direct-complete "); 1638 goto Complete; 1639 } 1640 1641 pm_runtime_enable(dev); 1642 } 1643 dev->power.direct_complete = false; 1644 } 1645 1646 dev->power.may_skip_resume = true; 1647 dev->power.must_resume = false; 1648 1649 dpm_watchdog_set(&wd, dev); 1650 device_lock(dev); 1651 1652 if (dev->pm_domain) { 1653 info = "power domain "; 1654 callback = pm_op(&dev->pm_domain->ops, state); 1655 goto Run; 1656 } 1657 1658 if (dev->type && dev->type->pm) { 1659 info = "type "; 1660 callback = pm_op(dev->type->pm, state); 1661 goto Run; 1662 } 1663 1664 if (dev->class && dev->class->pm) { 1665 info = "class "; 1666 callback = pm_op(dev->class->pm, state); 1667 goto Run; 1668 } 1669 1670 if (dev->bus) { 1671 if (dev->bus->pm) { 1672 info = "bus "; 1673 callback = pm_op(dev->bus->pm, state); 1674 } else if (dev->bus->suspend) { 1675 pm_dev_dbg(dev, state, "legacy bus "); 1676 error = legacy_suspend(dev, state, dev->bus->suspend, 1677 "legacy bus "); 1678 goto End; 1679 } 1680 } 1681 1682 Run: 1683 if (!callback && dev->driver && dev->driver->pm) { 1684 info = "driver "; 1685 callback = pm_op(dev->driver->pm, state); 1686 } 1687 1688 error = dpm_run_callback(callback, dev, state, info); 1689 1690 End: 1691 if (!error) { 1692 dev->power.is_suspended = true; 1693 if (device_may_wakeup(dev)) 1694 dev->power.wakeup_path = true; 1695 1696 dpm_propagate_wakeup_to_parent(dev); 1697 dpm_clear_superiors_direct_complete(dev); 1698 } 1699 1700 device_unlock(dev); 1701 dpm_watchdog_clear(&wd); 1702 1703 Complete: 1704 if (error) 1705 async_error = error; 1706 1707 complete_all(&dev->power.completion); 1708 TRACE_SUSPEND(error); 1709 return error; 1710 } 1711 1712 static void async_suspend(void *data, async_cookie_t cookie) 1713 { 1714 struct device *dev = (struct device *)data; 1715 int error; 1716 1717 error = __device_suspend(dev, pm_transition, true); 1718 if (error) { 1719 dpm_save_failed_dev(dev_name(dev)); 1720 pm_dev_err(dev, pm_transition, " async", error); 1721 } 1722 1723 put_device(dev); 1724 } 1725 1726 static int device_suspend(struct device *dev) 1727 { 1728 if (dpm_async_fn(dev, async_suspend)) 1729 return 0; 1730 1731 return __device_suspend(dev, pm_transition, false); 1732 } 1733 1734 /** 1735 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1736 * @state: PM transition of the system being carried out. 1737 */ 1738 int dpm_suspend(pm_message_t state) 1739 { 1740 ktime_t starttime = ktime_get(); 1741 int error = 0; 1742 1743 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1744 might_sleep(); 1745 1746 devfreq_suspend(); 1747 cpufreq_suspend(); 1748 1749 mutex_lock(&dpm_list_mtx); 1750 pm_transition = state; 1751 async_error = 0; 1752 while (!list_empty(&dpm_prepared_list)) { 1753 struct device *dev = to_device(dpm_prepared_list.prev); 1754 1755 get_device(dev); 1756 mutex_unlock(&dpm_list_mtx); 1757 1758 error = device_suspend(dev); 1759 1760 mutex_lock(&dpm_list_mtx); 1761 if (error) { 1762 pm_dev_err(dev, state, "", error); 1763 dpm_save_failed_dev(dev_name(dev)); 1764 put_device(dev); 1765 break; 1766 } 1767 if (!list_empty(&dev->power.entry)) 1768 list_move(&dev->power.entry, &dpm_suspended_list); 1769 put_device(dev); 1770 if (async_error) 1771 break; 1772 } 1773 mutex_unlock(&dpm_list_mtx); 1774 async_synchronize_full(); 1775 if (!error) 1776 error = async_error; 1777 if (error) { 1778 suspend_stats.failed_suspend++; 1779 dpm_save_failed_step(SUSPEND_SUSPEND); 1780 } 1781 dpm_show_time(starttime, state, error, NULL); 1782 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1783 return error; 1784 } 1785 1786 /** 1787 * device_prepare - Prepare a device for system power transition. 1788 * @dev: Device to handle. 1789 * @state: PM transition of the system being carried out. 1790 * 1791 * Execute the ->prepare() callback(s) for given device. No new children of the 1792 * device may be registered after this function has returned. 1793 */ 1794 static int device_prepare(struct device *dev, pm_message_t state) 1795 { 1796 int (*callback)(struct device *) = NULL; 1797 int ret = 0; 1798 1799 if (dev->power.syscore) 1800 return 0; 1801 1802 /* 1803 * If a device's parent goes into runtime suspend at the wrong time, 1804 * it won't be possible to resume the device. To prevent this we 1805 * block runtime suspend here, during the prepare phase, and allow 1806 * it again during the complete phase. 1807 */ 1808 pm_runtime_get_noresume(dev); 1809 1810 device_lock(dev); 1811 1812 dev->power.wakeup_path = false; 1813 1814 if (dev->power.no_pm_callbacks) 1815 goto unlock; 1816 1817 if (dev->pm_domain) 1818 callback = dev->pm_domain->ops.prepare; 1819 else if (dev->type && dev->type->pm) 1820 callback = dev->type->pm->prepare; 1821 else if (dev->class && dev->class->pm) 1822 callback = dev->class->pm->prepare; 1823 else if (dev->bus && dev->bus->pm) 1824 callback = dev->bus->pm->prepare; 1825 1826 if (!callback && dev->driver && dev->driver->pm) 1827 callback = dev->driver->pm->prepare; 1828 1829 if (callback) 1830 ret = callback(dev); 1831 1832 unlock: 1833 device_unlock(dev); 1834 1835 if (ret < 0) { 1836 suspend_report_result(callback, ret); 1837 pm_runtime_put(dev); 1838 return ret; 1839 } 1840 /* 1841 * A positive return value from ->prepare() means "this device appears 1842 * to be runtime-suspended and its state is fine, so if it really is 1843 * runtime-suspended, you can leave it in that state provided that you 1844 * will do the same thing with all of its descendants". This only 1845 * applies to suspend transitions, however. 