1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/cpuidle.h> 36 #include <linux/devfreq.h> 37 #include <linux/timer.h> 38 39 #include "../base.h" 40 #include "power.h" 41 42 typedef int (*pm_callback_t)(struct device *); 43 44 #define list_for_each_entry_rcu_locked(pos, head, member) \ 45 list_for_each_entry_rcu(pos, head, member, \ 46 device_links_read_lock_held()) 47 48 /* 49 * The entries in the dpm_list list are in a depth first order, simply 50 * because children are guaranteed to be discovered after parents, and 51 * are inserted at the back of the list on discovery. 52 * 53 * Since device_pm_add() may be called with a device lock held, 54 * we must never try to acquire a device lock while holding 55 * dpm_list_mutex. 56 */ 57 58 LIST_HEAD(dpm_list); 59 static LIST_HEAD(dpm_prepared_list); 60 static LIST_HEAD(dpm_suspended_list); 61 static LIST_HEAD(dpm_late_early_list); 62 static LIST_HEAD(dpm_noirq_list); 63 64 struct suspend_stats suspend_stats; 65 static DEFINE_MUTEX(dpm_list_mtx); 66 static pm_message_t pm_transition; 67 68 static int async_error; 69 70 static const char *pm_verb(int event) 71 { 72 switch (event) { 73 case PM_EVENT_SUSPEND: 74 return "suspend"; 75 case PM_EVENT_RESUME: 76 return "resume"; 77 case PM_EVENT_FREEZE: 78 return "freeze"; 79 case PM_EVENT_QUIESCE: 80 return "quiesce"; 81 case PM_EVENT_HIBERNATE: 82 return "hibernate"; 83 case PM_EVENT_THAW: 84 return "thaw"; 85 case PM_EVENT_RESTORE: 86 return "restore"; 87 case PM_EVENT_RECOVER: 88 return "recover"; 89 default: 90 return "(unknown PM event)"; 91 } 92 } 93 94 /** 95 * device_pm_sleep_init - Initialize system suspend-related device fields. 96 * @dev: Device object being initialized. 97 */ 98 void device_pm_sleep_init(struct device *dev) 99 { 100 dev->power.is_prepared = false; 101 dev->power.is_suspended = false; 102 dev->power.is_noirq_suspended = false; 103 dev->power.is_late_suspended = false; 104 init_completion(&dev->power.completion); 105 complete_all(&dev->power.completion); 106 dev->power.wakeup = NULL; 107 INIT_LIST_HEAD(&dev->power.entry); 108 } 109 110 /** 111 * device_pm_lock - Lock the list of active devices used by the PM core. 112 */ 113 void device_pm_lock(void) 114 { 115 mutex_lock(&dpm_list_mtx); 116 } 117 118 /** 119 * device_pm_unlock - Unlock the list of active devices used by the PM core. 120 */ 121 void device_pm_unlock(void) 122 { 123 mutex_unlock(&dpm_list_mtx); 124 } 125 126 /** 127 * device_pm_add - Add a device to the PM core's list of active devices. 128 * @dev: Device to add to the list. 129 */ 130 void device_pm_add(struct device *dev) 131 { 132 /* Skip PM setup/initialization. */ 133 if (device_pm_not_required(dev)) 134 return; 135 136 pr_debug("Adding info for %s:%s\n", 137 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 138 device_pm_check_callbacks(dev); 139 mutex_lock(&dpm_list_mtx); 140 if (dev->parent && dev->parent->power.is_prepared) 141 dev_warn(dev, "parent %s should not be sleeping\n", 142 dev_name(dev->parent)); 143 list_add_tail(&dev->power.entry, &dpm_list); 144 dev->power.in_dpm_list = true; 145 mutex_unlock(&dpm_list_mtx); 146 } 147 148 /** 149 * device_pm_remove - Remove a device from the PM core's list of active devices. 150 * @dev: Device to be removed from the list. 151 */ 152 void device_pm_remove(struct device *dev) 153 { 154 if (device_pm_not_required(dev)) 155 return; 156 157 pr_debug("Removing info for %s:%s\n", 158 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 159 complete_all(&dev->power.completion); 160 mutex_lock(&dpm_list_mtx); 161 list_del_init(&dev->power.entry); 162 dev->power.in_dpm_list = false; 163 mutex_unlock(&dpm_list_mtx); 164 device_wakeup_disable(dev); 165 pm_runtime_remove(dev); 166 device_pm_check_callbacks(dev); 167 } 168 169 /** 170 * device_pm_move_before - Move device in the PM core's list of active devices. 171 * @deva: Device to move in dpm_list. 172 * @devb: Device @deva should come before. 173 */ 174 void device_pm_move_before(struct device *deva, struct device *devb) 175 { 176 pr_debug("Moving %s:%s before %s:%s\n", 177 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 178 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 179 /* Delete deva from dpm_list and reinsert before devb. */ 180 list_move_tail(&deva->power.entry, &devb->power.entry); 181 } 182 183 /** 184 * device_pm_move_after - Move device in the PM core's list of active devices. 185 * @deva: Device to move in dpm_list. 186 * @devb: Device @deva should come after. 187 */ 188 void device_pm_move_after(struct device *deva, struct device *devb) 189 { 190 pr_debug("Moving %s:%s after %s:%s\n", 191 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 192 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 193 /* Delete deva from dpm_list and reinsert after devb. */ 194 list_move(&deva->power.entry, &devb->power.entry); 195 } 196 197 /** 198 * device_pm_move_last - Move device to end of the PM core's list of devices. 199 * @dev: Device to move in dpm_list. 200 */ 201 void device_pm_move_last(struct device *dev) 202 { 203 pr_debug("Moving %s:%s to end of list\n", 204 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 205 list_move_tail(&dev->power.entry, &dpm_list); 206 } 207 208 static ktime_t initcall_debug_start(struct device *dev, void *cb) 209 { 210 if (!pm_print_times_enabled) 211 return 0; 212 213 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 214 task_pid_nr(current), 215 dev->parent ? dev_name(dev->parent) : "none"); 216 return ktime_get(); 217 } 218 219 static void initcall_debug_report(struct device *dev, ktime_t calltime, 220 void *cb, int error) 221 { 222 ktime_t rettime; 223 224 if (!pm_print_times_enabled) 225 return; 226 227 rettime = ktime_get(); 228 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 229 (unsigned long long)ktime_us_delta(rettime, calltime)); 230 } 231 232 /** 233 * dpm_wait - Wait for a PM operation to complete. 234 * @dev: Device to wait for. 235 * @async: If unset, wait only if the device's power.async_suspend flag is set. 236 */ 237 static void dpm_wait(struct device *dev, bool async) 238 { 239 if (!dev) 240 return; 241 242 if (async || (pm_async_enabled && dev->power.async_suspend)) 243 wait_for_completion(&dev->power.completion); 244 } 245 246 static int dpm_wait_fn(struct device *dev, void *async_ptr) 247 { 248 dpm_wait(dev, *((bool *)async_ptr)); 249 return 0; 250 } 251 252 static void dpm_wait_for_children(struct device *dev, bool async) 253 { 254 device_for_each_child(dev, &async, dpm_wait_fn); 255 } 256 257 static void dpm_wait_for_suppliers(struct device *dev, bool async) 258 { 259 struct device_link *link; 260 int idx; 261 262 idx = device_links_read_lock(); 263 264 /* 265 * If the supplier goes away right after we've checked the link to it, 266 * we'll wait for its completion to change the state, but that's fine, 267 * because the only things that will block as a result are the SRCU 268 * callbacks freeing the link objects for the links in the list we're 269 * walking. 