1 /* 2 * drivers/base/power/main.c - Where the driver meets power management. 3 * 4 * Copyright (c) 2003 Patrick Mochel 5 * Copyright (c) 2003 Open Source Development Lab 6 * 7 * This file is released under the GPLv2 8 * 9 * 10 * The driver model core calls device_pm_add() when a device is registered. 11 * This will initialize the embedded device_pm_info object in the device 12 * and add it to the list of power-controlled devices. sysfs entries for 13 * controlling device power management will also be added. 14 * 15 * A separate list is used for keeping track of power info, because the power 16 * domain dependencies may differ from the ancestral dependencies that the 17 * subsystem list maintains. 18 */ 19 20 #include <linux/device.h> 21 #include <linux/kallsyms.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/async.h> 30 #include <linux/suspend.h> 31 #include <trace/events/power.h> 32 #include <linux/cpufreq.h> 33 #include <linux/cpuidle.h> 34 #include <linux/timer.h> 35 36 #include "../base.h" 37 #include "power.h" 38 39 typedef int (*pm_callback_t)(struct device *); 40 41 /* 42 * The entries in the dpm_list list are in a depth first order, simply 43 * because children are guaranteed to be discovered after parents, and 44 * are inserted at the back of the list on discovery. 45 * 46 * Since device_pm_add() may be called with a device lock held, 47 * we must never try to acquire a device lock while holding 48 * dpm_list_mutex. 49 */ 50 51 LIST_HEAD(dpm_list); 52 static LIST_HEAD(dpm_prepared_list); 53 static LIST_HEAD(dpm_suspended_list); 54 static LIST_HEAD(dpm_late_early_list); 55 static LIST_HEAD(dpm_noirq_list); 56 57 struct suspend_stats suspend_stats; 58 static DEFINE_MUTEX(dpm_list_mtx); 59 static pm_message_t pm_transition; 60 61 static int async_error; 62 63 static char *pm_verb(int event) 64 { 65 switch (event) { 66 case PM_EVENT_SUSPEND: 67 return "suspend"; 68 case PM_EVENT_RESUME: 69 return "resume"; 70 case PM_EVENT_FREEZE: 71 return "freeze"; 72 case PM_EVENT_QUIESCE: 73 return "quiesce"; 74 case PM_EVENT_HIBERNATE: 75 return "hibernate"; 76 case PM_EVENT_THAW: 77 return "thaw"; 78 case PM_EVENT_RESTORE: 79 return "restore"; 80 case PM_EVENT_RECOVER: 81 return "recover"; 82 default: 83 return "(unknown PM event)"; 84 } 85 } 86 87 /** 88 * device_pm_sleep_init - Initialize system suspend-related device fields. 89 * @dev: Device object being initialized. 90 */ 91 void device_pm_sleep_init(struct device *dev) 92 { 93 dev->power.is_prepared = false; 94 dev->power.is_suspended = false; 95 dev->power.is_noirq_suspended = false; 96 dev->power.is_late_suspended = false; 97 init_completion(&dev->power.completion); 98 complete_all(&dev->power.completion); 99 dev->power.wakeup = NULL; 100 INIT_LIST_HEAD(&dev->power.entry); 101 } 102 103 /** 104 * device_pm_lock - Lock the list of active devices used by the PM core. 105 */ 106 void device_pm_lock(void) 107 { 108 mutex_lock(&dpm_list_mtx); 109 } 110 111 /** 112 * device_pm_unlock - Unlock the list of active devices used by the PM core. 113 */ 114 void device_pm_unlock(void) 115 { 116 mutex_unlock(&dpm_list_mtx); 117 } 118 119 /** 120 * device_pm_add - Add a device to the PM core's list of active devices. 121 * @dev: Device to add to the list. 122 */ 123 void device_pm_add(struct device *dev) 124 { 125 pr_debug("PM: Adding info for %s:%s\n", 126 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 127 mutex_lock(&dpm_list_mtx); 128 if (dev->parent && dev->parent->power.is_prepared) 129 dev_warn(dev, "parent %s should not be sleeping\n", 130 dev_name(dev->parent)); 131 list_add_tail(&dev->power.entry, &dpm_list); 132 mutex_unlock(&dpm_list_mtx); 133 } 134 135 /** 136 * device_pm_remove - Remove a device from the PM core's list of active devices. 137 * @dev: Device to be removed from the list. 138 */ 139 void device_pm_remove(struct device *dev) 140 { 141 pr_debug("PM: Removing info for %s:%s\n", 142 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 143 complete_all(&dev->power.completion); 144 mutex_lock(&dpm_list_mtx); 145 list_del_init(&dev->power.entry); 146 mutex_unlock(&dpm_list_mtx); 147 device_wakeup_disable(dev); 148 pm_runtime_remove(dev); 149 } 150 151 /** 152 * device_pm_move_before - Move device in the PM core's list of active devices. 153 * @deva: Device to move in dpm_list. 154 * @devb: Device @deva should come before. 155 */ 156 void device_pm_move_before(struct device *deva, struct device *devb) 157 { 158 pr_debug("PM: Moving %s:%s before %s:%s\n", 159 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 160 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 161 /* Delete deva from dpm_list and reinsert before devb. */ 162 list_move_tail(&deva->power.entry, &devb->power.entry); 163 } 164 165 /** 166 * device_pm_move_after - Move device in the PM core's list of active devices. 167 * @deva: Device to move in dpm_list. 168 * @devb: Device @deva should come after. 