1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/export.h> 22 #include <linux/mutex.h> 23 #include <linux/pm.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pm-trace.h> 26 #include <linux/pm_wakeirq.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/sched/debug.h> 30 #include <linux/async.h> 31 #include <linux/suspend.h> 32 #include <trace/events/power.h> 33 #include <linux/cpufreq.h> 34 #include <linux/cpuidle.h> 35 #include <linux/timer.h> 36 37 #include "../base.h" 38 #include "power.h" 39 40 typedef int (*pm_callback_t)(struct device *); 41 42 /* 43 * The entries in the dpm_list list are in a depth first order, simply 44 * because children are guaranteed to be discovered after parents, and 45 * are inserted at the back of the list on discovery. 46 * 47 * Since device_pm_add() may be called with a device lock held, 48 * we must never try to acquire a device lock while holding 49 * dpm_list_mutex. 50 */ 51 52 LIST_HEAD(dpm_list); 53 static LIST_HEAD(dpm_prepared_list); 54 static LIST_HEAD(dpm_suspended_list); 55 static LIST_HEAD(dpm_late_early_list); 56 static LIST_HEAD(dpm_noirq_list); 57 58 struct suspend_stats suspend_stats; 59 static DEFINE_MUTEX(dpm_list_mtx); 60 static pm_message_t pm_transition; 61 62 static int async_error; 63 64 static const char *pm_verb(int event) 65 { 66 switch (event) { 67 case PM_EVENT_SUSPEND: 68 return "suspend"; 69 case PM_EVENT_RESUME: 70 return "resume"; 71 case PM_EVENT_FREEZE: 72 return "freeze"; 73 case PM_EVENT_QUIESCE: 74 return "quiesce"; 75 case PM_EVENT_HIBERNATE: 76 return "hibernate"; 77 case PM_EVENT_THAW: 78 return "thaw"; 79 case PM_EVENT_RESTORE: 80 return "restore"; 81 case PM_EVENT_RECOVER: 82 return "recover"; 83 default: 84 return "(unknown PM event)"; 85 } 86 } 87 88 /** 89 * device_pm_sleep_init - Initialize system suspend-related device fields. 90 * @dev: Device object being initialized. 91 */ 92 void device_pm_sleep_init(struct device *dev) 93 { 94 dev->power.is_prepared = false; 95 dev->power.is_suspended = false; 96 dev->power.is_noirq_suspended = false; 97 dev->power.is_late_suspended = false; 98 init_completion(&dev->power.completion); 99 complete_all(&dev->power.completion); 100 dev->power.wakeup = NULL; 101 INIT_LIST_HEAD(&dev->power.entry); 102 } 103 104 /** 105 * device_pm_lock - Lock the list of active devices used by the PM core. 106 */ 107 void device_pm_lock(void) 108 { 109 mutex_lock(&dpm_list_mtx); 110 } 111 112 /** 113 * device_pm_unlock - Unlock the list of active devices used by the PM core. 114 */ 115 void device_pm_unlock(void) 116 { 117 mutex_unlock(&dpm_list_mtx); 118 } 119 120 /** 121 * device_pm_add - Add a device to the PM core's list of active devices. 122 * @dev: Device to add to the list. 123 */ 124 void device_pm_add(struct device *dev) 125 { 126 pr_debug("PM: Adding info for %s:%s\n", 127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 128 device_pm_check_callbacks(dev); 129 mutex_lock(&dpm_list_mtx); 130 if (dev->parent && dev->parent->power.is_prepared) 131 dev_warn(dev, "parent %s should not be sleeping\n", 132 dev_name(dev->parent)); 133 list_add_tail(&dev->power.entry, &dpm_list); 134 dev->power.in_dpm_list = true; 135 mutex_unlock(&dpm_list_mtx); 136 } 137 138 /** 139 * device_pm_remove - Remove a device from the PM core's list of active devices. 140 * @dev: Device to be removed from the list. 141 */ 142 void device_pm_remove(struct device *dev) 143 { 144 pr_debug("PM: Removing info for %s:%s\n", 145 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 146 complete_all(&dev->power.completion); 147 mutex_lock(&dpm_list_mtx); 148 list_del_init(&dev->power.entry); 149 dev->power.in_dpm_list = false; 150 mutex_unlock(&dpm_list_mtx); 151 device_wakeup_disable(dev); 152 pm_runtime_remove(dev); 153 device_pm_check_callbacks(dev); 154 } 155 156 /** 157 * device_pm_move_before - Move device in the PM core's list of active devices. 158 * @deva: Device to move in dpm_list. 159 * @devb: Device @deva should come before. 160 */ 161 void device_pm_move_before(struct device *deva, struct device *devb) 162 { 163 pr_debug("PM: Moving %s:%s before %s:%s\n", 164 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 165 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 166 /* Delete deva from dpm_list and reinsert before devb. */ 167 list_move_tail(&deva->power.entry, &devb->power.entry); 168 } 169 170 /** 171 * device_pm_move_after - Move device in the PM core's list of active devices. 172 * @deva: Device to move in dpm_list. 173 * @devb: Device @deva should come after. 174 */ 175 void device_pm_move_after(struct device *deva, struct device *devb) 176 { 177 pr_debug("PM: Moving %s:%s after %s:%s\n", 178 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 179 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 180 /* Delete deva from dpm_list and reinsert after devb. */ 181 list_move(&deva->power.entry, &devb->power.entry); 182 } 183 184 /** 185 * device_pm_move_last - Move device to end of the PM core's list of devices. 186 * @dev: Device to move in dpm_list. 187 */ 188 void device_pm_move_last(struct device *dev) 189 { 190 pr_debug("PM: Moving %s:%s to end of list\n", 191 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 192 list_move_tail(&dev->power.entry, &dpm_list); 193 } 194 195 static ktime_t initcall_debug_start(struct device *dev) 196 { 197 ktime_t calltime = 0; 198 199 if (pm_print_times_enabled) { 200 pr_info("calling %s+ @ %i, parent: %s\n", 201 dev_name(dev), task_pid_nr(current), 202 dev->parent ? dev_name(dev->parent) : "none"); 203 calltime = ktime_get(); 204 } 205 206 return calltime; 207 } 208 209 static void initcall_debug_report(struct device *dev, ktime_t calltime, 210 int error, pm_message_t state, 211 const char *info) 212 { 213 ktime_t rettime; 214 s64 nsecs; 215 216 rettime = ktime_get(); 217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 218 219 if (pm_print_times_enabled) { 220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 221 error, (unsigned long long)nsecs >> 10); 222 } 223 } 224 225 /** 226 * dpm_wait - Wait for a PM operation to complete. 227 * @dev: Device to wait for. 228 * @async: If unset, wait only if the device's power.async_suspend flag is set. 229 */ 230 static void dpm_wait(struct device *dev, bool async) 231 { 232 if (!dev) 233 return; 234 235 if (async || (pm_async_enabled && dev->power.async_suspend)) 236 wait_for_completion(&dev->power.completion); 237 } 238 239 static int dpm_wait_fn(struct device *dev, void *async_ptr) 240 { 241 dpm_wait(dev, *((bool *)async_ptr)); 242 return 0; 243 } 244 245 static void dpm_wait_for_children(struct device *dev, bool async) 246 { 247 device_for_each_child(dev, &async, dpm_wait_fn); 248 } 249 250 static void dpm_wait_for_suppliers(struct device *dev, bool async) 251 { 252 struct device_link *link; 253 int idx; 254 255 idx = device_links_read_lock(); 256 257 /* 258 * If the supplier goes away right after we've checked the link to it, 259 * we'll wait for its completion to change the state, but that's fine, 260 * because the only things that will block as a result are the SRCU 261 * callbacks freeing the link objects for the links in the list we're 262 * walking. 