270 */ 271 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 272 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 273 dpm_wait(link->supplier, async); 274 275 device_links_read_unlock(idx); 276 } 277 278 static bool dpm_wait_for_superior(struct device *dev, bool async) 279 { 280 struct device *parent; 281 282 /* 283 * If the device is resumed asynchronously and the parent's callback 284 * deletes both the device and the parent itself, the parent object may 285 * be freed while this function is running, so avoid that by reference 286 * counting the parent once more unless the device has been deleted 287 * already (in which case return right away). 288 */ 289 mutex_lock(&dpm_list_mtx); 290 291 if (!device_pm_initialized(dev)) { 292 mutex_unlock(&dpm_list_mtx); 293 return false; 294 } 295 296 parent = get_device(dev->parent); 297 298 mutex_unlock(&dpm_list_mtx); 299 300 dpm_wait(parent, async); 301 put_device(parent); 302 303 dpm_wait_for_suppliers(dev, async); 304 305 /* 306 * If the parent's callback has deleted the device, attempting to resume 307 * it would be invalid, so avoid doing that then. 308 */ 309 return device_pm_initialized(dev); 310 } 311 312 static void dpm_wait_for_consumers(struct device *dev, bool async) 313 { 314 struct device_link *link; 315 int idx; 316 317 idx = device_links_read_lock(); 318 319 /* 320 * The status of a device link can only be changed from "dormant" by a 321 * probe, but that cannot happen during system suspend/resume. In 322 * theory it can change to "dormant" at that time, but then it is 323 * reasonable to wait for the target device anyway (eg. if it goes 324 * away, it's better to wait for it to go away completely and then 325 * continue instead of trying to continue in parallel with its 326 * unregistration). 327 */ 328 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 329 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 330 dpm_wait(link->consumer, async); 331 332 device_links_read_unlock(idx); 333 } 334 335 static void dpm_wait_for_subordinate(struct device *dev, bool async) 336 { 337 dpm_wait_for_children(dev, async); 338 dpm_wait_for_consumers(dev, async); 339 } 340 341 /** 342 * pm_op - Return the PM operation appropriate for given PM event. 343 * @ops: PM operations to choose from. 344 * @state: PM transition of the system being carried out. 345 */ 346 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 347 { 348 switch (state.event) { 349 #ifdef CONFIG_SUSPEND 350 case PM_EVENT_SUSPEND: 351 return ops->suspend; 352 case PM_EVENT_RESUME: 353 return ops->resume; 354 #endif /* CONFIG_SUSPEND */ 355 #ifdef CONFIG_HIBERNATE_CALLBACKS 356 case PM_EVENT_FREEZE: 357 case PM_EVENT_QUIESCE: 358 return ops->freeze; 359 case PM_EVENT_HIBERNATE: 360 return ops->poweroff; 361 case PM_EVENT_THAW: 362 case PM_EVENT_RECOVER: 363 return ops->thaw; 364 case PM_EVENT_RESTORE: 365 return ops->restore; 366 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 367 } 368 369 return NULL; 370 } 371 372 /** 373 * pm_late_early_op - Return the PM operation appropriate for given PM event. 374 * @ops: PM operations to choose from. 375 * @state: PM transition of the system being carried out. 376 * 377 * Runtime PM is disabled for @dev while this function is being executed. 378 */ 379 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 380 pm_message_t state) 381 { 382 switch (state.event) { 383 #ifdef CONFIG_SUSPEND 384 case PM_EVENT_SUSPEND: 385 return ops->suspend_late; 386 case PM_EVENT_RESUME: 387 return ops->resume_early; 388 #endif /* CONFIG_SUSPEND */ 389 #ifdef CONFIG_HIBERNATE_CALLBACKS 390 case PM_EVENT_FREEZE: 391 case PM_EVENT_QUIESCE: 392 return ops->freeze_late; 393 case PM_EVENT_HIBERNATE: 394 return ops->poweroff_late; 395 case PM_EVENT_THAW: 396 case PM_EVENT_RECOVER: 397 return ops->thaw_early; 398 case PM_EVENT_RESTORE: 399 return ops->restore_early; 400 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 401 } 402 403 return NULL; 404 } 405 406 /** 407 * pm_noirq_op - Return the PM operation appropriate for given PM event. 408 * @ops: PM operations to choose from. 409 * @state: PM transition of the system being carried out. 410 * 411 * The driver of @dev will not receive interrupts while this function is being 412 * executed. 413 */ 414 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 415 { 416 switch (state.event) { 417 #ifdef CONFIG_SUSPEND 418 case PM_EVENT_SUSPEND: 419 return ops->suspend_noirq; 420 case PM_EVENT_RESUME: 421 return ops->resume_noirq; 422 #endif /* CONFIG_SUSPEND */ 423 #ifdef CONFIG_HIBERNATE_CALLBACKS 424 case PM_EVENT_FREEZE: 425 case PM_EVENT_QUIESCE: 426 return ops->freeze_noirq; 427 case PM_EVENT_HIBERNATE: 428 return ops->poweroff_noirq; 429 case PM_EVENT_THAW: 430 case PM_EVENT_RECOVER: 431 return ops->thaw_noirq; 432 case PM_EVENT_RESTORE: 433 return ops->restore_noirq; 434 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 435 } 436 437 return NULL; 438 } 439 440 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 441 { 442 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 443 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 444 ", may wakeup" : "", dev->power.driver_flags); 445 } 446 447 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 448 int error) 449 { 450 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 451 error); 452 } 453 454 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 455 const char *info) 456 { 457 ktime_t calltime; 458 u64 usecs64; 459 int usecs; 460 461 calltime = ktime_get(); 462 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 463 do_div(usecs64, NSEC_PER_USEC); 464 usecs = usecs64; 465 if (usecs == 0) 466 usecs = 1; 467 468 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 469 info ?: "", info ? " " : "", pm_verb(state.event), 470 error ? "aborted" : "complete", 471 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 472 } 473 474 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 475 pm_message_t state, const char *info) 476 { 477 ktime_t calltime; 478 int error; 479 480 if (!cb) 481 return 0; 482 483 calltime = initcall_debug_start(dev, cb); 484 485 pm_dev_dbg(dev, state, info); 486 trace_device_pm_callback_start(dev, info, state.event); 487 error = cb(dev); 488 trace_device_pm_callback_end(dev, error); 489 suspend_report_result(cb, error); 490 491 initcall_debug_report(dev, calltime, cb, error); 492 493 return error; 494 } 495 496 #ifdef CONFIG_DPM_WATCHDOG 497 struct dpm_watchdog { 498 struct device *dev; 499 struct task_struct *tsk; 500 struct timer_list timer; 501 }; 502 503 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 504 struct dpm_watchdog wd 505 506 /** 507 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 508 * @t: The timer that PM watchdog depends on. 509 * 510 * Called when a driver has timed out suspending or resuming. 