169 */ 170 void device_pm_move_after(struct device *deva, struct device *devb) 171 { 172 pr_debug("PM: Moving %s:%s after %s:%s\n", 173 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 174 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 175 /* Delete deva from dpm_list and reinsert after devb. */ 176 list_move(&deva->power.entry, &devb->power.entry); 177 } 178 179 /** 180 * device_pm_move_last - Move device to end of the PM core's list of devices. 181 * @dev: Device to move in dpm_list. 182 */ 183 void device_pm_move_last(struct device *dev) 184 { 185 pr_debug("PM: Moving %s:%s to end of list\n", 186 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 187 list_move_tail(&dev->power.entry, &dpm_list); 188 } 189 190 static ktime_t initcall_debug_start(struct device *dev) 191 { 192 ktime_t calltime = ktime_set(0, 0); 193 194 if (pm_print_times_enabled) { 195 pr_info("calling %s+ @ %i, parent: %s\n", 196 dev_name(dev), task_pid_nr(current), 197 dev->parent ? dev_name(dev->parent) : "none"); 198 calltime = ktime_get(); 199 } 200 201 return calltime; 202 } 203 204 static void initcall_debug_report(struct device *dev, ktime_t calltime, 205 int error, pm_message_t state, char *info) 206 { 207 ktime_t rettime; 208 s64 nsecs; 209 210 rettime = ktime_get(); 211 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime)); 212 213 if (pm_print_times_enabled) { 214 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev), 215 error, (unsigned long long)nsecs >> 10); 216 } 217 } 218 219 /** 220 * dpm_wait - Wait for a PM operation to complete. 221 * @dev: Device to wait for. 222 * @async: If unset, wait only if the device's power.async_suspend flag is set. 223 */ 224 static void dpm_wait(struct device *dev, bool async) 225 { 226 if (!dev) 227 return; 228 229 if (async || (pm_async_enabled && dev->power.async_suspend)) 230 wait_for_completion(&dev->power.completion); 231 } 232 233 static int dpm_wait_fn(struct device *dev, void *async_ptr) 234 { 235 dpm_wait(dev, *((bool *)async_ptr)); 236 return 0; 237 } 238 239 static void dpm_wait_for_children(struct device *dev, bool async) 240 { 241 device_for_each_child(dev, &async, dpm_wait_fn); 242 } 243 244 /** 245 * pm_op - Return the PM operation appropriate for given PM event. 246 * @ops: PM operations to choose from. 247 * @state: PM transition of the system being carried out. 248 */ 249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 250 { 251 switch (state.event) { 252 #ifdef CONFIG_SUSPEND 253 case PM_EVENT_SUSPEND: 254 return ops->suspend; 255 case PM_EVENT_RESUME: 256 return ops->resume; 257 #endif /* CONFIG_SUSPEND */ 258 #ifdef CONFIG_HIBERNATE_CALLBACKS 259 case PM_EVENT_FREEZE: 260 case PM_EVENT_QUIESCE: 261 return ops->freeze; 262 case PM_EVENT_HIBERNATE: 263 return ops->poweroff; 264 case PM_EVENT_THAW: 265 case PM_EVENT_RECOVER: 266 return ops->thaw; 267 break; 268 case PM_EVENT_RESTORE: 269 return ops->restore; 270 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 271 } 272 273 return NULL; 274 } 275 276 /** 277 * pm_late_early_op - Return the PM operation appropriate for given PM event. 278 * @ops: PM operations to choose from. 279 * @state: PM transition of the system being carried out. 280 * 281 * Runtime PM is disabled for @dev while this function is being executed. 282 */ 283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 284 pm_message_t state) 285 { 286 switch (state.event) { 287 #ifdef CONFIG_SUSPEND 288 case PM_EVENT_SUSPEND: 289 return ops->suspend_late; 290 case PM_EVENT_RESUME: 291 return ops->resume_early; 292 #endif /* CONFIG_SUSPEND */ 293 #ifdef CONFIG_HIBERNATE_CALLBACKS 294 case PM_EVENT_FREEZE: 295 case PM_EVENT_QUIESCE: 296 return ops->freeze_late; 297 case PM_EVENT_HIBERNATE: 298 return ops->poweroff_late; 299 case PM_EVENT_THAW: 300 case PM_EVENT_RECOVER: 301 return ops->thaw_early; 302 case PM_EVENT_RESTORE: 303 return ops->restore_early; 304 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 305 } 306 307 return NULL; 308 } 309 310 /** 311 * pm_noirq_op - Return the PM operation appropriate for given PM event. 312 * @ops: PM operations to choose from. 313 * @state: PM transition of the system being carried out. 314 * 315 * The driver of @dev will not receive interrupts while this function is being 316 * executed. 317 */ 318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 319 { 320 switch (state.event) { 321 #ifdef CONFIG_SUSPEND 322 case PM_EVENT_SUSPEND: 323 return ops->suspend_noirq; 324 case PM_EVENT_RESUME: 325 return ops->resume_noirq; 326 #endif /* CONFIG_SUSPEND */ 327 #ifdef CONFIG_HIBERNATE_CALLBACKS 328 case PM_EVENT_FREEZE: 329 case PM_EVENT_QUIESCE: 330 return ops->freeze_noirq; 331 case PM_EVENT_HIBERNATE: 332 return ops->poweroff_noirq; 333 case PM_EVENT_THAW: 334 case PM_EVENT_RECOVER: 335 return ops->thaw_noirq; 336 case PM_EVENT_RESTORE: 337 return ops->restore_noirq; 338 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 339 } 340 341 return NULL; 342 } 343 344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info) 345 { 346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event), 347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 348 ", may wakeup" : ""); 349 } 350 351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info, 352 int error) 353 { 354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n", 