263 */ 264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) 265 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 266 dpm_wait(link->supplier, async); 267 268 device_links_read_unlock(idx); 269 } 270 271 static void dpm_wait_for_superior(struct device *dev, bool async) 272 { 273 dpm_wait(dev->parent, async); 274 dpm_wait_for_suppliers(dev, async); 275 } 276 277 static void dpm_wait_for_consumers(struct device *dev, bool async) 278 { 279 struct device_link *link; 280 int idx; 281 282 idx = device_links_read_lock(); 283 284 /* 285 * The status of a device link can only be changed from "dormant" by a 286 * probe, but that cannot happen during system suspend/resume. In 287 * theory it can change to "dormant" at that time, but then it is 288 * reasonable to wait for the target device anyway (eg. if it goes 289 * away, it's better to wait for it to go away completely and then 290 * continue instead of trying to continue in parallel with its 291 * unregistration). 292 */ 293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node) 294 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 295 dpm_wait(link->consumer, async); 296 297 device_links_read_unlock(idx); 298 } 299 300 static void dpm_wait_for_subordinate(struct device *dev, bool async) 301 { 302 dpm_wait_for_children(dev, async); 303 dpm_wait_for_consumers(dev, async); 304 } 305 306 /** 307 * pm_op - Return the PM operation appropriate for given PM event. 308 * @ops: PM operations to choose from. 309 * @state: PM transition of the system being carried out. 310 */ 311 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 312 { 313 switch (state.event) { 314 #ifdef CONFIG_SUSPEND 315 case PM_EVENT_SUSPEND: 316 return ops->suspend; 317 case PM_EVENT_RESUME: 318 return ops->resume; 319 #endif /* CONFIG_SUSPEND */ 320 #ifdef CONFIG_HIBERNATE_CALLBACKS 321 case PM_EVENT_FREEZE: 322 case PM_EVENT_QUIESCE: 323 return ops->freeze; 324 case PM_EVENT_HIBERNATE: 325 return ops->poweroff; 326 case PM_EVENT_THAW: 327 case PM_EVENT_RECOVER: 328 return ops->thaw; 329 break; 330 case PM_EVENT_RESTORE: 331 return ops->restore; 332 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 333 } 334 335 return NULL; 336 } 337 338 /** 339 * pm_late_early_op - Return the PM operation appropriate for given PM event. 340 * @ops: PM operations to choose from. 341 * @state: PM transition of the system being carried out. 342 * 343 * Runtime PM is disabled for @dev while this function is being executed. 344 */ 345 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 346 pm_message_t state) 347 { 348 switch (state.event) { 349 #ifdef CONFIG_SUSPEND 350 case PM_EVENT_SUSPEND: 351 return ops->suspend_late; 352 case PM_EVENT_RESUME: 353 return ops->resume_early; 354 #endif /* CONFIG_SUSPEND */ 355 #ifdef CONFIG_HIBERNATE_CALLBACKS 356 case PM_EVENT_FREEZE: 357 case PM_EVENT_QUIESCE: 358 return ops->freeze_late; 359 case PM_EVENT_HIBERNATE: 360 return ops->poweroff_late; 361 case PM_EVENT_THAW: 362 case PM_EVENT_RECOVER: 363 return ops->thaw_early; 364 case PM_EVENT_RESTORE: 365 return ops->restore_early; 366 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 367 } 368 369 return NULL; 370 } 371 372 /** 373 * pm_noirq_op - Return the PM operation appropriate for given PM event. 374 * @ops: PM operations to choose from. 375 * @state: PM transition of the system being carried out. 376 * 377 * The driver of @dev will not receive interrupts while this function is being 378 * executed. 379 */ 380 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 381 { 382 switch (state.event) { 383 #ifdef CONFIG_SUSPEND 384 case PM_EVENT_SUSPEND: 385 return ops->suspend_noirq; 386 case PM_EVENT_RESUME: 387 return ops->resume_noirq; 388 #endif /* CONFIG_SUSPEND */ 389 #ifdef CONFIG_HIBERNATE_CALLBACKS 390 case PM_EVENT_FREEZE: 391 case PM_EVENT_QUIESCE: 392 return ops->freeze_noirq; 393 case PM_EVENT_HIBERNATE: 394 return ops->poweroff_noirq; 395 case PM_EVENT_THAW: 396 case PM_EVENT_RECOVER: 397 return ops->thaw_noirq; 398 case PM_EVENT_RESTORE: 399 return ops->restore_noirq; 400 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 401 } 402 403 return NULL; 404 } 405 406 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 407 { 408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 410 ", may wakeup" : ""); 411 } 412 413 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 414 int error) 415 { 416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 417 dev_name(dev), pm_verb(state.event), info, error); 418 } 419 420 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 421 const char *info) 422 { 423 ktime_t calltime; 424 u64 usecs64; 425 int usecs; 426 427 calltime = ktime_get(); 428 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 429 do_div(usecs64, NSEC_PER_USEC); 430 usecs = usecs64; 431 if (usecs == 0) 432 usecs = 1; 433 434 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 435 info ?: "", info ? " " : "", pm_verb(state.event), 436 error ? "aborted" : "complete", 437 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 438 } 439 440 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 441 pm_message_t state, const char *info) 442 { 443 ktime_t calltime; 444 int error; 445 446 if (!cb) 447 return 0; 448 449 calltime = initcall_debug_start(dev); 450 451 pm_dev_dbg(dev, state, info); 452 trace_device_pm_callback_start(dev, info, state.event); 453 error = cb(dev); 454 trace_device_pm_callback_end(dev, error); 455 suspend_report_result(cb, error); 456 457 initcall_debug_report(dev, calltime, error, state, info); 458 459 return error; 460 } 461 462 #ifdef CONFIG_DPM_WATCHDOG 463 struct dpm_watchdog { 464 struct device *dev; 465 struct task_struct *tsk; 466 struct timer_list timer; 467 }; 468 469 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 470 struct dpm_watchdog wd 471 472 /** 473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 474 * @data: Watchdog object address. 475 * 476 * Called when a driver has timed out suspending or resuming. 477 * There's not much we can do here to recover so panic() to 478 * capture a crash-dump in pstore. 479 */ 480 static void dpm_watchdog_handler(struct timer_list *t) 481 { 482 struct dpm_watchdog *wd = from_timer(wd, t, timer); 483 484 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 485 show_stack(wd->tsk, NULL); 486 panic("%s %s: unrecoverable failure\n", 487 dev_driver_string(wd->dev), dev_name(wd->dev)); 488 } 489 490 /** 491 * dpm_watchdog_set - Enable pm watchdog for given device. 492 * @wd: Watchdog. Must be allocated on the stack. 493 * @dev: Device to handle. 494 */ 495 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 496 { 497 struct timer_list *timer = &wd->timer; 498 499 wd->dev = dev; 500 wd->tsk = current; 501 502 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 503 /* use same timeout value for both suspend and resume */ 504 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 505 add_timer(timer); 506 } 507 508 /** 509 * dpm_watchdog_clear - Disable suspend/resume watchdog. 510 * @wd: Watchdog to disable. 511 */ 512 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 513 { 514 struct timer_list *timer = &wd->timer; 515 516 del_timer_sync(timer); 517 destroy_timer_on_stack(timer); 518 } 519 #else 520 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 521 #define dpm_watchdog_set(x, y) 522 #define dpm_watchdog_clear(x) 523 #endif 524 525 /*------------------------- Resume routines -------------------------*/ 526 527 /** 528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device. 