511 * There's not much we can do here to recover so panic() to 512 * capture a crash-dump in pstore. 513 */ 514 static void dpm_watchdog_handler(struct timer_list *t) 515 { 516 struct dpm_watchdog *wd = from_timer(wd, t, timer); 517 518 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 519 show_stack(wd->tsk, NULL, KERN_EMERG); 520 panic("%s %s: unrecoverable failure\n", 521 dev_driver_string(wd->dev), dev_name(wd->dev)); 522 } 523 524 /** 525 * dpm_watchdog_set - Enable pm watchdog for given device. 526 * @wd: Watchdog. Must be allocated on the stack. 527 * @dev: Device to handle. 528 */ 529 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 530 { 531 struct timer_list *timer = &wd->timer; 532 533 wd->dev = dev; 534 wd->tsk = current; 535 536 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 537 /* use same timeout value for both suspend and resume */ 538 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 539 add_timer(timer); 540 } 541 542 /** 543 * dpm_watchdog_clear - Disable suspend/resume watchdog. 544 * @wd: Watchdog to disable. 545 */ 546 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 547 { 548 struct timer_list *timer = &wd->timer; 549 550 del_timer_sync(timer); 551 destroy_timer_on_stack(timer); 552 } 553 #else 554 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 555 #define dpm_watchdog_set(x, y) 556 #define dpm_watchdog_clear(x) 557 #endif 558 559 /*------------------------- Resume routines -------------------------*/ 560 561 /** 562 * dev_pm_skip_resume - System-wide device resume optimization check. 563 * @dev: Target device. 564 * 565 * Return: 566 * - %false if the transition under way is RESTORE. 567 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 568 * - The logical negation of %power.must_resume otherwise (that is, when the 569 * transition under way is RESUME). 570 */ 571 bool dev_pm_skip_resume(struct device *dev) 572 { 573 if (pm_transition.event == PM_EVENT_RESTORE) 574 return false; 575 576 if (pm_transition.event == PM_EVENT_THAW) 577 return dev_pm_skip_suspend(dev); 578 579 return !dev->power.must_resume; 580 } 581 582 /** 583 * device_resume_noirq - Execute a "noirq resume" callback for given device. 584 * @dev: Device to handle. 585 * @state: PM transition of the system being carried out. 586 * @async: If true, the device is being resumed asynchronously. 587 * 588 * The driver of @dev will not receive interrupts while this function is being 589 * executed. 590 */ 591 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 592 { 593 pm_callback_t callback = NULL; 594 const char *info = NULL; 595 bool skip_resume; 596 int error = 0; 597 598 TRACE_DEVICE(dev); 599 TRACE_RESUME(0); 600 601 if (dev->power.syscore || dev->power.direct_complete) 602 goto Out; 603 604 if (!dev->power.is_noirq_suspended) 605 goto Out; 606 607 if (!dpm_wait_for_superior(dev, async)) 608 goto Out; 609 610 skip_resume = dev_pm_skip_resume(dev); 611 /* 612 * If the driver callback is skipped below or by the middle layer 613 * callback and device_resume_early() also skips the driver callback for 614 * this device later, it needs to appear as "suspended" to PM-runtime, 615 * so change its status accordingly. 616 * 617 * Otherwise, the device is going to be resumed, so set its PM-runtime 618 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 619 * to avoid confusing drivers that don't use it. 620 */ 621 if (skip_resume) 622 pm_runtime_set_suspended(dev); 623 else if (dev_pm_skip_suspend(dev)) 624 pm_runtime_set_active(dev); 625 626 if (dev->pm_domain) { 627 info = "noirq power domain "; 628 callback = pm_noirq_op(&dev->pm_domain->ops, state); 629 } else if (dev->type && dev->type->pm) { 630 info = "noirq type "; 631 callback = pm_noirq_op(dev->type->pm, state); 632 } else if (dev->class && dev->class->pm) { 633 info = "noirq class "; 634 callback = pm_noirq_op(dev->class->pm, state); 635 } else if (dev->bus && dev->bus->pm) { 636 info = "noirq bus "; 637 callback = pm_noirq_op(dev->bus->pm, state); 638 } 639 if (callback) 640 goto Run; 641 642 if (skip_resume) 643 goto Skip; 644 645 if (dev->driver && dev->driver->pm) { 646 info = "noirq driver "; 647 callback = pm_noirq_op(dev->driver->pm, state); 648 } 649 650 Run: 651 error = dpm_run_callback(callback, dev, state, info); 652 653 Skip: 654 dev->power.is_noirq_suspended = false; 655 656 Out: 657 complete_all(&dev->power.completion); 658 TRACE_RESUME(error); 659 return error; 660 } 661 662 static bool is_async(struct device *dev) 663 { 664 return dev->power.async_suspend && pm_async_enabled 665 && !pm_trace_is_enabled(); 666 } 667 668 static bool dpm_async_fn(struct device *dev, async_func_t func) 669 { 670 reinit_completion(&dev->power.completion); 671 672 if (is_async(dev)) { 673 get_device(dev); 674 async_schedule_dev(func, dev); 675 return true; 676 } 677 678 return false; 679 } 680 681 static void async_resume_noirq(void *data, async_cookie_t cookie) 682 { 683 struct device *dev = (struct device *)data; 684 int error; 685 686 error = device_resume_noirq(dev, pm_transition, true); 687 if (error) 688 pm_dev_err(dev, pm_transition, " async", error); 689 690 put_device(dev); 691 } 692 693 static void dpm_noirq_resume_devices(pm_message_t state) 694 { 695 struct device *dev; 696 ktime_t starttime = ktime_get(); 697 698 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 699 mutex_lock(&dpm_list_mtx); 700 pm_transition = state; 701 702 /* 703 * Advanced the async threads upfront, 704 * in case the starting of async threads is 705 * delayed by non-async resuming devices. 706 */ 707 list_for_each_entry(dev, &dpm_noirq_list, power.entry) 708 dpm_async_fn(dev, async_resume_noirq); 709 710 while (!list_empty(&dpm_noirq_list)) { 711 dev = to_device(dpm_noirq_list.next); 712 get_device(dev); 713 list_move_tail(&dev->power.entry, &dpm_late_early_list); 714 mutex_unlock(&dpm_list_mtx); 715 716 if (!is_async(dev)) { 717 int error; 718 719 error = device_resume_noirq(dev, state, false); 720 if (error) { 721 suspend_stats.failed_resume_noirq++; 722 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 723 dpm_save_failed_dev(dev_name(dev)); 724 pm_dev_err(dev, state, " noirq", error); 725 } 726 } 727 728 mutex_lock(&dpm_list_mtx); 729 put_device(dev); 730 } 731 mutex_unlock(&dpm_list_mtx); 732 async_synchronize_full(); 733 dpm_show_time(starttime, state, 0, "noirq"); 734 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 735 } 736 737 /** 738 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 739 * @state: PM transition of the system being carried out. 740 * 741 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 742 * allow device drivers' interrupt handlers to be called. 743 */ 744 void dpm_resume_noirq(pm_message_t state) 745 { 746 dpm_noirq_resume_devices(state); 747 748 resume_device_irqs(); 749 device_wakeup_disarm_wake_irqs(); 750 751 cpuidle_resume(); 752 } 753 754 /** 755 * device_resume_early - Execute an "early resume" callback for given device. 756 * @dev: Device to handle. 