355 dev_name(dev), pm_verb(state.event), info, error); 356 } 357 358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info) 359 { 360 ktime_t calltime; 361 u64 usecs64; 362 int usecs; 363 364 calltime = ktime_get(); 365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 366 do_div(usecs64, NSEC_PER_USEC); 367 usecs = usecs64; 368 if (usecs == 0) 369 usecs = 1; 370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n", 371 info ?: "", info ? " " : "", pm_verb(state.event), 372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 373 } 374 375 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 376 pm_message_t state, char *info) 377 { 378 ktime_t calltime; 379 int error; 380 381 if (!cb) 382 return 0; 383 384 calltime = initcall_debug_start(dev); 385 386 pm_dev_dbg(dev, state, info); 387 trace_device_pm_callback_start(dev, info, state.event); 388 error = cb(dev); 389 trace_device_pm_callback_end(dev, error); 390 suspend_report_result(cb, error); 391 392 initcall_debug_report(dev, calltime, error, state, info); 393 394 return error; 395 } 396 397 #ifdef CONFIG_DPM_WATCHDOG 398 struct dpm_watchdog { 399 struct device *dev; 400 struct task_struct *tsk; 401 struct timer_list timer; 402 }; 403 404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 405 struct dpm_watchdog wd 406 407 /** 408 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 409 * @data: Watchdog object address. 410 * 411 * Called when a driver has timed out suspending or resuming. 412 * There's not much we can do here to recover so panic() to 413 * capture a crash-dump in pstore. 414 */ 415 static void dpm_watchdog_handler(unsigned long data) 416 { 417 struct dpm_watchdog *wd = (void *)data; 418 419 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 420 show_stack(wd->tsk, NULL); 421 panic("%s %s: unrecoverable failure\n", 422 dev_driver_string(wd->dev), dev_name(wd->dev)); 423 } 424 425 /** 426 * dpm_watchdog_set - Enable pm watchdog for given device. 427 * @wd: Watchdog. Must be allocated on the stack. 428 * @dev: Device to handle. 429 */ 430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 431 { 432 struct timer_list *timer = &wd->timer; 433 434 wd->dev = dev; 435 wd->tsk = current; 436 437 init_timer_on_stack(timer); 438 /* use same timeout value for both suspend and resume */ 439 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 440 timer->function = dpm_watchdog_handler; 441 timer->data = (unsigned long)wd; 442 add_timer(timer); 443 } 444 445 /** 446 * dpm_watchdog_clear - Disable suspend/resume watchdog. 447 * @wd: Watchdog to disable. 448 */ 449 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 450 { 451 struct timer_list *timer = &wd->timer; 452 453 del_timer_sync(timer); 454 destroy_timer_on_stack(timer); 455 } 456 #else 457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 458 #define dpm_watchdog_set(x, y) 459 #define dpm_watchdog_clear(x) 460 #endif 461 462 /*------------------------- Resume routines -------------------------*/ 463 464 /** 465 * device_resume_noirq - Execute an "early resume" callback for given device. 466 * @dev: Device to handle. 467 * @state: PM transition of the system being carried out. 468 * @async: If true, the device is being resumed asynchronously. 469 * 470 * The driver of @dev will not receive interrupts while this function is being 471 * executed. 472 */ 473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async) 474 { 475 pm_callback_t callback = NULL; 476 char *info = NULL; 477 int error = 0; 478 479 TRACE_DEVICE(dev); 480 TRACE_RESUME(0); 481 482 if (dev->power.syscore || dev->power.direct_complete) 483 goto Out; 484 485 if (!dev->power.is_noirq_suspended) 486 goto Out; 487 488 dpm_wait(dev->parent, async); 489 490 if (dev->pm_domain) { 491 info = "noirq power domain "; 492 callback = pm_noirq_op(&dev->pm_domain->ops, state); 493 } else if (dev->type && dev->type->pm) { 494 info = "noirq type "; 495 callback = pm_noirq_op(dev->type->pm, state); 496 } else if (dev->class && dev->class->pm) { 497 info = "noirq class "; 498 callback = pm_noirq_op(dev->class->pm, state); 499 } else if (dev->bus && dev->bus->pm) { 500 info = "noirq bus "; 501 callback = pm_noirq_op(dev->bus->pm, state); 502 } 503 504 if (!callback && dev->driver && dev->driver->pm) { 505 info = "noirq driver "; 506 callback = pm_noirq_op(dev->driver->pm, state); 507 } 508 509 error = dpm_run_callback(callback, dev, state, info); 510 dev->power.is_noirq_suspended = false; 511 512 Out: 513 complete_all(&dev->power.completion); 514 TRACE_RESUME(error); 515 return error; 516 } 517 518 static bool is_async(struct device *dev) 519 { 520 return dev->power.async_suspend && pm_async_enabled 521 && !pm_trace_is_enabled(); 522 } 523 524 static void async_resume_noirq(void *data, async_cookie_t cookie) 525 { 526 struct device *dev = (struct device *)data; 527 int error; 528 529 error = device_resume_noirq(dev, pm_transition, true); 530 if (error) 531 pm_dev_err(dev, pm_transition, " async", error); 532 533 put_device(dev); 534 } 535 536 /** 537 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 538 * @state: PM transition of the system being carried out. 539 * 540 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and 541 * enable device drivers to receive interrupts. 