529 * @dev: Target device. 530 * 531 * Make the core skip the "early resume" and "resume" phases for @dev. 532 * 533 * This function can be called by middle-layer code during the "noirq" phase of 534 * system resume if necessary, but not by device drivers. 535 */ 536 void dev_pm_skip_next_resume_phases(struct device *dev) 537 { 538 dev->power.is_late_suspended = false; 539 dev->power.is_suspended = false; 540 } 541 542 /** 543 * suspend_event - Return a "suspend" message for given "resume" one. 544 * @resume_msg: PM message representing a system-wide resume transition. 545 */ 546 static pm_message_t suspend_event(pm_message_t resume_msg) 547 { 548 switch (resume_msg.event) { 549 case PM_EVENT_RESUME: 550 return PMSG_SUSPEND; 551 case PM_EVENT_THAW: 552 case PM_EVENT_RESTORE: 553 return PMSG_FREEZE; 554 case PM_EVENT_RECOVER: 555 return PMSG_HIBERNATE; 556 } 557 return PMSG_ON; 558 } 559 560 /** 561 * dev_pm_may_skip_resume - System-wide device resume optimization check. 562 * @dev: Target device. 563 * 564 * Checks whether or not the device may be left in suspend after a system-wide 565 * transition to the working state. 566 */ 567 bool dev_pm_may_skip_resume(struct device *dev) 568 { 569 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE; 570 } 571 572 static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev, 573 pm_message_t state, 574 const char **info_p) 575 { 576 pm_callback_t callback; 577 const char *info; 578 579 if (dev->pm_domain) { 580 info = "noirq power domain "; 581 callback = pm_noirq_op(&dev->pm_domain->ops, state); 582 } else if (dev->type && dev->type->pm) { 583 info = "noirq type "; 584 callback = pm_noirq_op(dev->type->pm, state); 585 } else if (dev->class && dev->class->pm) { 586 info = "noirq class "; 587 callback = pm_noirq_op(dev->class->pm, state); 588 } else if (dev->bus && dev->bus->pm) { 589 info = "noirq bus "; 590 callback = pm_noirq_op(dev->bus->pm, state); 591 } else { 592 return NULL; 593 } 594 595 if (info_p) 596 *info_p = info; 597 598 return callback; 599 } 600 601 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev, 602 pm_message_t state, 603 const char **info_p); 604 605 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev, 606 pm_message_t state, 607 const char **info_p); 608 609 /** 610 * device_resume_noirq - Execute a "noirq resume" callback for given device. 611 * @dev: Device to handle. 612 * @state: PM transition of the system being carried out. 613 * @async: If true, the device is being resumed asynchronously. 614 * 615 * The driver of @dev will not receive interrupts while this function is being 616 * executed. 617 */ 618 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 619 { 620 pm_callback_t callback; 621 const char *info; 622 bool skip_resume; 623 int error = 0; 624 625 TRACE_DEVICE(dev); 626 TRACE_RESUME(0); 627 628 if (dev->power.syscore || dev->power.direct_complete) 629 goto Out; 630 631 if (!dev->power.is_noirq_suspended) 632 goto Out; 633 634 dpm_wait_for_superior(dev, async); 635 636 skip_resume = dev_pm_may_skip_resume(dev); 637 638 callback = dpm_subsys_resume_noirq_cb(dev, state, &info); 639 if (callback) 640 goto Run; 641 642 if (skip_resume) 643 goto Skip; 644 645 if (dev_pm_smart_suspend_and_suspended(dev)) { 646 pm_message_t suspend_msg = suspend_event(state); 647 648 /* 649 * If "freeze" callbacks have been skipped during a transition 650 * related to hibernation, the subsequent "thaw" callbacks must 651 * be skipped too or bad things may happen. Otherwise, resume 652 * callbacks are going to be run for the device, so its runtime 653 * PM status must be changed to reflect the new state after the 654 * transition under way. 655 */ 656 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) && 657 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) { 658 if (state.event == PM_EVENT_THAW) { 659 skip_resume = true; 660 goto Skip; 661 } else { 662 pm_runtime_set_active(dev); 663 } 664 } 665 } 666 667 if (dev->driver && dev->driver->pm) { 668 info = "noirq driver "; 669 callback = pm_noirq_op(dev->driver->pm, state); 670 } 671 672 Run: 673 error = dpm_run_callback(callback, dev, state, info); 674 675 Skip: 676 dev->power.is_noirq_suspended = false; 677 678 if (skip_resume) { 679 /* 680 * The device is going to be left in suspend, but it might not 681 * have been in runtime suspend before the system suspended, so 682 * its runtime PM status needs to be updated to avoid confusing 683 * the runtime PM framework when runtime PM is enabled for the 684 * device again. 685 */ 686 pm_runtime_set_suspended(dev); 687 dev_pm_skip_next_resume_phases(dev); 688 } 689 690 Out: 691 complete_all(&dev->power.completion); 692 TRACE_RESUME(error); 693 return error; 694 } 695 696 static bool is_async(struct device *dev) 697 { 698 return dev->power.async_suspend && pm_async_enabled 699 && !pm_trace_is_enabled(); 700 } 701 702 static void async_resume_noirq(void *data, async_cookie_t cookie) 703 { 704 struct device *dev = (struct device *)data; 705 int error; 706 707 error = device_resume_noirq(dev, pm_transition, true); 708 if (error) 709 pm_dev_err(dev, pm_transition, " async", error); 710 711 put_device(dev); 712 } 713 714 void dpm_noirq_resume_devices(pm_message_t state) 715 { 716 struct device *dev; 717 ktime_t starttime = ktime_get(); 718 719 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 720 mutex_lock(&dpm_list_mtx); 721 pm_transition = state; 722 723 /* 724 * Advanced the async threads upfront, 725 * in case the starting of async threads is 726 * delayed by non-async resuming devices. 727 */ 728 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 729 reinit_completion(&dev->power.completion); 730 if (is_async(dev)) { 731 get_device(dev); 732 async_schedule(async_resume_noirq, dev); 733 } 734 } 735 736 while (!list_empty(&dpm_noirq_list)) { 737 dev = to_device(dpm_noirq_list.next); 738 get_device(dev); 739 list_move_tail(&dev->power.entry, &dpm_late_early_list); 740 mutex_unlock(&dpm_list_mtx); 741 742 if (!is_async(dev)) { 743 int error; 744 745 error = device_resume_noirq(dev, state, false); 746 if (error) { 747 suspend_stats.failed_resume_noirq++; 748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 749 dpm_save_failed_dev(dev_name(dev)); 750 pm_dev_err(dev, state, " noirq", error); 751 } 752 } 753 754 mutex_lock(&dpm_list_mtx); 755 put_device(dev); 756 } 757 mutex_unlock(&dpm_list_mtx); 758 async_synchronize_full(); 759 dpm_show_time(starttime, state, 0, "noirq"); 760 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 761 } 762 763 void dpm_noirq_end(void) 764 { 765 resume_device_irqs(); 766 device_wakeup_disarm_wake_irqs(); 767 cpuidle_resume(); 768 } 769 770 /** 771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 772 * @state: PM transition of the system being carried out. 773 * 774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 775 * allow device drivers' interrupt handlers to be called. 