757 * @state: PM transition of the system being carried out. 758 * @async: If true, the device is being resumed asynchronously. 759 * 760 * Runtime PM is disabled for @dev while this function is being executed. 761 */ 762 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 763 { 764 pm_callback_t callback = NULL; 765 const char *info = NULL; 766 int error = 0; 767 768 TRACE_DEVICE(dev); 769 TRACE_RESUME(0); 770 771 if (dev->power.syscore || dev->power.direct_complete) 772 goto Out; 773 774 if (!dev->power.is_late_suspended) 775 goto Out; 776 777 if (!dpm_wait_for_superior(dev, async)) 778 goto Out; 779 780 if (dev->pm_domain) { 781 info = "early power domain "; 782 callback = pm_late_early_op(&dev->pm_domain->ops, state); 783 } else if (dev->type && dev->type->pm) { 784 info = "early type "; 785 callback = pm_late_early_op(dev->type->pm, state); 786 } else if (dev->class && dev->class->pm) { 787 info = "early class "; 788 callback = pm_late_early_op(dev->class->pm, state); 789 } else if (dev->bus && dev->bus->pm) { 790 info = "early bus "; 791 callback = pm_late_early_op(dev->bus->pm, state); 792 } 793 if (callback) 794 goto Run; 795 796 if (dev_pm_skip_resume(dev)) 797 goto Skip; 798 799 if (dev->driver && dev->driver->pm) { 800 info = "early driver "; 801 callback = pm_late_early_op(dev->driver->pm, state); 802 } 803 804 Run: 805 error = dpm_run_callback(callback, dev, state, info); 806 807 Skip: 808 dev->power.is_late_suspended = false; 809 810 Out: 811 TRACE_RESUME(error); 812 813 pm_runtime_enable(dev); 814 complete_all(&dev->power.completion); 815 return error; 816 } 817 818 static void async_resume_early(void *data, async_cookie_t cookie) 819 { 820 struct device *dev = (struct device *)data; 821 int error; 822 823 error = device_resume_early(dev, pm_transition, true); 824 if (error) 825 pm_dev_err(dev, pm_transition, " async", error); 826 827 put_device(dev); 828 } 829 830 /** 831 * dpm_resume_early - Execute "early resume" callbacks for all devices. 832 * @state: PM transition of the system being carried out. 833 */ 834 void dpm_resume_early(pm_message_t state) 835 { 836 struct device *dev; 837 ktime_t starttime = ktime_get(); 838 839 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 840 mutex_lock(&dpm_list_mtx); 841 pm_transition = state; 842 843 /* 844 * Advanced the async threads upfront, 845 * in case the starting of async threads is 846 * delayed by non-async resuming devices. 847 */ 848 list_for_each_entry(dev, &dpm_late_early_list, power.entry) 849 dpm_async_fn(dev, async_resume_early); 850 851 while (!list_empty(&dpm_late_early_list)) { 852 dev = to_device(dpm_late_early_list.next); 853 get_device(dev); 854 list_move_tail(&dev->power.entry, &dpm_suspended_list); 855 mutex_unlock(&dpm_list_mtx); 856 857 if (!is_async(dev)) { 858 int error; 859 860 error = device_resume_early(dev, state, false); 861 if (error) { 862 suspend_stats.failed_resume_early++; 863 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 864 dpm_save_failed_dev(dev_name(dev)); 865 pm_dev_err(dev, state, " early", error); 866 } 867 } 868 mutex_lock(&dpm_list_mtx); 869 put_device(dev); 870 } 871 mutex_unlock(&dpm_list_mtx); 872 async_synchronize_full(); 873 dpm_show_time(starttime, state, 0, "early"); 874 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 875 } 876 877 /** 878 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 879 * @state: PM transition of the system being carried out. 880 */ 881 void dpm_resume_start(pm_message_t state) 882 { 883 dpm_resume_noirq(state); 884 dpm_resume_early(state); 885 } 886 EXPORT_SYMBOL_GPL(dpm_resume_start); 887 888 /** 889 * device_resume - Execute "resume" callbacks for given device. 890 * @dev: Device to handle. 891 * @state: PM transition of the system being carried out. 892 * @async: If true, the device is being resumed asynchronously. 893 */ 894 static int device_resume(struct device *dev, pm_message_t state, bool async) 895 { 896 pm_callback_t callback = NULL; 897 const char *info = NULL; 898 int error = 0; 899 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 900 901 TRACE_DEVICE(dev); 902 TRACE_RESUME(0); 903 904 if (dev->power.syscore) 905 goto Complete; 906 907 if (dev->power.direct_complete) { 908 /* Match the pm_runtime_disable() in __device_suspend(). */ 909 pm_runtime_enable(dev); 910 goto Complete; 911 } 912 913 if (!dpm_wait_for_superior(dev, async)) 914 goto Complete; 915 916 dpm_watchdog_set(&wd, dev); 917 device_lock(dev); 918 919 /* 920 * This is a fib. But we'll allow new children to be added below 921 * a resumed device, even if the device hasn't been completed yet. 922 */ 923 dev->power.is_prepared = false; 924 925 if (!dev->power.is_suspended) 926 goto Unlock; 927 928 if (dev->pm_domain) { 929 info = "power domain "; 930 callback = pm_op(&dev->pm_domain->ops, state); 931 goto Driver; 932 } 933 934 if (dev->type && dev->type->pm) { 935 info = "type "; 936 callback = pm_op(dev->type->pm, state); 937 goto Driver; 938 } 939 940 if (dev->class && dev->class->pm) { 941 info = "class "; 942 callback = pm_op(dev->class->pm, state); 943 goto Driver; 944 } 945 946 if (dev->bus) { 947 if (dev->bus->pm) { 948 info = "bus "; 949 callback = pm_op(dev->bus->pm, state); 950 } else if (dev->bus->resume) { 951 info = "legacy bus "; 952 callback = dev->bus->resume; 953 goto End; 954 } 955 } 956 957 Driver: 958 if (!callback && dev->driver && dev->driver->pm) { 959 info = "driver "; 960 callback = pm_op(dev->driver->pm, state); 961 } 962 963 End: 964 error = dpm_run_callback(callback, dev, state, info); 965 dev->power.is_suspended = false; 966 967 Unlock: 968 device_unlock(dev); 969 dpm_watchdog_clear(&wd); 970 971 Complete: 972 complete_all(&dev->power.completion); 973 974 TRACE_RESUME(error); 975 976 return error; 977 } 978 979 static void async_resume(void *data, async_cookie_t cookie) 980 { 981 struct device *dev = (struct device *)data; 982 int error; 983 984 error = device_resume(dev, pm_transition, true); 985 if (error) 986 pm_dev_err(dev, pm_transition, " async", error); 987 put_device(dev); 988 } 989 990 /** 991 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 992 * @state: PM transition of the system being carried out. 993 * 994 * Execute the appropriate "resume" callback for all devices whose status 995 * indicates that they are suspended. 