542 */ 543 void dpm_resume_noirq(pm_message_t state) 544 { 545 struct device *dev; 546 ktime_t starttime = ktime_get(); 547 548 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 549 mutex_lock(&dpm_list_mtx); 550 pm_transition = state; 551 552 /* 553 * Advanced the async threads upfront, 554 * in case the starting of async threads is 555 * delayed by non-async resuming devices. 556 */ 557 list_for_each_entry(dev, &dpm_noirq_list, power.entry) { 558 reinit_completion(&dev->power.completion); 559 if (is_async(dev)) { 560 get_device(dev); 561 async_schedule(async_resume_noirq, dev); 562 } 563 } 564 565 while (!list_empty(&dpm_noirq_list)) { 566 dev = to_device(dpm_noirq_list.next); 567 get_device(dev); 568 list_move_tail(&dev->power.entry, &dpm_late_early_list); 569 mutex_unlock(&dpm_list_mtx); 570 571 if (!is_async(dev)) { 572 int error; 573 574 error = device_resume_noirq(dev, state, false); 575 if (error) { 576 suspend_stats.failed_resume_noirq++; 577 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 578 dpm_save_failed_dev(dev_name(dev)); 579 pm_dev_err(dev, state, " noirq", error); 580 } 581 } 582 583 mutex_lock(&dpm_list_mtx); 584 put_device(dev); 585 } 586 mutex_unlock(&dpm_list_mtx); 587 async_synchronize_full(); 588 dpm_show_time(starttime, state, "noirq"); 589 resume_device_irqs(); 590 cpuidle_resume(); 591 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 592 } 593 594 /** 595 * device_resume_early - Execute an "early resume" callback for given device. 596 * @dev: Device to handle. 597 * @state: PM transition of the system being carried out. 598 * @async: If true, the device is being resumed asynchronously. 599 * 600 * Runtime PM is disabled for @dev while this function is being executed. 601 */ 602 static int device_resume_early(struct device *dev, pm_message_t state, bool async) 603 { 604 pm_callback_t callback = NULL; 605 char *info = NULL; 606 int error = 0; 607 608 TRACE_DEVICE(dev); 609 TRACE_RESUME(0); 610 611 if (dev->power.syscore || dev->power.direct_complete) 612 goto Out; 613 614 if (!dev->power.is_late_suspended) 615 goto Out; 616 617 dpm_wait(dev->parent, async); 618 619 if (dev->pm_domain) { 620 info = "early power domain "; 621 callback = pm_late_early_op(&dev->pm_domain->ops, state); 622 } else if (dev->type && dev->type->pm) { 623 info = "early type "; 624 callback = pm_late_early_op(dev->type->pm, state); 625 } else if (dev->class && dev->class->pm) { 626 info = "early class "; 627 callback = pm_late_early_op(dev->class->pm, state); 628 } else if (dev->bus && dev->bus->pm) { 629 info = "early bus "; 630 callback = pm_late_early_op(dev->bus->pm, state); 631 } 632 633 if (!callback && dev->driver && dev->driver->pm) { 634 info = "early driver "; 635 callback = pm_late_early_op(dev->driver->pm, state); 636 } 637 638 error = dpm_run_callback(callback, dev, state, info); 639 dev->power.is_late_suspended = false; 640 641 Out: 642 TRACE_RESUME(error); 643 644 pm_runtime_enable(dev); 645 complete_all(&dev->power.completion); 646 return error; 647 } 648 649 static void async_resume_early(void *data, async_cookie_t cookie) 650 { 651 struct device *dev = (struct device *)data; 652 int error; 653 654 error = device_resume_early(dev, pm_transition, true); 655 if (error) 656 pm_dev_err(dev, pm_transition, " async", error); 657 658 put_device(dev); 659 } 660 661 /** 662 * dpm_resume_early - Execute "early resume" callbacks for all devices. 663 * @state: PM transition of the system being carried out. 664 */ 665 void dpm_resume_early(pm_message_t state) 666 { 667 struct device *dev; 668 ktime_t starttime = ktime_get(); 669 670 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 671 mutex_lock(&dpm_list_mtx); 672 pm_transition = state; 673 674 /* 675 * Advanced the async threads upfront, 676 * in case the starting of async threads is 677 * delayed by non-async resuming devices. 678 */ 679 list_for_each_entry(dev, &dpm_late_early_list, power.entry) { 680 reinit_completion(&dev->power.completion); 681 if (is_async(dev)) { 682 get_device(dev); 683 async_schedule(async_resume_early, dev); 684 } 685 } 686 687 while (!list_empty(&dpm_late_early_list)) { 688 dev = to_device(dpm_late_early_list.next); 689 get_device(dev); 690 list_move_tail(&dev->power.entry, &dpm_suspended_list); 691 mutex_unlock(&dpm_list_mtx); 692 693 if (!is_async(dev)) { 694 int error; 695 696 error = device_resume_early(dev, state, false); 697 if (error) { 698 suspend_stats.failed_resume_early++; 699 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 700 dpm_save_failed_dev(dev_name(dev)); 701 pm_dev_err(dev, state, " early", error); 702 } 703 } 704 mutex_lock(&dpm_list_mtx); 705 put_device(dev); 706 } 707 mutex_unlock(&dpm_list_mtx); 708 async_synchronize_full(); 709 dpm_show_time(starttime, state, "early"); 710 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 711 } 712 713 /** 714 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 715 * @state: PM transition of the system being carried out. 716 */ 717 void dpm_resume_start(pm_message_t state) 718 { 719 dpm_resume_noirq(state); 720 dpm_resume_early(state); 721 } 722 EXPORT_SYMBOL_GPL(dpm_resume_start); 723 724 /** 725 * device_resume - Execute "resume" callbacks for given device. 