776 */ 777 void dpm_resume_noirq(pm_message_t state) 778 { 779 dpm_noirq_resume_devices(state); 780 dpm_noirq_end(); 781 } 782 783 static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev, 784 pm_message_t state, 785 const char **info_p) 786 { 787 pm_callback_t callback; 788 const char *info; 789 790 if (dev->pm_domain) { 791 info = "early power domain "; 792 callback = pm_late_early_op(&dev->pm_domain->ops, state); 793 } else if (dev->type && dev->type->pm) { 794 info = "early type "; 795 callback = pm_late_early_op(dev->type->pm, state); 796 } else if (dev->class && dev->class->pm) { 797 info = "early class "; 798 callback = pm_late_early_op(dev->class->pm, state); 799 } else if (dev->bus && dev->bus->pm) { 800 info = "early bus "; 801 callback = pm_late_early_op(dev->bus->pm, state); 802 } else { 803 return NULL; 804 } 805 806 if (info_p) 807 *info_p = info; 808 809 return callback; 810 } 811 812 /** 813 * device_resume_early - Execute an "early resume" callback for given device. 814 * @dev: Device to handle. 815 * @state: PM transition of the system being carried out. 816 * @async: If true, the device is being resumed asynchronously. 817 * 818 * Runtime PM is disabled for @dev while this function is being executed. 819 */ 820 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 821 { 822 pm_callback_t callback; 823 const char *info; 824 int error = 0; 825 826 TRACE_DEVICE(dev); 827 TRACE_RESUME(0); 828 829 if (dev->power.syscore || dev->power.direct_complete) 830 goto Out; 831 832 if (!dev->power.is_late_suspended) 833 goto Out; 834 835 dpm_wait_for_superior(dev, async); 836 837 callback = dpm_subsys_resume_early_cb(dev, state, &info); 838 839 if (!callback && dev->driver && dev->driver->pm) { 840 info = "early driver "; 841 callback = pm_late_early_op(dev->driver->pm, state); 842 } 843 844 error = dpm_run_callback(callback, dev, state, info); 845 dev->power.is_late_suspended = false; 846 847 Out: 848 TRACE_RESUME(error); 849 850 pm_runtime_enable(dev); 851 complete_all(&dev->power.completion); 852 return error; 853 } 854 855 static void async_resume_early(void *data, async_cookie_t cookie) 856 { 857 struct device *dev = (struct device *)data; 858 int error; 859 860 error = device_resume_early(dev, pm_transition, true); 861 if (error) 862 pm_dev_err(dev, pm_transition, " async", error); 863 864 put_device(dev); 865 } 866 867 /** 868 * dpm_resume_early - Execute "early resume" callbacks for all devices. 869 * @state: PM transition of the system being carried out. 870 */ 871 void dpm_resume_early(pm_message_t state) 872 { 873 struct device *dev; 874 ktime_t starttime = ktime_get(); 875 876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 877 mutex_lock(&dpm_list_mtx); 878 pm_transition = state; 879 880 /* 881 * Advanced the async threads upfront, 882 * in case the starting of async threads is 883 * delayed by non-async resuming devices. 884 */ 885 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 886 reinit_completion(&dev->power.completion); 887 if (is_async(dev)) { 888 get_device(dev); 889 async_schedule(async_resume_early, dev); 890 } 891 } 892 893 while (!list_empty(&dpm_late_early_list)) { 894 dev = to_device(dpm_late_early_list.next); 895 get_device(dev); 896 list_move_tail(&dev->power.entry, &dpm_suspended_list); 897 mutex_unlock(&dpm_list_mtx); 898 899 if (!is_async(dev)) { 900 int error; 901 902 error = device_resume_early(dev, state, false); 903 if (error) { 904 suspend_stats.failed_resume_early++; 905 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 906 dpm_save_failed_dev(dev_name(dev)); 907 pm_dev_err(dev, state, " early", error); 908 } 909 } 910 mutex_lock(&dpm_list_mtx); 911 put_device(dev); 912 } 913 mutex_unlock(&dpm_list_mtx); 914 async_synchronize_full(); 915 dpm_show_time(starttime, state, 0, "early"); 916 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 917 } 918 919 /** 920 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 921 * @state: PM transition of the system being carried out. 922 */ 923 void dpm_resume_start(pm_message_t state) 924 { 925 dpm_resume_noirq(state); 926 dpm_resume_early(state); 927 } 928 EXPORT_SYMBOL_GPL(dpm_resume_start); 929 930 /** 931 * device_resume - Execute "resume" callbacks for given device. 932 * @dev: Device to handle. 933 * @state: PM transition of the system being carried out. 934 * @async: If true, the device is being resumed asynchronously. 935 */ 936 static int device_resume(struct device *dev, pm_message_t state, bool async) 937 { 938 pm_callback_t callback = NULL; 939 const char *info = NULL; 940 int error = 0; 941 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 942 943 TRACE_DEVICE(dev); 944 TRACE_RESUME(0); 945 946 if (dev->power.syscore) 947 goto Complete; 948 949 if (dev->power.direct_complete) { 950 /* Match the pm_runtime_disable() in __device_suspend(). */ 951 pm_runtime_enable(dev); 952 goto Complete; 953 } 954 955 dpm_wait_for_superior(dev, async); 956 dpm_watchdog_set(&wd, dev); 957 device_lock(dev); 958 959 /* 960 * This is a fib. But we'll allow new children to be added below 961 * a resumed device, even if the device hasn't been completed yet. 962 */ 963 dev->power.is_prepared = false; 964 965 if (!dev->power.is_suspended) 966 goto Unlock; 967 968 if (dev->pm_domain) { 969 info = "power domain "; 970 callback = pm_op(&dev->pm_domain->ops, state); 971 goto Driver; 972 } 973 974 if (dev->type && dev->type->pm) { 975 info = "type "; 976 callback = pm_op(dev->type->pm, state); 977 goto Driver; 978 } 979 980 if (dev->class && dev->class->pm) { 981 info = "class "; 982 callback = pm_op(dev->class->pm, state); 983 goto Driver; 984 } 985 986 if (dev->bus) { 987 if (dev->bus->pm) { 988 info = "bus "; 989 callback = pm_op(dev->bus->pm, state); 990 } else if (dev->bus->resume) { 991 info = "legacy bus "; 992 callback = dev->bus->resume; 993 goto End; 994 } 995 } 996 997 Driver: 998 if (!callback && dev->driver && dev->driver->pm) { 999 info = "driver "; 1000 callback = pm_op(dev->driver->pm, state); 1001 } 1002 1003 End: 1004 error = dpm_run_callback(callback, dev, state, info); 1005 dev->power.is_suspended = false; 1006 1007 Unlock: 1008 device_unlock(dev); 1009 dpm_watchdog_clear(&wd); 1010 1011 Complete: 1012 complete_all(&dev->power.completion); 1013 1014 TRACE_RESUME(error); 1015 1016 return error; 1017 } 1018 1019 static void async_resume(void *data, async_cookie_t cookie) 1020 { 1021 struct device *dev = (struct device *)data; 1022 int error; 1023 1024 error = device_resume(dev, pm_transition, true); 1025 if (error) 1026 pm_dev_err(dev, pm_transition, " async", error); 1027 put_device(dev); 1028 } 1029 1030 /** 1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 1032 * @state: PM transition of the system being carried out. 1033 * 1034 * Execute the appropriate "resume" callback for all devices whose status 1035 * indicates that they are suspended. 1036 */ 1037 void dpm_resume(pm_message_t state) 1038 { 1039 struct device *dev; 1040 ktime_t starttime = ktime_get(); 1041 1042 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1043 might_sleep(); 1044 1045 mutex_lock(&dpm_list_mtx); 1046 pm_transition = state; 1047 async_error = 0; 1048 1049 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 1050 reinit_completion(&dev->power.completion); 1051 if (is_async(dev)) { 1052 get_device(dev); 1053 async_schedule(async_resume, dev); 1054 } 1055 } 1056 1057 while (!list_empty(&dpm_suspended_list)) { 1058 dev = to_device(dpm_suspended_list.next); 1059 get_device(dev); 1060 if (!is_async(dev)) { 1061 int error; 1062 1063 mutex_unlock(&dpm_list_mtx); 1064 1065 error = device_resume(dev, state, false); 1066 if (error) { 1067 suspend_stats.failed_resume++; 1068 dpm_save_failed_step(SUSPEND_RESUME); 1069 dpm_save_failed_dev(dev_name(dev)); 1070 pm_dev_err(dev, state, "", error); 1071 } 1072 1073 mutex_lock(&dpm_list_mtx); 1074 } 1075 if (!list_empty(&dev->power.entry)) 1076 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1077 put_device(dev); 1078 } 1079 mutex_unlock(&dpm_list_mtx); 1080 async_synchronize_full(); 1081 dpm_show_time(starttime, state, 0, NULL); 1082 1083 cpufreq_resume(); 1084 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1085 } 1086 1087 /** 1088 * device_complete - Complete a PM transition for given device. 