996 */ 997 void dpm_resume(pm_message_t state) 998 { 999 struct device *dev; 1000 ktime_t starttime = ktime_get(); 1001 1002 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1003 might_sleep(); 1004 1005 mutex_lock(&dpm_list_mtx); 1006 pm_transition = state; 1007 async_error = 0; 1008 1009 list_for_each_entry(dev, &dpm_suspended_list, power.entry) 1010 dpm_async_fn(dev, async_resume); 1011 1012 while (!list_empty(&dpm_suspended_list)) { 1013 dev = to_device(dpm_suspended_list.next); 1014 get_device(dev); 1015 if (!is_async(dev)) { 1016 int error; 1017 1018 mutex_unlock(&dpm_list_mtx); 1019 1020 error = device_resume(dev, state, false); 1021 if (error) { 1022 suspend_stats.failed_resume++; 1023 dpm_save_failed_step(SUSPEND_RESUME); 1024 dpm_save_failed_dev(dev_name(dev)); 1025 pm_dev_err(dev, state, "", error); 1026 } 1027 1028 mutex_lock(&dpm_list_mtx); 1029 } 1030 if (!list_empty(&dev->power.entry)) 1031 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1032 put_device(dev); 1033 } 1034 mutex_unlock(&dpm_list_mtx); 1035 async_synchronize_full(); 1036 dpm_show_time(starttime, state, 0, NULL); 1037 1038 cpufreq_resume(); 1039 devfreq_resume(); 1040 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1041 } 1042 1043 /** 1044 * device_complete - Complete a PM transition for given device. 1045 * @dev: Device to handle. 1046 * @state: PM transition of the system being carried out. 1047 */ 1048 static void device_complete(struct device *dev, pm_message_t state) 1049 { 1050 void (*callback)(struct device *) = NULL; 1051 const char *info = NULL; 1052 1053 if (dev->power.syscore) 1054 return; 1055 1056 device_lock(dev); 1057 1058 if (dev->pm_domain) { 1059 info = "completing power domain "; 1060 callback = dev->pm_domain->ops.complete; 1061 } else if (dev->type && dev->type->pm) { 1062 info = "completing type "; 1063 callback = dev->type->pm->complete; 1064 } else if (dev->class && dev->class->pm) { 1065 info = "completing class "; 1066 callback = dev->class->pm->complete; 1067 } else if (dev->bus && dev->bus->pm) { 1068 info = "completing bus "; 1069 callback = dev->bus->pm->complete; 1070 } 1071 1072 if (!callback && dev->driver && dev->driver->pm) { 1073 info = "completing driver "; 1074 callback = dev->driver->pm->complete; 1075 } 1076 1077 if (callback) { 1078 pm_dev_dbg(dev, state, info); 1079 callback(dev); 1080 } 1081 1082 device_unlock(dev); 1083 1084 pm_runtime_put(dev); 1085 } 1086 1087 /** 1088 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1089 * @state: PM transition of the system being carried out. 1090 * 1091 * Execute the ->complete() callbacks for all devices whose PM status is not 1092 * DPM_ON (this allows new devices to be registered). 1093 */ 1094 void dpm_complete(pm_message_t state) 1095 { 1096 struct list_head list; 1097 1098 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1099 might_sleep(); 1100 1101 INIT_LIST_HEAD(&list); 1102 mutex_lock(&dpm_list_mtx); 1103 while (!list_empty(&dpm_prepared_list)) { 1104 struct device *dev = to_device(dpm_prepared_list.prev); 1105 1106 get_device(dev); 1107 dev->power.is_prepared = false; 1108 list_move(&dev->power.entry, &list); 1109 mutex_unlock(&dpm_list_mtx); 1110 1111 trace_device_pm_callback_start(dev, "", state.event); 1112 device_complete(dev, state); 1113 trace_device_pm_callback_end(dev, 0); 1114 1115 mutex_lock(&dpm_list_mtx); 1116 put_device(dev); 1117 } 1118 list_splice(&list, &dpm_list); 1119 mutex_unlock(&dpm_list_mtx); 1120 1121 /* Allow device probing and trigger re-probing of deferred devices */ 1122 device_unblock_probing(); 1123 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1124 } 1125 1126 /** 1127 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1128 * @state: PM transition of the system being carried out. 1129 * 1130 * Execute "resume" callbacks for all devices and complete the PM transition of 1131 * the system. 1132 */ 1133 void dpm_resume_end(pm_message_t state) 1134 { 1135 dpm_resume(state); 1136 dpm_complete(state); 1137 } 1138 EXPORT_SYMBOL_GPL(dpm_resume_end); 1139 1140 1141 /*------------------------- Suspend routines -------------------------*/ 1142 1143 /** 1144 * resume_event - Return a "resume" message for given "suspend" sleep state. 1145 * @sleep_state: PM message representing a sleep state. 1146 * 1147 * Return a PM message representing the resume event corresponding to given 1148 * sleep state. 1149 */ 1150 static pm_message_t resume_event(pm_message_t sleep_state) 1151 { 1152 switch (sleep_state.event) { 1153 case PM_EVENT_SUSPEND: 1154 return PMSG_RESUME; 1155 case PM_EVENT_FREEZE: 1156 case PM_EVENT_QUIESCE: 1157 return PMSG_RECOVER; 1158 case PM_EVENT_HIBERNATE: 1159 return PMSG_RESTORE; 1160 } 1161 return PMSG_ON; 1162 } 1163 1164 static void dpm_superior_set_must_resume(struct device *dev) 1165 { 1166 struct device_link *link; 1167 int idx; 1168 1169 if (dev->parent) 1170 dev->parent->power.must_resume = true; 1171 1172 idx = device_links_read_lock(); 1173 1174 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1175 link->supplier->power.must_resume = true; 1176 1177 device_links_read_unlock(idx); 1178 } 1179 1180 /** 1181 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1182 * @dev: Device to handle. 1183 * @state: PM transition of the system being carried out. 1184 * @async: If true, the device is being suspended asynchronously. 1185 * 1186 * The driver of @dev will not receive interrupts while this function is being 1187 * executed. 1188 */ 1189 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1190 { 1191 pm_callback_t callback = NULL; 1192 const char *info = NULL; 1193 int error = 0; 1194 1195 TRACE_DEVICE(dev); 1196 TRACE_SUSPEND(0); 1197 1198 dpm_wait_for_subordinate(dev, async); 1199 1200 if (async_error) 1201 goto Complete; 1202 1203 if (dev->power.syscore || dev->power.direct_complete) 1204 goto Complete; 1205 1206 if (dev->pm_domain) { 1207 info = "noirq power domain "; 1208 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1209 } else if (dev->type && dev->type->pm) { 1210 info = "noirq type "; 1211 callback = pm_noirq_op(dev->type->pm, state); 1212 } else if (dev->class && dev->class->pm) { 1213 info = "noirq class "; 1214 callback = pm_noirq_op(dev->class->pm, state); 1215 } else if (dev->bus && dev->bus->pm) { 1216 info = "noirq bus "; 1217 callback = pm_noirq_op(dev->bus->pm, state); 1218 } 1219 if (callback) 1220 goto Run; 1221 1222 if (dev_pm_skip_suspend(dev)) 1223 goto Skip; 1224 1225 if (dev->driver && dev->driver->pm) { 1226 info = "noirq driver "; 1227 callback = pm_noirq_op(dev->driver->pm, state); 1228 } 1229 1230 Run: 1231 error = dpm_run_callback(callback, dev, state, info); 1232 if (error) { 1233 async_error = error; 1234 goto Complete; 1235 } 1236 1237 Skip: 1238 dev->power.is_noirq_suspended = true; 1239 1240 /* 1241 * Skipping the resume of devices that were in use right before the 1242 * system suspend (as indicated by their PM-runtime usage counters) 1243 * would be suboptimal. Also resume them if doing that is not allowed 1244 * to be skipped. 