726 * @dev: Device to handle. 727 * @state: PM transition of the system being carried out. 728 * @async: If true, the device is being resumed asynchronously. 729 */ 730 static int device_resume(struct device *dev, pm_message_t state, bool async) 731 { 732 pm_callback_t callback = NULL; 733 char *info = NULL; 734 int error = 0; 735 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 736 737 TRACE_DEVICE(dev); 738 TRACE_RESUME(0); 739 740 if (dev->power.syscore) 741 goto Complete; 742 743 if (dev->power.direct_complete) { 744 /* Match the pm_runtime_disable() in __device_suspend(). */ 745 pm_runtime_enable(dev); 746 goto Complete; 747 } 748 749 dpm_wait(dev->parent, async); 750 dpm_watchdog_set(&wd, dev); 751 device_lock(dev); 752 753 /* 754 * This is a fib. But we'll allow new children to be added below 755 * a resumed device, even if the device hasn't been completed yet. 756 */ 757 dev->power.is_prepared = false; 758 759 if (!dev->power.is_suspended) 760 goto Unlock; 761 762 if (dev->pm_domain) { 763 info = "power domain "; 764 callback = pm_op(&dev->pm_domain->ops, state); 765 goto Driver; 766 } 767 768 if (dev->type && dev->type->pm) { 769 info = "type "; 770 callback = pm_op(dev->type->pm, state); 771 goto Driver; 772 } 773 774 if (dev->class) { 775 if (dev->class->pm) { 776 info = "class "; 777 callback = pm_op(dev->class->pm, state); 778 goto Driver; 779 } else if (dev->class->resume) { 780 info = "legacy class "; 781 callback = dev->class->resume; 782 goto End; 783 } 784 } 785 786 if (dev->bus) { 787 if (dev->bus->pm) { 788 info = "bus "; 789 callback = pm_op(dev->bus->pm, state); 790 } else if (dev->bus->resume) { 791 info = "legacy bus "; 792 callback = dev->bus->resume; 793 goto End; 794 } 795 } 796 797 Driver: 798 if (!callback && dev->driver && dev->driver->pm) { 799 info = "driver "; 800 callback = pm_op(dev->driver->pm, state); 801 } 802 803 End: 804 error = dpm_run_callback(callback, dev, state, info); 805 dev->power.is_suspended = false; 806 807 Unlock: 808 device_unlock(dev); 809 dpm_watchdog_clear(&wd); 810 811 Complete: 812 complete_all(&dev->power.completion); 813 814 TRACE_RESUME(error); 815 816 return error; 817 } 818 819 static void async_resume(void *data, async_cookie_t cookie) 820 { 821 struct device *dev = (struct device *)data; 822 int error; 823 824 error = device_resume(dev, pm_transition, true); 825 if (error) 826 pm_dev_err(dev, pm_transition, " async", error); 827 put_device(dev); 828 } 829 830 /** 831 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 832 * @state: PM transition of the system being carried out. 833 * 834 * Execute the appropriate "resume" callback for all devices whose status 835 * indicates that they are suspended. 836 */ 837 void dpm_resume(pm_message_t state) 838 { 839 struct device *dev; 840 ktime_t starttime = ktime_get(); 841 842 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 843 might_sleep(); 844 845 mutex_lock(&dpm_list_mtx); 846 pm_transition = state; 847 async_error = 0; 848 849 list_for_each_entry(dev, &dpm_suspended_list, power.entry) { 850 reinit_completion(&dev->power.completion); 851 if (is_async(dev)) { 852 get_device(dev); 853 async_schedule(async_resume, dev); 854 } 855 } 856 857 while (!list_empty(&dpm_suspended_list)) { 858 dev = to_device(dpm_suspended_list.next); 859 get_device(dev); 860 if (!is_async(dev)) { 861 int error; 862 863 mutex_unlock(&dpm_list_mtx); 864 865 error = device_resume(dev, state, false); 866 if (error) { 867 suspend_stats.failed_resume++; 868 dpm_save_failed_step(SUSPEND_RESUME); 869 dpm_save_failed_dev(dev_name(dev)); 870 pm_dev_err(dev, state, "", error); 871 } 872 873 mutex_lock(&dpm_list_mtx); 874 } 875 if (!list_empty(&dev->power.entry)) 876 list_move_tail(&dev->power.entry, &dpm_prepared_list); 877 put_device(dev); 878 } 879 mutex_unlock(&dpm_list_mtx); 880 async_synchronize_full(); 881 dpm_show_time(starttime, state, NULL); 882 883 cpufreq_resume(); 884 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 885 } 886 887 /** 888 * device_complete - Complete a PM transition for given device. 889 * @dev: Device to handle. 890 * @state: PM transition of the system being carried out. 891 */ 892 static void device_complete(struct device *dev, pm_message_t state) 893 { 894 void (*callback)(struct device *) = NULL; 895 char *info = NULL; 896 897 if (dev->power.syscore) 898 return; 899 900 device_lock(dev); 901 902 if (dev->pm_domain) { 903 info = "completing power domain "; 904 callback = dev->pm_domain->ops.complete; 905 } else if (dev->type && dev->type->pm) { 906 info = "completing type "; 907 callback = dev->type->pm->complete; 908 } else if (dev->class && dev->class->pm) { 909 info = "completing class "; 910 callback = dev->class->pm->complete; 911 } else if (dev->bus && dev->bus->pm) { 912 info = "completing bus "; 913 callback = dev->bus->pm->complete; 914 } 915 916 if (!callback && dev->driver && dev->driver->pm) { 917 info = "completing driver "; 918 callback = dev->driver->pm->complete; 919 } 920 921 if (callback) { 922 pm_dev_dbg(dev, state, info); 923 trace_device_pm_callback_start(dev, info, state.event); 924 callback(dev); 925 trace_device_pm_callback_end(dev, 0); 926 } 927 928 device_unlock(dev); 929 930 pm_runtime_put(dev); 931 } 932 933 /** 934 * dpm_complete - Complete a PM transition for all non-sysdev devices. 