1846 */ 1847 spin_lock_irq(&dev->power.lock); 1848 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1849 (ret > 0 || dev->power.no_pm_callbacks) && 1850 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1851 spin_unlock_irq(&dev->power.lock); 1852 return 0; 1853 } 1854 1855 /** 1856 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1857 * @state: PM transition of the system being carried out. 1858 * 1859 * Execute the ->prepare() callback(s) for all devices. 1860 */ 1861 int dpm_prepare(pm_message_t state) 1862 { 1863 int error = 0; 1864 1865 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1866 might_sleep(); 1867 1868 /* 1869 * Give a chance for the known devices to complete their probes, before 1870 * disable probing of devices. This sync point is important at least 1871 * at boot time + hibernation restore. 1872 */ 1873 wait_for_device_probe(); 1874 /* 1875 * It is unsafe if probing of devices will happen during suspend or 1876 * hibernation and system behavior will be unpredictable in this case. 1877 * So, let's prohibit device's probing here and defer their probes 1878 * instead. The normal behavior will be restored in dpm_complete(). 1879 */ 1880 device_block_probing(); 1881 1882 mutex_lock(&dpm_list_mtx); 1883 while (!list_empty(&dpm_list)) { 1884 struct device *dev = to_device(dpm_list.next); 1885 1886 get_device(dev); 1887 mutex_unlock(&dpm_list_mtx); 1888 1889 trace_device_pm_callback_start(dev, "", state.event); 1890 error = device_prepare(dev, state); 1891 trace_device_pm_callback_end(dev, error); 1892 1893 mutex_lock(&dpm_list_mtx); 1894 if (error) { 1895 if (error == -EAGAIN) { 1896 put_device(dev); 1897 error = 0; 1898 continue; 1899 } 1900 pr_info("Device %s not prepared for power transition: code %d\n", 1901 dev_name(dev), error); 1902 put_device(dev); 1903 break; 1904 } 1905 dev->power.is_prepared = true; 1906 if (!list_empty(&dev->power.entry)) 1907 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1908 put_device(dev); 1909 } 1910 mutex_unlock(&dpm_list_mtx); 1911 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1912 return error; 1913 } 1914 1915 /** 1916 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1917 * @state: PM transition of the system being carried out. 1918 * 1919 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1920 * callbacks for them. 1921 */ 1922 int dpm_suspend_start(pm_message_t state) 1923 { 1924 ktime_t starttime = ktime_get(); 1925 int error; 1926 1927 error = dpm_prepare(state); 1928 if (error) { 1929 suspend_stats.failed_prepare++; 1930 dpm_save_failed_step(SUSPEND_PREPARE); 1931 } else 1932 error = dpm_suspend(state); 1933 dpm_show_time(starttime, state, error, "start"); 1934 return error; 1935 } 1936 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1937 1938 void __suspend_report_result(const char *function, void *fn, int ret) 1939 { 1940 if (ret) 1941 pr_err("%s(): %pS returns %d\n", function, fn, ret); 1942 } 1943 EXPORT_SYMBOL_GPL(__suspend_report_result); 1944 1945 /** 1946 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1947 * @subordinate: Device that needs to wait for @dev. 1948 * @dev: Device to wait for. 1949 */ 1950 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1951 { 1952 dpm_wait(dev, subordinate->power.async_suspend); 1953 return async_error; 1954 } 1955 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1956 1957 /** 1958 * dpm_for_each_dev - device iterator. 1959 * @data: data for the callback. 1960 * @fn: function to be called for each device. 1961 * 1962 * Iterate over devices in dpm_list, and call @fn for each device, 1963 * passing it @data. 1964 */ 1965 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1966 { 1967 struct device *dev; 1968 1969 if (!fn) 1970 return; 1971 1972 device_pm_lock(); 1973 list_for_each_entry(dev, &dpm_list, power.entry) 1974 fn(dev, data); 1975 device_pm_unlock(); 1976 } 1977 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1978 1979 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 1980 { 1981 if (!ops) 1982 return true; 1983 1984 return !ops->prepare && 1985 !ops->suspend && 1986 !ops->suspend_late && 1987 !ops->suspend_noirq && 1988 !ops->resume_noirq && 1989 !ops->resume_early && 1990 !ops->resume && 1991 !ops->complete; 1992 } 1993 1994 void device_pm_check_callbacks(struct device *dev) 1995 { 1996 spin_lock_irq(&dev->power.lock); 1997 dev->power.no_pm_callbacks = 1998 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 1999 !dev->bus->suspend && !dev->bus->resume)) && 2000 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2001 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2002 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2003 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2004 !dev->driver->suspend && !dev->driver->resume)); 2005 spin_unlock_irq(&dev->power.lock); 2006 } 2007 2008 bool dev_pm_skip_suspend(struct device *dev) 2009 { 2010 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2011 pm_runtime_status_suspended(dev); 2012 } 2013