1245 */ 1246 if (atomic_read(&dev->power.usage_count) > 1 || 1247 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1248 dev->power.may_skip_resume)) 1249 dev->power.must_resume = true; 1250 1251 if (dev->power.must_resume) 1252 dpm_superior_set_must_resume(dev); 1253 1254 Complete: 1255 complete_all(&dev->power.completion); 1256 TRACE_SUSPEND(error); 1257 return error; 1258 } 1259 1260 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1261 { 1262 struct device *dev = (struct device *)data; 1263 int error; 1264 1265 error = __device_suspend_noirq(dev, pm_transition, true); 1266 if (error) { 1267 dpm_save_failed_dev(dev_name(dev)); 1268 pm_dev_err(dev, pm_transition, " async", error); 1269 } 1270 1271 put_device(dev); 1272 } 1273 1274 static int device_suspend_noirq(struct device *dev) 1275 { 1276 if (dpm_async_fn(dev, async_suspend_noirq)) 1277 return 0; 1278 1279 return __device_suspend_noirq(dev, pm_transition, false); 1280 } 1281 1282 static int dpm_noirq_suspend_devices(pm_message_t state) 1283 { 1284 ktime_t starttime = ktime_get(); 1285 int error = 0; 1286 1287 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1288 mutex_lock(&dpm_list_mtx); 1289 pm_transition = state; 1290 async_error = 0; 1291 1292 while (!list_empty(&dpm_late_early_list)) { 1293 struct device *dev = to_device(dpm_late_early_list.prev); 1294 1295 get_device(dev); 1296 mutex_unlock(&dpm_list_mtx); 1297 1298 error = device_suspend_noirq(dev); 1299 1300 mutex_lock(&dpm_list_mtx); 1301 if (error) { 1302 pm_dev_err(dev, state, " noirq", error); 1303 dpm_save_failed_dev(dev_name(dev)); 1304 put_device(dev); 1305 break; 1306 } 1307 if (!list_empty(&dev->power.entry)) 1308 list_move(&dev->power.entry, &dpm_noirq_list); 1309 put_device(dev); 1310 1311 if (async_error) 1312 break; 1313 } 1314 mutex_unlock(&dpm_list_mtx); 1315 async_synchronize_full(); 1316 if (!error) 1317 error = async_error; 1318 1319 if (error) { 1320 suspend_stats.failed_suspend_noirq++; 1321 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1322 } 1323 dpm_show_time(starttime, state, error, "noirq"); 1324 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1325 return error; 1326 } 1327 1328 /** 1329 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1330 * @state: PM transition of the system being carried out. 1331 * 1332 * Prevent device drivers' interrupt handlers from being called and invoke 1333 * "noirq" suspend callbacks for all non-sysdev devices. 1334 */ 1335 int dpm_suspend_noirq(pm_message_t state) 1336 { 1337 int ret; 1338 1339 cpuidle_pause(); 1340 1341 device_wakeup_arm_wake_irqs(); 1342 suspend_device_irqs(); 1343 1344 ret = dpm_noirq_suspend_devices(state); 1345 if (ret) 1346 dpm_resume_noirq(resume_event(state)); 1347 1348 return ret; 1349 } 1350 1351 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1352 { 1353 struct device *parent = dev->parent; 1354 1355 if (!parent) 1356 return; 1357 1358 spin_lock_irq(&parent->power.lock); 1359 1360 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1361 parent->power.wakeup_path = true; 1362 1363 spin_unlock_irq(&parent->power.lock); 1364 } 1365 1366 /** 1367 * __device_suspend_late - Execute a "late suspend" callback for given device. 1368 * @dev: Device to handle. 1369 * @state: PM transition of the system being carried out. 1370 * @async: If true, the device is being suspended asynchronously. 1371 * 1372 * Runtime PM is disabled for @dev while this function is being executed. 1373 */ 1374 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1375 { 1376 pm_callback_t callback = NULL; 1377 const char *info = NULL; 1378 int error = 0; 1379 1380 TRACE_DEVICE(dev); 1381 TRACE_SUSPEND(0); 1382 1383 __pm_runtime_disable(dev, false); 1384 1385 dpm_wait_for_subordinate(dev, async); 1386 1387 if (async_error) 1388 goto Complete; 1389 1390 if (pm_wakeup_pending()) { 1391 async_error = -EBUSY; 1392 goto Complete; 1393 } 1394 1395 if (dev->power.syscore || dev->power.direct_complete) 1396 goto Complete; 1397 1398 if (dev->pm_domain) { 1399 info = "late power domain "; 1400 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1401 } else if (dev->type && dev->type->pm) { 1402 info = "late type "; 1403 callback = pm_late_early_op(dev->type->pm, state); 1404 } else if (dev->class && dev->class->pm) { 1405 info = "late class "; 1406 callback = pm_late_early_op(dev->class->pm, state); 1407 } else if (dev->bus && dev->bus->pm) { 1408 info = "late bus "; 1409 callback = pm_late_early_op(dev->bus->pm, state); 1410 } 1411 if (callback) 1412 goto Run; 1413 1414 if (dev_pm_skip_suspend(dev)) 1415 goto Skip; 1416 1417 if (dev->driver && dev->driver->pm) { 1418 info = "late driver "; 1419 callback = pm_late_early_op(dev->driver->pm, state); 1420 } 1421 1422 Run: 1423 error = dpm_run_callback(callback, dev, state, info); 1424 if (error) { 1425 async_error = error; 1426 goto Complete; 1427 } 1428 dpm_propagate_wakeup_to_parent(dev); 1429 1430 Skip: 1431 dev->power.is_late_suspended = true; 1432 1433 Complete: 1434 TRACE_SUSPEND(error); 1435 complete_all(&dev->power.completion); 1436 return error; 1437 } 1438 1439 static void async_suspend_late(void *data, async_cookie_t cookie) 1440 { 1441 struct device *dev = (struct device *)data; 1442 int error; 1443 1444 error = __device_suspend_late(dev, pm_transition, true); 1445 if (error) { 1446 dpm_save_failed_dev(dev_name(dev)); 1447 pm_dev_err(dev, pm_transition, " async", error); 1448 } 1449 put_device(dev); 1450 } 1451 1452 static int device_suspend_late(struct device *dev) 1453 { 1454 if (dpm_async_fn(dev, async_suspend_late)) 1455 return 0; 1456 1457 return __device_suspend_late(dev, pm_transition, false); 1458 } 1459 1460 /** 1461 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1462 * @state: PM transition of the system being carried out. 1463 */ 1464 int dpm_suspend_late(pm_message_t state) 1465 { 1466 ktime_t starttime = ktime_get(); 1467 int error = 0; 1468 1469 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1470 mutex_lock(&dpm_list_mtx); 1471 pm_transition = state; 1472 async_error = 0; 1473 1474 while (!list_empty(&dpm_suspended_list)) { 1475 struct device *dev = to_device(dpm_suspended_list.prev); 1476 1477 get_device(dev); 1478 mutex_unlock(&dpm_list_mtx); 1479 1480 error = device_suspend_late(dev); 1481 1482 mutex_lock(&dpm_list_mtx); 1483 if (!list_empty(&dev->power.entry)) 1484 list_move(&dev->power.entry, &dpm_late_early_list); 1485 1486 if (error) { 1487 pm_dev_err(dev, state, " late", error); 1488 dpm_save_failed_dev(dev_name(dev)); 1489 put_device(dev); 1490 break; 1491 } 1492 put_device(dev); 1493 1494 if (async_error) 1495 break; 1496 } 1497 mutex_unlock(&dpm_list_mtx); 1498 async_synchronize_full(); 1499 if (!error) 1500 error = async_error; 1501 if (error) { 1502 suspend_stats.failed_suspend_late++; 1503 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1504 dpm_resume_early(resume_event(state)); 1505 } 1506 dpm_show_time(starttime, state, error, "late"); 1507 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1508 return error; 1509 } 1510 1511 /** 1512 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1513 * @state: PM transition of the system being carried out. 1514 */ 1515 int dpm_suspend_end(pm_message_t state) 1516 { 1517 ktime_t starttime = ktime_get(); 1518 int error; 1519 1520 error = dpm_suspend_late(state); 1521 if (error) 1522 goto out; 1523 1524 error = dpm_suspend_noirq(state); 1525 if (error) 1526 dpm_resume_early(resume_event(state)); 1527 1528 out: 1529 dpm_show_time(starttime, state, error, "end"); 1530 return error; 1531 } 1532 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1533 1534 /** 1535 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1536 * @dev: Device to suspend. 