935 * @state: PM transition of the system being carried out. 936 * 937 * Execute the ->complete() callbacks for all devices whose PM status is not 938 * DPM_ON (this allows new devices to be registered). 939 */ 940 void dpm_complete(pm_message_t state) 941 { 942 struct list_head list; 943 944 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 945 might_sleep(); 946 947 INIT_LIST_HEAD(&list); 948 mutex_lock(&dpm_list_mtx); 949 while (!list_empty(&dpm_prepared_list)) { 950 struct device *dev = to_device(dpm_prepared_list.prev); 951 952 get_device(dev); 953 dev->power.is_prepared = false; 954 list_move(&dev->power.entry, &list); 955 mutex_unlock(&dpm_list_mtx); 956 957 device_complete(dev, state); 958 959 mutex_lock(&dpm_list_mtx); 960 put_device(dev); 961 } 962 list_splice(&list, &dpm_list); 963 mutex_unlock(&dpm_list_mtx); 964 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 965 } 966 967 /** 968 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 969 * @state: PM transition of the system being carried out. 970 * 971 * Execute "resume" callbacks for all devices and complete the PM transition of 972 * the system. 973 */ 974 void dpm_resume_end(pm_message_t state) 975 { 976 dpm_resume(state); 977 dpm_complete(state); 978 } 979 EXPORT_SYMBOL_GPL(dpm_resume_end); 980 981 982 /*------------------------- Suspend routines -------------------------*/ 983 984 /** 985 * resume_event - Return a "resume" message for given "suspend" sleep state. 986 * @sleep_state: PM message representing a sleep state. 987 * 988 * Return a PM message representing the resume event corresponding to given 989 * sleep state. 990 */ 991 static pm_message_t resume_event(pm_message_t sleep_state) 992 { 993 switch (sleep_state.event) { 994 case PM_EVENT_SUSPEND: 995 return PMSG_RESUME; 996 case PM_EVENT_FREEZE: 997 case PM_EVENT_QUIESCE: 998 return PMSG_RECOVER; 999 case PM_EVENT_HIBERNATE: 1000 return PMSG_RESTORE; 1001 } 1002 return PMSG_ON; 1003 } 1004 1005 /** 1006 * device_suspend_noirq - Execute a "late suspend" callback for given device. 1007 * @dev: Device to handle. 1008 * @state: PM transition of the system being carried out. 1009 * @async: If true, the device is being suspended asynchronously. 1010 * 1011 * The driver of @dev will not receive interrupts while this function is being 1012 * executed. 1013 */ 1014 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1015 { 1016 pm_callback_t callback = NULL; 1017 char *info = NULL; 1018 int error = 0; 1019 1020 TRACE_DEVICE(dev); 1021 TRACE_SUSPEND(0); 1022 1023 if (async_error) 1024 goto Complete; 1025 1026 if (pm_wakeup_pending()) { 1027 async_error = -EBUSY; 1028 goto Complete; 1029 } 1030 1031 if (dev->power.syscore || dev->power.direct_complete) 1032 goto Complete; 1033 1034 dpm_wait_for_children(dev, async); 1035 1036 if (dev->pm_domain) { 1037 info = "noirq power domain "; 1038 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1039 } else if (dev->type && dev->type->pm) { 1040 info = "noirq type "; 1041 callback = pm_noirq_op(dev->type->pm, state); 1042 } else if (dev->class && dev->class->pm) { 1043 info = "noirq class "; 1044 callback = pm_noirq_op(dev->class->pm, state); 1045 } else if (dev->bus && dev->bus->pm) { 1046 info = "noirq bus "; 1047 callback = pm_noirq_op(dev->bus->pm, state); 1048 } 1049 1050 if (!callback && dev->driver && dev->driver->pm) { 1051 info = "noirq driver "; 1052 callback = pm_noirq_op(dev->driver->pm, state); 1053 } 1054 1055 error = dpm_run_callback(callback, dev, state, info); 1056 if (!error) 1057 dev->power.is_noirq_suspended = true; 1058 else 1059 async_error = error; 1060 1061 Complete: 1062 complete_all(&dev->power.completion); 1063 TRACE_SUSPEND(error); 1064 return error; 1065 } 1066 1067 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1068 { 1069 struct device *dev = (struct device *)data; 1070 int error; 1071 1072 error = __device_suspend_noirq(dev, pm_transition, true); 1073 if (error) { 1074 dpm_save_failed_dev(dev_name(dev)); 1075 pm_dev_err(dev, pm_transition, " async", error); 1076 } 1077 1078 put_device(dev); 1079 } 1080 1081 static int device_suspend_noirq(struct device *dev) 1082 { 1083 reinit_completion(&dev->power.completion); 1084 1085 if (is_async(dev)) { 1086 get_device(dev); 1087 async_schedule(async_suspend_noirq, dev); 1088 return 0; 1089 } 1090 return __device_suspend_noirq(dev, pm_transition, false); 1091 } 1092 1093 /** 1094 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1095 * @state: PM transition of the system being carried out. 1096 * 1097 * Prevent device drivers from receiving interrupts and call the "noirq" suspend 1098 * handlers for all non-sysdev devices. 