1089 * @dev: Device to handle. 1090 * @state: PM transition of the system being carried out. 1091 */ 1092 static void device_complete(struct device *dev, pm_message_t state) 1093 { 1094 void (*callback)(struct device *) = NULL; 1095 const char *info = NULL; 1096 1097 if (dev->power.syscore) 1098 return; 1099 1100 device_lock(dev); 1101 1102 if (dev->pm_domain) { 1103 info = "completing power domain "; 1104 callback = dev->pm_domain->ops.complete; 1105 } else if (dev->type && dev->type->pm) { 1106 info = "completing type "; 1107 callback = dev->type->pm->complete; 1108 } else if (dev->class && dev->class->pm) { 1109 info = "completing class "; 1110 callback = dev->class->pm->complete; 1111 } else if (dev->bus && dev->bus->pm) { 1112 info = "completing bus "; 1113 callback = dev->bus->pm->complete; 1114 } 1115 1116 if (!callback && dev->driver && dev->driver->pm) { 1117 info = "completing driver "; 1118 callback = dev->driver->pm->complete; 1119 } 1120 1121 if (callback) { 1122 pm_dev_dbg(dev, state, info); 1123 callback(dev); 1124 } 1125 1126 device_unlock(dev); 1127 1128 pm_runtime_put(dev); 1129 } 1130 1131 /** 1132 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1133 * @state: PM transition of the system being carried out. 1134 * 1135 * Execute the ->complete() callbacks for all devices whose PM status is not 1136 * DPM_ON (this allows new devices to be registered). 1137 */ 1138 void dpm_complete(pm_message_t state) 1139 { 1140 struct list_head list; 1141 1142 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1143 might_sleep(); 1144 1145 INIT_LIST_HEAD(&list); 1146 mutex_lock(&dpm_list_mtx); 1147 while (!list_empty(&dpm_prepared_list)) { 1148 struct device *dev = to_device(dpm_prepared_list.prev); 1149 1150 get_device(dev); 1151 dev->power.is_prepared = false; 1152 list_move(&dev->power.entry, &list); 1153 mutex_unlock(&dpm_list_mtx); 1154 1155 trace_device_pm_callback_start(dev, "", state.event); 1156 device_complete(dev, state); 1157 trace_device_pm_callback_end(dev, 0); 1158 1159 mutex_lock(&dpm_list_mtx); 1160 put_device(dev); 1161 } 1162 list_splice(&list, &dpm_list); 1163 mutex_unlock(&dpm_list_mtx); 1164 1165 /* Allow device probing and trigger re-probing of deferred devices */ 1166 device_unblock_probing(); 1167 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1168 } 1169 1170 /** 1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1172 * @state: PM transition of the system being carried out. 1173 * 1174 * Execute "resume" callbacks for all devices and complete the PM transition of 1175 * the system. 1176 */ 1177 void dpm_resume_end(pm_message_t state) 1178 { 1179 dpm_resume(state); 1180 dpm_complete(state); 1181 } 1182 EXPORT_SYMBOL_GPL(dpm_resume_end); 1183 1184 1185 /*------------------------- Suspend routines -------------------------*/ 1186 1187 /** 1188 * resume_event - Return a "resume" message for given "suspend" sleep state. 1189 * @sleep_state: PM message representing a sleep state. 1190 * 1191 * Return a PM message representing the resume event corresponding to given 1192 * sleep state. 1193 */ 1194 static pm_message_t resume_event(pm_message_t sleep_state) 1195 { 1196 switch (sleep_state.event) { 1197 case PM_EVENT_SUSPEND: 1198 return PMSG_RESUME; 1199 case PM_EVENT_FREEZE: 1200 case PM_EVENT_QUIESCE: 1201 return PMSG_RECOVER; 1202 case PM_EVENT_HIBERNATE: 1203 return PMSG_RESTORE; 1204 } 1205 return PMSG_ON; 1206 } 1207 1208 static void dpm_superior_set_must_resume(struct device *dev) 1209 { 1210 struct device_link *link; 1211 int idx; 1212 1213 if (dev->parent) 1214 dev->parent->power.must_resume = true; 1215 1216 idx = device_links_read_lock(); 1217 1218 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) 1219 link->supplier->power.must_resume = true; 1220 1221 device_links_read_unlock(idx); 1222 } 1223 1224 static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev, 1225 pm_message_t state, 1226 const char **info_p) 1227 { 1228 pm_callback_t callback; 1229 const char *info; 1230 1231 if (dev->pm_domain) { 1232 info = "noirq power domain "; 1233 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1234 } else if (dev->type && dev->type->pm) { 1235 info = "noirq type "; 1236 callback = pm_noirq_op(dev->type->pm, state); 1237 } else if (dev->class && dev->class->pm) { 1238 info = "noirq class "; 1239 callback = pm_noirq_op(dev->class->pm, state); 1240 } else if (dev->bus && dev->bus->pm) { 1241 info = "noirq bus "; 1242 callback = pm_noirq_op(dev->bus->pm, state); 1243 } else { 1244 return NULL; 1245 } 1246 1247 if (info_p) 1248 *info_p = info; 1249 1250 return callback; 1251 } 1252 1253 static bool device_must_resume(struct device *dev, pm_message_t state, 1254 bool no_subsys_suspend_noirq) 1255 { 1256 pm_message_t resume_msg = resume_event(state); 1257 1258 /* 1259 * If all of the device driver's "noirq", "late" and "early" callbacks 1260 * are invoked directly by the core, the decision to allow the device to 1261 * stay in suspend can be based on its current runtime PM status and its 1262 * wakeup settings. 1263 */ 1264 if (no_subsys_suspend_noirq && 1265 !dpm_subsys_suspend_late_cb(dev, state, NULL) && 1266 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) && 1267 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL)) 1268 return !pm_runtime_status_suspended(dev) && 1269 (resume_msg.event != PM_EVENT_RESUME || 1270 (device_can_wakeup(dev) && !device_may_wakeup(dev))); 1271 1272 /* 1273 * The only safe strategy here is to require that if the device may not 1274 * be left in suspend, resume callbacks must be invoked for it. 1275 */ 1276 return !dev->power.may_skip_resume; 1277 } 1278 1279 /** 1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1281 * @dev: Device to handle. 1282 * @state: PM transition of the system being carried out. 1283 * @async: If true, the device is being suspended asynchronously. 1284 * 1285 * The driver of @dev will not receive interrupts while this function is being 1286 * executed. 