1537 * @state: PM transition of the system being carried out. 1538 * @cb: Suspend callback to execute. 1539 * @info: string description of caller. 1540 */ 1541 static int legacy_suspend(struct device *dev, pm_message_t state, 1542 int (*cb)(struct device *dev, pm_message_t state), 1543 const char *info) 1544 { 1545 int error; 1546 ktime_t calltime; 1547 1548 calltime = initcall_debug_start(dev, cb); 1549 1550 trace_device_pm_callback_start(dev, info, state.event); 1551 error = cb(dev, state); 1552 trace_device_pm_callback_end(dev, error); 1553 suspend_report_result(cb, error); 1554 1555 initcall_debug_report(dev, calltime, cb, error); 1556 1557 return error; 1558 } 1559 1560 static void dpm_clear_superiors_direct_complete(struct device *dev) 1561 { 1562 struct device_link *link; 1563 int idx; 1564 1565 if (dev->parent) { 1566 spin_lock_irq(&dev->parent->power.lock); 1567 dev->parent->power.direct_complete = false; 1568 spin_unlock_irq(&dev->parent->power.lock); 1569 } 1570 1571 idx = device_links_read_lock(); 1572 1573 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1574 spin_lock_irq(&link->supplier->power.lock); 1575 link->supplier->power.direct_complete = false; 1576 spin_unlock_irq(&link->supplier->power.lock); 1577 } 1578 1579 device_links_read_unlock(idx); 1580 } 1581 1582 /** 1583 * __device_suspend - Execute "suspend" callbacks for given device. 1584 * @dev: Device to handle. 1585 * @state: PM transition of the system being carried out. 1586 * @async: If true, the device is being suspended asynchronously. 1587 */ 1588 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1589 { 1590 pm_callback_t callback = NULL; 1591 const char *info = NULL; 1592 int error = 0; 1593 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1594 1595 TRACE_DEVICE(dev); 1596 TRACE_SUSPEND(0); 1597 1598 dpm_wait_for_subordinate(dev, async); 1599 1600 if (async_error) { 1601 dev->power.direct_complete = false; 1602 goto Complete; 1603 } 1604 1605 /* 1606 * Wait for possible runtime PM transitions of the device in progress 1607 * to complete and if there's a runtime resume request pending for it, 1608 * resume it before proceeding with invoking the system-wide suspend 1609 * callbacks for it. 1610 * 1611 * If the system-wide suspend callbacks below change the configuration 1612 * of the device, they must disable runtime PM for it or otherwise 1613 * ensure that its runtime-resume callbacks will not be confused by that 1614 * change in case they are invoked going forward. 1615 */ 1616 pm_runtime_barrier(dev); 1617 1618 if (pm_wakeup_pending()) { 1619 dev->power.direct_complete = false; 1620 async_error = -EBUSY; 1621 goto Complete; 1622 } 1623 1624 if (dev->power.syscore) 1625 goto Complete; 1626 1627 /* Avoid direct_complete to let wakeup_path propagate. */ 1628 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1629 dev->power.direct_complete = false; 1630 1631 if (dev->power.direct_complete) { 1632 if (pm_runtime_status_suspended(dev)) { 1633 pm_runtime_disable(dev); 1634 if (pm_runtime_status_suspended(dev)) { 1635 pm_dev_dbg(dev, state, "direct-complete "); 1636 goto Complete; 1637 } 1638 1639 pm_runtime_enable(dev); 1640 } 1641 dev->power.direct_complete = false; 1642 } 1643 1644 dev->power.may_skip_resume = true; 1645 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1646 1647 dpm_watchdog_set(&wd, dev); 1648 device_lock(dev); 1649 1650 if (dev->pm_domain) { 1651 info = "power domain "; 1652 callback = pm_op(&dev->pm_domain->ops, state); 1653 goto Run; 1654 } 1655 1656 if (dev->type && dev->type->pm) { 1657 info = "type "; 1658 callback = pm_op(dev->type->pm, state); 1659 goto Run; 1660 } 1661 1662 if (dev->class && dev->class->pm) { 1663 info = "class "; 1664 callback = pm_op(dev->class->pm, state); 1665 goto Run; 1666 } 1667 1668 if (dev->bus) { 1669 if (dev->bus->pm) { 1670 info = "bus "; 1671 callback = pm_op(dev->bus->pm, state); 1672 } else if (dev->bus->suspend) { 1673 pm_dev_dbg(dev, state, "legacy bus "); 1674 error = legacy_suspend(dev, state, dev->bus->suspend, 1675 "legacy bus "); 1676 goto End; 1677 } 1678 } 1679 1680 Run: 1681 if (!callback && dev->driver && dev->driver->pm) { 1682 info = "driver "; 1683 callback = pm_op(dev->driver->pm, state); 1684 } 1685 1686 error = dpm_run_callback(callback, dev, state, info); 1687 1688 End: 1689 if (!error) { 1690 dev->power.is_suspended = true; 1691 if (device_may_wakeup(dev)) 1692 dev->power.wakeup_path = true; 1693 1694 dpm_propagate_wakeup_to_parent(dev); 1695 dpm_clear_superiors_direct_complete(dev); 1696 } 1697 1698 device_unlock(dev); 1699 dpm_watchdog_clear(&wd); 1700 1701 Complete: 1702 if (error) 1703 async_error = error; 1704 1705 complete_all(&dev->power.completion); 1706 TRACE_SUSPEND(error); 1707 return error; 1708 } 1709 1710 static void async_suspend(void *data, async_cookie_t cookie) 1711 { 1712 struct device *dev = (struct device *)data; 1713 int error; 1714 1715 error = __device_suspend(dev, pm_transition, true); 1716 if (error) { 1717 dpm_save_failed_dev(dev_name(dev)); 1718 pm_dev_err(dev, pm_transition, " async", error); 1719 } 1720 1721 put_device(dev); 1722 } 1723 1724 static int device_suspend(struct device *dev) 1725 { 1726 if (dpm_async_fn(dev, async_suspend)) 1727 return 0; 1728 1729 return __device_suspend(dev, pm_transition, false); 1730 } 1731 1732 /** 1733 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1734 * @state: PM transition of the system being carried out. 1735 */ 1736 int dpm_suspend(pm_message_t state) 1737 { 1738 ktime_t starttime = ktime_get(); 1739 int error = 0; 1740 1741 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1742 might_sleep(); 1743 1744 devfreq_suspend(); 1745 cpufreq_suspend(); 1746 1747 mutex_lock(&dpm_list_mtx); 1748 pm_transition = state; 1749 async_error = 0; 1750 while (!list_empty(&dpm_prepared_list)) { 1751 struct device *dev = to_device(dpm_prepared_list.prev); 1752 1753 get_device(dev); 1754 mutex_unlock(&dpm_list_mtx); 1755 1756 error = device_suspend(dev); 1757 1758 mutex_lock(&dpm_list_mtx); 1759 if (error) { 1760 pm_dev_err(dev, state, "", error); 1761 dpm_save_failed_dev(dev_name(dev)); 1762 put_device(dev); 1763 break; 1764 } 1765 if (!list_empty(&dev->power.entry)) 1766 list_move(&dev->power.entry, &dpm_suspended_list); 1767 put_device(dev); 1768 if (async_error) 1769 break; 1770 } 1771 mutex_unlock(&dpm_list_mtx); 1772 async_synchronize_full(); 1773 if (!error) 1774 error = async_error; 1775 if (error) { 1776 suspend_stats.failed_suspend++; 1777 dpm_save_failed_step(SUSPEND_SUSPEND); 1778 } 1779 dpm_show_time(starttime, state, error, NULL); 1780 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1781 return error; 1782 } 1783 1784 /** 1785 * device_prepare - Prepare a device for system power transition. 