1099 */ 1100 int dpm_suspend_noirq(pm_message_t state) 1101 { 1102 ktime_t starttime = ktime_get(); 1103 int error = 0; 1104 1105 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1106 cpuidle_pause(); 1107 suspend_device_irqs(); 1108 mutex_lock(&dpm_list_mtx); 1109 pm_transition = state; 1110 async_error = 0; 1111 1112 while (!list_empty(&dpm_late_early_list)) { 1113 struct device *dev = to_device(dpm_late_early_list.prev); 1114 1115 get_device(dev); 1116 mutex_unlock(&dpm_list_mtx); 1117 1118 error = device_suspend_noirq(dev); 1119 1120 mutex_lock(&dpm_list_mtx); 1121 if (error) { 1122 pm_dev_err(dev, state, " noirq", error); 1123 dpm_save_failed_dev(dev_name(dev)); 1124 put_device(dev); 1125 break; 1126 } 1127 if (!list_empty(&dev->power.entry)) 1128 list_move(&dev->power.entry, &dpm_noirq_list); 1129 put_device(dev); 1130 1131 if (async_error) 1132 break; 1133 } 1134 mutex_unlock(&dpm_list_mtx); 1135 async_synchronize_full(); 1136 if (!error) 1137 error = async_error; 1138 1139 if (error) { 1140 suspend_stats.failed_suspend_noirq++; 1141 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1142 dpm_resume_noirq(resume_event(state)); 1143 } else { 1144 dpm_show_time(starttime, state, "noirq"); 1145 } 1146 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1147 return error; 1148 } 1149 1150 /** 1151 * device_suspend_late - Execute a "late suspend" callback for given device. 1152 * @dev: Device to handle. 1153 * @state: PM transition of the system being carried out. 1154 * @async: If true, the device is being suspended asynchronously. 1155 * 1156 * Runtime PM is disabled for @dev while this function is being executed. 1157 */ 1158 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1159 { 1160 pm_callback_t callback = NULL; 1161 char *info = NULL; 1162 int error = 0; 1163 1164 TRACE_DEVICE(dev); 1165 TRACE_SUSPEND(0); 1166 1167 __pm_runtime_disable(dev, false); 1168 1169 if (async_error) 1170 goto Complete; 1171 1172 if (pm_wakeup_pending()) { 1173 async_error = -EBUSY; 1174 goto Complete; 1175 } 1176 1177 if (dev->power.syscore || dev->power.direct_complete) 1178 goto Complete; 1179 1180 dpm_wait_for_children(dev, async); 1181 1182 if (dev->pm_domain) { 1183 info = "late power domain "; 1184 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1185 } else if (dev->type && dev->type->pm) { 1186 info = "late type "; 1187 callback = pm_late_early_op(dev->type->pm, state); 1188 } else if (dev->class && dev->class->pm) { 1189 info = "late class "; 1190 callback = pm_late_early_op(dev->class->pm, state); 1191 } else if (dev->bus && dev->bus->pm) { 1192 info = "late bus "; 1193 callback = pm_late_early_op(dev->bus->pm, state); 1194 } 1195 1196 if (!callback && dev->driver && dev->driver->pm) { 1197 info = "late driver "; 1198 callback = pm_late_early_op(dev->driver->pm, state); 1199 } 1200 1201 error = dpm_run_callback(callback, dev, state, info); 1202 if (!error) 1203 dev->power.is_late_suspended = true; 1204 else 1205 async_error = error; 1206 1207 Complete: 1208 TRACE_SUSPEND(error); 1209 complete_all(&dev->power.completion); 1210 return error; 1211 } 1212 1213 static void async_suspend_late(void *data, async_cookie_t cookie) 1214 { 1215 struct device *dev = (struct device *)data; 1216 int error; 1217 1218 error = __device_suspend_late(dev, pm_transition, true); 1219 if (error) { 1220 dpm_save_failed_dev(dev_name(dev)); 1221 pm_dev_err(dev, pm_transition, " async", error); 1222 } 1223 put_device(dev); 1224 } 1225 1226 static int device_suspend_late(struct device *dev) 1227 { 1228 reinit_completion(&dev->power.completion); 1229 1230 if (is_async(dev)) { 1231 get_device(dev); 1232 async_schedule(async_suspend_late, dev); 1233 return 0; 1234 } 1235 1236 return __device_suspend_late(dev, pm_transition, false); 1237 } 1238 1239 /** 1240 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1241 * @state: PM transition of the system being carried out. 1242 */ 1243 int dpm_suspend_late(pm_message_t state) 1244 { 1245 ktime_t starttime = ktime_get(); 1246 int error = 0; 1247 1248 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1249 mutex_lock(&dpm_list_mtx); 1250 pm_transition = state; 1251 async_error = 0; 1252 1253 while (!list_empty(&dpm_suspended_list)) { 1254 struct device *dev = to_device(dpm_suspended_list.prev); 1255 1256 get_device(dev); 1257 mutex_unlock(&dpm_list_mtx); 1258 1259 error = device_suspend_late(dev); 1260 1261 mutex_lock(&dpm_list_mtx); 1262 if (error) { 1263 pm_dev_err(dev, state, " late", error); 1264 dpm_save_failed_dev(dev_name(dev)); 1265 put_device(dev); 1266 break; 1267 } 1268 if (!list_empty(&dev->power.entry)) 1269 list_move(&dev->power.entry, &dpm_late_early_list); 1270 put_device(dev); 1271 1272 if (async_error) 1273 break; 1274 } 1275 mutex_unlock(&dpm_list_mtx); 1276 async_synchronize_full(); 1277 if (!error) 1278 error = async_error; 1279 if (error) { 1280 suspend_stats.failed_suspend_late++; 1281 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1282 dpm_resume_early(resume_event(state)); 1283 } else { 1284 dpm_show_time(starttime, state, "late"); 1285 } 1286 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1287 return error; 1288 } 1289 1290 /** 1291 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1292 * @state: PM transition of the system being carried out. 1293 */ 1294 int dpm_suspend_end(pm_message_t state) 1295 { 1296 int error = dpm_suspend_late(state); 1297 if (error) 1298 return error; 1299 1300 error = dpm_suspend_noirq(state); 1301 if (error) { 1302 dpm_resume_early(resume_event(state)); 1303 return error; 1304 } 1305 1306 return 0; 1307 } 1308 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1309 1310 /** 1311 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1312 * @dev: Device to suspend. 