1287 */ 1288 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1289 { 1290 pm_callback_t callback; 1291 const char *info; 1292 bool no_subsys_cb = false; 1293 int error = 0; 1294 1295 TRACE_DEVICE(dev); 1296 TRACE_SUSPEND(0); 1297 1298 dpm_wait_for_subordinate(dev, async); 1299 1300 if (async_error) 1301 goto Complete; 1302 1303 if (pm_wakeup_pending()) { 1304 async_error = -EBUSY; 1305 goto Complete; 1306 } 1307 1308 if (dev->power.syscore || dev->power.direct_complete) 1309 goto Complete; 1310 1311 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info); 1312 if (callback) 1313 goto Run; 1314 1315 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL); 1316 1317 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb) 1318 goto Skip; 1319 1320 if (dev->driver && dev->driver->pm) { 1321 info = "noirq driver "; 1322 callback = pm_noirq_op(dev->driver->pm, state); 1323 } 1324 1325 Run: 1326 error = dpm_run_callback(callback, dev, state, info); 1327 if (error) { 1328 async_error = error; 1329 goto Complete; 1330 } 1331 1332 Skip: 1333 dev->power.is_noirq_suspended = true; 1334 1335 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) { 1336 dev->power.must_resume = dev->power.must_resume || 1337 atomic_read(&dev->power.usage_count) > 1 || 1338 device_must_resume(dev, state, no_subsys_cb); 1339 } else { 1340 dev->power.must_resume = true; 1341 } 1342 1343 if (dev->power.must_resume) 1344 dpm_superior_set_must_resume(dev); 1345 1346 Complete: 1347 complete_all(&dev->power.completion); 1348 TRACE_SUSPEND(error); 1349 return error; 1350 } 1351 1352 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1353 { 1354 struct device *dev = (struct device *)data; 1355 int error; 1356 1357 error = __device_suspend_noirq(dev, pm_transition, true); 1358 if (error) { 1359 dpm_save_failed_dev(dev_name(dev)); 1360 pm_dev_err(dev, pm_transition, " async", error); 1361 } 1362 1363 put_device(dev); 1364 } 1365 1366 static int device_suspend_noirq(struct device *dev) 1367 { 1368 reinit_completion(&dev->power.completion); 1369 1370 if (is_async(dev)) { 1371 get_device(dev); 1372 async_schedule(async_suspend_noirq, dev); 1373 return 0; 1374 } 1375 return __device_suspend_noirq(dev, pm_transition, false); 1376 } 1377 1378 void dpm_noirq_begin(void) 1379 { 1380 cpuidle_pause(); 1381 device_wakeup_arm_wake_irqs(); 1382 suspend_device_irqs(); 1383 } 1384 1385 int dpm_noirq_suspend_devices(pm_message_t state) 1386 { 1387 ktime_t starttime = ktime_get(); 1388 int error = 0; 1389 1390 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1391 mutex_lock(&dpm_list_mtx); 1392 pm_transition = state; 1393 async_error = 0; 1394 1395 while (!list_empty(&dpm_late_early_list)) { 1396 struct device *dev = to_device(dpm_late_early_list.prev); 1397 1398 get_device(dev); 1399 mutex_unlock(&dpm_list_mtx); 1400 1401 error = device_suspend_noirq(dev); 1402 1403 mutex_lock(&dpm_list_mtx); 1404 if (error) { 1405 pm_dev_err(dev, state, " noirq", error); 1406 dpm_save_failed_dev(dev_name(dev)); 1407 put_device(dev); 1408 break; 1409 } 1410 if (!list_empty(&dev->power.entry)) 1411 list_move(&dev->power.entry, &dpm_noirq_list); 1412 put_device(dev); 1413 1414 if (async_error) 1415 break; 1416 } 1417 mutex_unlock(&dpm_list_mtx); 1418 async_synchronize_full(); 1419 if (!error) 1420 error = async_error; 1421 1422 if (error) { 1423 suspend_stats.failed_suspend_noirq++; 1424 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1425 } 1426 dpm_show_time(starttime, state, error, "noirq"); 1427 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1428 return error; 1429 } 1430 1431 /** 1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1433 * @state: PM transition of the system being carried out. 1434 * 1435 * Prevent device drivers' interrupt handlers from being called and invoke 1436 * "noirq" suspend callbacks for all non-sysdev devices. 1437 */ 1438 int dpm_suspend_noirq(pm_message_t state) 1439 { 1440 int ret; 1441 1442 dpm_noirq_begin(); 1443 ret = dpm_noirq_suspend_devices(state); 1444 if (ret) 1445 dpm_resume_noirq(resume_event(state)); 1446 1447 return ret; 1448 } 1449 1450 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1451 { 1452 struct device *parent = dev->parent; 1453 1454 if (!parent) 1455 return; 1456 1457 spin_lock_irq(&parent->power.lock); 1458 1459 if (dev->power.wakeup_path && !parent->power.ignore_children) 1460 parent->power.wakeup_path = true; 1461 1462 spin_unlock_irq(&parent->power.lock); 1463 } 1464 1465 static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev, 1466 pm_message_t state, 1467 const char **info_p) 1468 { 1469 pm_callback_t callback; 1470 const char *info; 1471 1472 if (dev->pm_domain) { 1473 info = "late power domain "; 1474 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1475 } else if (dev->type && dev->type->pm) { 1476 info = "late type "; 1477 callback = pm_late_early_op(dev->type->pm, state); 1478 } else if (dev->class && dev->class->pm) { 1479 info = "late class "; 1480 callback = pm_late_early_op(dev->class->pm, state); 1481 } else if (dev->bus && dev->bus->pm) { 1482 info = "late bus "; 1483 callback = pm_late_early_op(dev->bus->pm, state); 1484 } else { 1485 return NULL; 1486 } 1487 1488 if (info_p) 1489 *info_p = info; 1490 1491 return callback; 1492 } 1493 1494 /** 1495 * __device_suspend_late - Execute a "late suspend" callback for given device. 1496 * @dev: Device to handle. 1497 * @state: PM transition of the system being carried out. 1498 * @async: If true, the device is being suspended asynchronously. 1499 * 1500 * Runtime PM is disabled for @dev while this function is being executed. 1501 */ 1502 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1503 { 1504 pm_callback_t callback; 1505 const char *info; 1506 int error = 0; 1507 1508 TRACE_DEVICE(dev); 1509 TRACE_SUSPEND(0); 1510 1511 __pm_runtime_disable(dev, false); 1512 1513 dpm_wait_for_subordinate(dev, async); 1514 1515 if (async_error) 1516 goto Complete; 1517 1518 if (pm_wakeup_pending()) { 1519 async_error = -EBUSY; 1520 goto Complete; 1521 } 1522 1523 if (dev->power.syscore || dev->power.direct_complete) 1524 goto Complete; 1525 1526 callback = dpm_subsys_suspend_late_cb(dev, state, &info); 1527 if (callback) 1528 goto Run; 1529 1530 if (dev_pm_smart_suspend_and_suspended(dev) && 1531 !dpm_subsys_suspend_noirq_cb(dev, state, NULL)) 1532 goto Skip; 1533 1534 if (dev->driver && dev->driver->pm) { 1535 info = "late driver "; 1536 callback = pm_late_early_op(dev->driver->pm, state); 1537 } 1538 1539 Run: 1540 error = dpm_run_callback(callback, dev, state, info); 1541 if (error) { 1542 async_error = error; 1543 goto Complete; 1544 } 1545 dpm_propagate_wakeup_to_parent(dev); 1546 1547 Skip: 1548 dev->power.is_late_suspended = true; 1549 1550 Complete: 1551 TRACE_SUSPEND(error); 1552 complete_all(&dev->power.completion); 1553 return error; 1554 } 1555 1556 static void async_suspend_late(void *data, async_cookie_t cookie) 1557 { 1558 struct device *dev = (struct device *)data; 1559 int error; 1560 1561 error = __device_suspend_late(dev, pm_transition, true); 1562 if (error) { 1563 dpm_save_failed_dev(dev_name(dev)); 1564 pm_dev_err(dev, pm_transition, " async", error); 1565 } 1566 put_device(dev); 1567 } 1568 1569 static int device_suspend_late(struct device *dev) 1570 { 1571 reinit_completion(&dev->power.completion); 1572 1573 if (is_async(dev)) { 1574 get_device(dev); 1575 async_schedule(async_suspend_late, dev); 1576 return 0; 1577 } 1578 1579 return __device_suspend_late(dev, pm_transition, false); 1580 } 1581 1582 /** 1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1584 * @state: PM transition of the system being carried out. 1585 */ 1586 int dpm_suspend_late(pm_message_t state) 1587 { 1588 ktime_t starttime = ktime_get(); 1589 int error = 0; 1590 1591 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1592 mutex_lock(&dpm_list_mtx); 1593 pm_transition = state; 1594 async_error = 0; 1595 1596 while (!list_empty(&dpm_suspended_list)) { 1597 struct device *dev = to_device(dpm_suspended_list.prev); 1598 1599 get_device(dev); 1600 mutex_unlock(&dpm_list_mtx); 1601 1602 error = device_suspend_late(dev); 1603 