1786 * @dev: Device to handle. 1787 * @state: PM transition of the system being carried out. 1788 * 1789 * Execute the ->prepare() callback(s) for given device. No new children of the 1790 * device may be registered after this function has returned. 1791 */ 1792 static int device_prepare(struct device *dev, pm_message_t state) 1793 { 1794 int (*callback)(struct device *) = NULL; 1795 int ret = 0; 1796 1797 if (dev->power.syscore) 1798 return 0; 1799 1800 /* 1801 * If a device's parent goes into runtime suspend at the wrong time, 1802 * it won't be possible to resume the device. To prevent this we 1803 * block runtime suspend here, during the prepare phase, and allow 1804 * it again during the complete phase. 1805 */ 1806 pm_runtime_get_noresume(dev); 1807 1808 device_lock(dev); 1809 1810 dev->power.wakeup_path = false; 1811 1812 if (dev->power.no_pm_callbacks) 1813 goto unlock; 1814 1815 if (dev->pm_domain) 1816 callback = dev->pm_domain->ops.prepare; 1817 else if (dev->type && dev->type->pm) 1818 callback = dev->type->pm->prepare; 1819 else if (dev->class && dev->class->pm) 1820 callback = dev->class->pm->prepare; 1821 else if (dev->bus && dev->bus->pm) 1822 callback = dev->bus->pm->prepare; 1823 1824 if (!callback && dev->driver && dev->driver->pm) 1825 callback = dev->driver->pm->prepare; 1826 1827 if (callback) 1828 ret = callback(dev); 1829 1830 unlock: 1831 device_unlock(dev); 1832 1833 if (ret < 0) { 1834 suspend_report_result(callback, ret); 1835 pm_runtime_put(dev); 1836 return ret; 1837 } 1838 /* 1839 * A positive return value from ->prepare() means "this device appears 1840 * to be runtime-suspended and its state is fine, so if it really is 1841 * runtime-suspended, you can leave it in that state provided that you 1842 * will do the same thing with all of its descendants". This only 1843 * applies to suspend transitions, however. 1844 */ 1845 spin_lock_irq(&dev->power.lock); 1846 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1847 (ret > 0 || dev->power.no_pm_callbacks) && 1848 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1849 spin_unlock_irq(&dev->power.lock); 1850 return 0; 1851 } 1852 1853 /** 1854 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1855 * @state: PM transition of the system being carried out. 1856 * 1857 * Execute the ->prepare() callback(s) for all devices. 1858 */ 1859 int dpm_prepare(pm_message_t state) 1860 { 1861 int error = 0; 1862 1863 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1864 might_sleep(); 1865 1866 /* 1867 * Give a chance for the known devices to complete their probes, before 1868 * disable probing of devices. This sync point is important at least 1869 * at boot time + hibernation restore. 1870 */ 1871 wait_for_device_probe(); 1872 /* 1873 * It is unsafe if probing of devices will happen during suspend or 1874 * hibernation and system behavior will be unpredictable in this case. 1875 * So, let's prohibit device's probing here and defer their probes 1876 * instead. The normal behavior will be restored in dpm_complete(). 1877 */ 1878 device_block_probing(); 1879 1880 mutex_lock(&dpm_list_mtx); 1881 while (!list_empty(&dpm_list)) { 1882 struct device *dev = to_device(dpm_list.next); 1883 1884 get_device(dev); 1885 mutex_unlock(&dpm_list_mtx); 1886 1887 trace_device_pm_callback_start(dev, "", state.event); 1888 error = device_prepare(dev, state); 1889 trace_device_pm_callback_end(dev, error); 1890 1891 mutex_lock(&dpm_list_mtx); 1892 if (error) { 1893 if (error == -EAGAIN) { 1894 put_device(dev); 1895 error = 0; 1896 continue; 1897 } 1898 dev_info(dev, "not prepared for power transition: code %d\n", 1899 error); 1900 put_device(dev); 1901 break; 1902 } 1903 dev->power.is_prepared = true; 1904 if (!list_empty(&dev->power.entry)) 1905 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1906 put_device(dev); 1907 } 1908 mutex_unlock(&dpm_list_mtx); 1909 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1910 return error; 1911 } 1912 1913 /** 1914 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1915 * @state: PM transition of the system being carried out. 1916 * 1917 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1918 * callbacks for them. 1919 */ 1920 int dpm_suspend_start(pm_message_t state) 1921 { 1922 ktime_t starttime = ktime_get(); 1923 int error; 1924 1925 error = dpm_prepare(state); 1926 if (error) { 1927 suspend_stats.failed_prepare++; 1928 dpm_save_failed_step(SUSPEND_PREPARE); 1929 } else 1930 error = dpm_suspend(state); 1931 dpm_show_time(starttime, state, error, "start"); 1932 return error; 1933 } 1934 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1935 1936 void __suspend_report_result(const char *function, void *fn, int ret) 1937 { 1938 if (ret) 1939 pr_err("%s(): %pS returns %d\n", function, fn, ret); 1940 } 1941 EXPORT_SYMBOL_GPL(__suspend_report_result); 1942 1943 /** 1944 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1945 * @subordinate: Device that needs to wait for @dev. 1946 * @dev: Device to wait for. 1947 */ 1948 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1949 { 1950 dpm_wait(dev, subordinate->power.async_suspend); 1951 return async_error; 1952 } 1953 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1954 1955 /** 1956 * dpm_for_each_dev - device iterator. 1957 * @data: data for the callback. 1958 * @fn: function to be called for each device. 1959 * 1960 * Iterate over devices in dpm_list, and call @fn for each device, 1961 * passing it @data. 1962 */ 1963 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1964 { 1965 struct device *dev; 1966 1967 if (!fn) 1968 return; 1969 1970 device_pm_lock(); 1971 list_for_each_entry(dev, &dpm_list, power.entry) 1972 fn(dev, data); 1973 device_pm_unlock(); 1974 } 1975 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1976 1977 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 1978 { 1979 if (!ops) 1980 return true; 1981 1982 return !ops->prepare && 1983 !ops->suspend && 1984 !ops->suspend_late && 1985 !ops->suspend_noirq && 1986 !ops->resume_noirq && 1987 !ops->resume_early && 1988 !ops->resume && 1989 !ops->complete; 1990 } 1991 1992 void device_pm_check_callbacks(struct device *dev) 1993 { 1994 spin_lock_irq(&dev->power.lock); 1995 dev->power.no_pm_callbacks = 1996 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 1997 !dev->bus->suspend && !dev->bus->resume)) && 1998 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 1999 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2000 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2001 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2002 !dev->driver->suspend && !dev->driver->resume)); 2003 spin_unlock_irq(&dev->power.lock); 2004 } 2005 2006 bool dev_pm_skip_suspend(struct device *dev) 2007 { 2008 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2009 pm_runtime_status_suspended(dev); 2010 } 2011