1604 mutex_lock(&dpm_list_mtx); 1605 if (!list_empty(&dev->power.entry)) 1606 list_move(&dev->power.entry, &dpm_late_early_list); 1607 1608 if (error) { 1609 pm_dev_err(dev, state, " late", error); 1610 dpm_save_failed_dev(dev_name(dev)); 1611 put_device(dev); 1612 break; 1613 } 1614 put_device(dev); 1615 1616 if (async_error) 1617 break; 1618 } 1619 mutex_unlock(&dpm_list_mtx); 1620 async_synchronize_full(); 1621 if (!error) 1622 error = async_error; 1623 if (error) { 1624 suspend_stats.failed_suspend_late++; 1625 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1626 dpm_resume_early(resume_event(state)); 1627 } 1628 dpm_show_time(starttime, state, error, "late"); 1629 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1630 return error; 1631 } 1632 1633 /** 1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1635 * @state: PM transition of the system being carried out. 1636 */ 1637 int dpm_suspend_end(pm_message_t state) 1638 { 1639 int error = dpm_suspend_late(state); 1640 if (error) 1641 return error; 1642 1643 error = dpm_suspend_noirq(state); 1644 if (error) { 1645 dpm_resume_early(resume_event(state)); 1646 return error; 1647 } 1648 1649 return 0; 1650 } 1651 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1652 1653 /** 1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1655 * @dev: Device to suspend. 1656 * @state: PM transition of the system being carried out. 1657 * @cb: Suspend callback to execute. 1658 * @info: string description of caller. 1659 */ 1660 static int legacy_suspend(struct device *dev, pm_message_t state, 1661 int (*cb)(struct device *dev, pm_message_t state), 1662 const char *info) 1663 { 1664 int error; 1665 ktime_t calltime; 1666 1667 calltime = initcall_debug_start(dev); 1668 1669 trace_device_pm_callback_start(dev, info, state.event); 1670 error = cb(dev, state); 1671 trace_device_pm_callback_end(dev, error); 1672 suspend_report_result(cb, error); 1673 1674 initcall_debug_report(dev, calltime, error, state, info); 1675 1676 return error; 1677 } 1678 1679 static void dpm_clear_superiors_direct_complete(struct device *dev) 1680 { 1681 struct device_link *link; 1682 int idx; 1683 1684 if (dev->parent) { 1685 spin_lock_irq(&dev->parent->power.lock); 1686 dev->parent->power.direct_complete = false; 1687 spin_unlock_irq(&dev->parent->power.lock); 1688 } 1689 1690 idx = device_links_read_lock(); 1691 1692 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) { 1693 spin_lock_irq(&link->supplier->power.lock); 1694 link->supplier->power.direct_complete = false; 1695 spin_unlock_irq(&link->supplier->power.lock); 1696 } 1697 1698 device_links_read_unlock(idx); 1699 } 1700 1701 /** 1702 * __device_suspend - Execute "suspend" callbacks for given device. 1703 * @dev: Device to handle. 1704 * @state: PM transition of the system being carried out. 1705 * @async: If true, the device is being suspended asynchronously. 1706 */ 1707 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1708 { 1709 pm_callback_t callback = NULL; 1710 const char *info = NULL; 1711 int error = 0; 1712 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1713 1714 TRACE_DEVICE(dev); 1715 TRACE_SUSPEND(0); 1716 1717 dpm_wait_for_subordinate(dev, async); 1718 1719 if (async_error) 1720 goto Complete; 1721 1722 /* 1723 * If a device configured to wake up the system from sleep states 1724 * has been suspended at run time and there's a resume request pending 1725 * for it, this is equivalent to the device signaling wakeup, so the 1726 * system suspend operation should be aborted. 1727 */ 1728 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1729 pm_wakeup_event(dev, 0); 1730 1731 if (pm_wakeup_pending()) { 1732 async_error = -EBUSY; 1733 goto Complete; 1734 } 1735 1736 if (dev->power.syscore) 1737 goto Complete; 1738 1739 if (dev->power.direct_complete) { 1740 if (pm_runtime_status_suspended(dev)) { 1741 pm_runtime_disable(dev); 1742 if (pm_runtime_status_suspended(dev)) 1743 goto Complete; 1744 1745 pm_runtime_enable(dev); 1746 } 1747 dev->power.direct_complete = false; 1748 } 1749 1750 dev->power.may_skip_resume = false; 1751 dev->power.must_resume = false; 1752 1753 dpm_watchdog_set(&wd, dev); 1754 device_lock(dev); 1755 1756 if (dev->pm_domain) { 1757 info = "power domain "; 1758 callback = pm_op(&dev->pm_domain->ops, state); 1759 goto Run; 1760 } 1761 1762 if (dev->type && dev->type->pm) { 1763 info = "type "; 1764 callback = pm_op(dev->type->pm, state); 1765 goto Run; 1766 } 1767 1768 if (dev->class && dev->class->pm) { 1769 info = "class "; 1770 callback = pm_op(dev->class->pm, state); 1771 goto Run; 1772 } 1773 1774 if (dev->bus) { 1775 if (dev->bus->pm) { 1776 info = "bus "; 1777 callback = pm_op(dev->bus->pm, state); 1778 } else if (dev->bus->suspend) { 1779 pm_dev_dbg(dev, state, "legacy bus "); 1780 error = legacy_suspend(dev, state, dev->bus->suspend, 1781 "legacy bus "); 1782 goto End; 1783 } 1784 } 1785 1786 Run: 1787 if (!callback && dev->driver && dev->driver->pm) { 1788 info = "driver "; 1789 callback = pm_op(dev->driver->pm, state); 1790 } 1791 1792 error = dpm_run_callback(callback, dev, state, info); 1793 1794 End: 1795 if (!error) { 1796 dev->power.is_suspended = true; 1797 if (device_may_wakeup(dev)) 1798 dev->power.wakeup_path = true; 1799 1800 dpm_propagate_wakeup_to_parent(dev); 1801 dpm_clear_superiors_direct_complete(dev); 1802 } 1803 1804 device_unlock(dev); 1805 dpm_watchdog_clear(&wd); 1806 1807 Complete: 1808 if (error) 1809 async_error = error; 1810 1811 complete_all(&dev->power.completion); 1812 TRACE_SUSPEND(error); 1813 return error; 1814 } 1815 1816 static void async_suspend(void *data, async_cookie_t cookie) 1817 { 1818 struct device *dev = (struct device *)data; 1819 int error; 1820 1821 error = __device_suspend(dev, pm_transition, true); 1822 if (error) { 1823 dpm_save_failed_dev(dev_name(dev)); 1824 pm_dev_err(dev, pm_transition, " async", error); 1825 } 1826 1827 put_device(dev); 1828 } 1829 1830 static int device_suspend(struct device *dev) 1831 { 1832 reinit_completion(&dev->power.completion); 1833 1834 if (is_async(dev)) { 1835 get_device(dev); 1836 async_schedule(async_suspend, dev); 1837 return 0; 1838 } 1839 1840 return __device_suspend(dev, pm_transition, false); 1841 } 1842 1843 /** 1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1845 * @state: PM transition of the system being carried out. 1846 */ 1847 int dpm_suspend(pm_message_t state) 1848 { 1849 ktime_t starttime = ktime_get(); 1850 int error = 0; 1851 1852 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1853 might_sleep(); 1854 1855 cpufreq_suspend(); 1856 1857 mutex_lock(&dpm_list_mtx); 1858 pm_transition = state; 1859 async_error = 0; 1860 while (!list_empty(&dpm_prepared_list)) { 1861 struct device *dev = to_device(dpm_prepared_list.prev); 1862 1863 get_device(dev); 1864 mutex_unlock(&dpm_list_mtx); 1865 1866 error = device_suspend(dev); 1867 1868 mutex_lock(&dpm_list_mtx); 1869 if (error) { 1870 pm_dev_err(dev, state, "", error); 1871 dpm_save_failed_dev(dev_name(dev)); 1872 put_device(dev); 1873 break; 1874 } 1875 if (!list_empty(&dev->power.entry)) 1876 list_move(&dev->power.entry, &dpm_suspended_list); 1877 put_device(dev); 1878 if (async_error) 1879 break; 1880 } 1881 mutex_unlock(&dpm_list_mtx); 1882 async_synchronize_full(); 1883 if (!error) 1884 error = async_error; 1885 if (error) { 1886 suspend_stats.failed_suspend++; 1887 dpm_save_failed_step(SUSPEND_SUSPEND); 1888 } 1889 dpm_show_time(starttime, state, error, NULL); 1890 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1891 return error; 1892 } 1893 1894 /** 1895 * device_prepare - Prepare a device for system power transition. 1896 * @dev: Device to handle. 1897 * @state: PM transition of the system being carried out. 1898 * 1899 * Execute the ->prepare() callback(s) for given device. No new children of the 1900 * device may be registered after this function has returned. 1901 */ 1902 static int device_prepare(struct device *dev, pm_message_t state) 1903 { 1904 int (*callback)(struct device *) = NULL; 1905 int ret = 0; 1906 1907 if (dev->power.syscore) 1908 return 0; 1909 1910 WARN_ON(!pm_runtime_enabled(dev) && 1911 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND | 1912 DPM_FLAG_LEAVE_SUSPENDED)); 1913 1914 /* 1915 * If a device's parent goes into runtime suspend at the wrong time, 1916 * it won't be possible to resume the device. To prevent this we 1917 * block runtime suspend here, during the prepare phase, and allow 1918 * it again during the complete phase. 1919 */ 1920 pm_runtime_get_noresume(dev); 1921 1922 device_lock(dev); 1923 1924 dev->power.wakeup_path = false; 1925 1926 if (dev->power.no_pm_callbacks) { 1927 ret = 1; /* Let device go direct_complete */ 1928 goto unlock; 1929 } 1930 1931 if (dev->pm_domain) 1932 callback = dev->pm_domain->ops.prepare; 1933 else if (dev->type && dev->type->pm) 1934 callback = dev->type->pm->prepare; 1935 else if (dev->class && dev->class->pm) 1936 callback = dev->class->pm->prepare; 1937 else if (dev->bus && dev->bus->pm) 1938 callback = dev->bus->pm->prepare; 1939 1940 if (!callback && dev->driver && dev->driver->pm) 1941 callback = dev->driver->pm->prepare; 1942 1943 if (callback) 1944 ret = callback(dev); 1945 1946 unlock: 1947 device_unlock(dev); 1948 1949 if (ret < 0) { 1950 suspend_report_result(callback, ret); 1951 pm_runtime_put(dev); 1952 return ret; 1953 } 1954 /* 1955 * A positive return value from ->prepare() means "this device appears 1956 * to be runtime-suspended and its state is fine, so if it really is 1957 * runtime-suspended, you can leave it in that state provided that you 1958 * will do the same thing with all of its descendants". This only 1959 * applies to suspend transitions, however. 1960 */ 1961 spin_lock_irq(&dev->power.lock); 1962 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1963 pm_runtime_suspended(dev) && ret > 0 && 1964 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP); 1965 spin_unlock_irq(&dev->power.lock); 1966 return 0; 1967 } 1968 1969 /** 1970 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1971 * @state: PM transition of the system being carried out. 1972 * 1973 * Execute the ->prepare() callback(s) for all devices. 1974 */ 1975 int dpm_prepare(pm_message_t state) 1976 { 1977 int error = 0; 1978 1979 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1980 might_sleep(); 1981 1982 /* 1983 * Give a chance for the known devices to complete their probes, before 1984 * disable probing of devices. This sync point is important at least 1985 * at boot time + hibernation restore. 1986 */ 1987 wait_for_device_probe(); 1988 /* 1989 * It is unsafe if probing of devices will happen during suspend or 1990 * hibernation and system behavior will be unpredictable in this case. 1991 * So, let's prohibit device's probing here and defer their probes 1992 * instead. The normal behavior will be restored in dpm_complete(). 1993 */ 1994 device_block_probing(); 1995 1996 mutex_lock(&dpm_list_mtx); 1997 while (!list_empty(&dpm_list)) { 1998 struct device *dev = to_device(dpm_list.next); 1999 2000 get_device(dev); 2001 mutex_unlock(&dpm_list_mtx); 2002 2003 trace_device_pm_callback_start(dev, "", state.event); 2004 error = device_prepare(dev, state); 2005 trace_device_pm_callback_end(dev, error); 2006 2007 mutex_lock(&dpm_list_mtx); 2008 if (error) { 2009 if (error == -EAGAIN) { 2010 put_device(dev); 2011 error = 0; 2012 continue; 2013 } 2014 printk(KERN_INFO "PM: Device %s not prepared " 2015 "for power transition: code %d\n", 2016 dev_name(dev), error); 2017 put_device(dev); 2018 break; 2019 } 2020 dev->power.is_prepared = true; 2021 if (!list_empty(&dev->power.entry)) 2022 list_move_tail(&dev->power.entry, &dpm_prepared_list); 2023 put_device(dev); 2024 } 2025 mutex_unlock(&dpm_list_mtx); 2026 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 2027 return error; 2028 } 2029 2030 /** 2031 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 2032 * @state: PM transition of the system being carried out. 2033 * 2034 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 2035 * callbacks for them. 2036 */ 2037 int dpm_suspend_start(pm_message_t state) 2038 { 2039 int error; 2040 2041 error = dpm_prepare(state); 2042 if (error) { 2043 suspend_stats.failed_prepare++; 2044 dpm_save_failed_step(SUSPEND_PREPARE); 2045 } else 2046 error = dpm_suspend(state); 2047 return error; 2048 } 2049 EXPORT_SYMBOL_GPL(dpm_suspend_start); 2050 2051 void __suspend_report_result(const char *function, void *fn, int ret) 2052 { 2053 if (ret) 2054 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 2055 } 2056 EXPORT_SYMBOL_GPL(__suspend_report_result); 2057 2058 /** 2059 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 2060 * @dev: Device to wait for. 2061 * @subordinate: Device that needs to wait for @dev. 2062 */ 2063 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 2064 { 2065 dpm_wait(dev, subordinate->power.async_suspend); 2066 return async_error; 2067 } 2068 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 2069 2070 /** 2071 * dpm_for_each_dev - device iterator. 2072 * @data: data for the callback. 2073 * @fn: function to be called for each device. 2074 * 2075 * Iterate over devices in dpm_list, and call @fn for each device, 2076 * passing it @data. 2077 */ 2078 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 2079 { 2080 struct device *dev; 2081 2082 if (!fn) 2083 return; 2084 2085 device_pm_lock(); 2086 list_for_each_entry(dev, &dpm_list, power.entry) 2087 fn(dev, data); 2088 device_pm_unlock(); 2089 } 2090 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 2091 2092 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 2093 { 2094 if (!ops) 2095 return true; 2096 2097 return !ops->prepare && 2098 !ops->suspend && 2099 !ops->suspend_late && 2100 !ops->suspend_noirq && 2101 !ops->resume_noirq && 2102 !ops->resume_early && 2103 !ops->resume && 2104 !ops->complete; 2105 } 2106 2107 void device_pm_check_callbacks(struct device *dev) 2108 { 2109 spin_lock_irq(&dev->power.lock); 2110 dev->power.no_pm_callbacks = 2111 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2112 !dev->bus->suspend && !dev->bus->resume)) && 2113 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2114 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2115 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2116 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2117 !dev->driver->suspend && !dev->driver->resume)); 2118 spin_unlock_irq(&dev->power.lock); 2119 } 2120 2121 bool dev_pm_smart_suspend_and_suspended(struct device *dev) 2122 { 2123 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2124 pm_runtime_status_suspended(dev); 2125 } 2126