1313 * @state: PM transition of the system being carried out. 1314 * @cb: Suspend callback to execute. 1315 * @info: string description of caller. 1316 */ 1317 static int legacy_suspend(struct device *dev, pm_message_t state, 1318 int (*cb)(struct device *dev, pm_message_t state), 1319 char *info) 1320 { 1321 int error; 1322 ktime_t calltime; 1323 1324 calltime = initcall_debug_start(dev); 1325 1326 trace_device_pm_callback_start(dev, info, state.event); 1327 error = cb(dev, state); 1328 trace_device_pm_callback_end(dev, error); 1329 suspend_report_result(cb, error); 1330 1331 initcall_debug_report(dev, calltime, error, state, info); 1332 1333 return error; 1334 } 1335 1336 /** 1337 * device_suspend - Execute "suspend" callbacks for given device. 1338 * @dev: Device to handle. 1339 * @state: PM transition of the system being carried out. 1340 * @async: If true, the device is being suspended asynchronously. 1341 */ 1342 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1343 { 1344 pm_callback_t callback = NULL; 1345 char *info = NULL; 1346 int error = 0; 1347 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1348 1349 TRACE_DEVICE(dev); 1350 TRACE_SUSPEND(0); 1351 1352 dpm_wait_for_children(dev, async); 1353 1354 if (async_error) 1355 goto Complete; 1356 1357 /* 1358 * If a device configured to wake up the system from sleep states 1359 * has been suspended at run time and there's a resume request pending 1360 * for it, this is equivalent to the device signaling wakeup, so the 1361 * system suspend operation should be aborted. 1362 */ 1363 if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) 1364 pm_wakeup_event(dev, 0); 1365 1366 if (pm_wakeup_pending()) { 1367 async_error = -EBUSY; 1368 goto Complete; 1369 } 1370 1371 if (dev->power.syscore) 1372 goto Complete; 1373 1374 if (dev->power.direct_complete) { 1375 if (pm_runtime_status_suspended(dev)) { 1376 pm_runtime_disable(dev); 1377 if (pm_runtime_suspended_if_enabled(dev)) 1378 goto Complete; 1379 1380 pm_runtime_enable(dev); 1381 } 1382 dev->power.direct_complete = false; 1383 } 1384 1385 dpm_watchdog_set(&wd, dev); 1386 device_lock(dev); 1387 1388 if (dev->pm_domain) { 1389 info = "power domain "; 1390 callback = pm_op(&dev->pm_domain->ops, state); 1391 goto Run; 1392 } 1393 1394 if (dev->type && dev->type->pm) { 1395 info = "type "; 1396 callback = pm_op(dev->type->pm, state); 1397 goto Run; 1398 } 1399 1400 if (dev->class) { 1401 if (dev->class->pm) { 1402 info = "class "; 1403 callback = pm_op(dev->class->pm, state); 1404 goto Run; 1405 } else if (dev->class->suspend) { 1406 pm_dev_dbg(dev, state, "legacy class "); 1407 error = legacy_suspend(dev, state, dev->class->suspend, 1408 "legacy class "); 1409 goto End; 1410 } 1411 } 1412 1413 if (dev->bus) { 1414 if (dev->bus->pm) { 1415 info = "bus "; 1416 callback = pm_op(dev->bus->pm, state); 1417 } else if (dev->bus->suspend) { 1418 pm_dev_dbg(dev, state, "legacy bus "); 1419 error = legacy_suspend(dev, state, dev->bus->suspend, 1420 "legacy bus "); 1421 goto End; 1422 } 1423 } 1424 1425 Run: 1426 if (!callback && dev->driver && dev->driver->pm) { 1427 info = "driver "; 1428 callback = pm_op(dev->driver->pm, state); 1429 } 1430 1431 error = dpm_run_callback(callback, dev, state, info); 1432 1433 End: 1434 if (!error) { 1435 struct device *parent = dev->parent; 1436 1437 dev->power.is_suspended = true; 1438 if (parent) { 1439 spin_lock_irq(&parent->power.lock); 1440 1441 dev->parent->power.direct_complete = false; 1442 if (dev->power.wakeup_path 1443 && !dev->parent->power.ignore_children) 1444 dev->parent->power.wakeup_path = true; 1445 1446 spin_unlock_irq(&parent->power.lock); 1447 } 1448 } 1449 1450 device_unlock(dev); 1451 dpm_watchdog_clear(&wd); 1452 1453 Complete: 1454 complete_all(&dev->power.completion); 1455 if (error) 1456 async_error = error; 1457 1458 TRACE_SUSPEND(error); 1459 return error; 1460 } 1461 1462 static void async_suspend(void *data, async_cookie_t cookie) 1463 { 1464 struct device *dev = (struct device *)data; 1465 int error; 1466 1467 error = __device_suspend(dev, pm_transition, true); 1468 if (error) { 1469 dpm_save_failed_dev(dev_name(dev)); 1470 pm_dev_err(dev, pm_transition, " async", error); 1471 } 1472 1473 put_device(dev); 1474 } 1475 1476 static int device_suspend(struct device *dev) 1477 { 1478 reinit_completion(&dev->power.completion); 1479 1480 if (is_async(dev)) { 1481 get_device(dev); 1482 async_schedule(async_suspend, dev); 1483 return 0; 1484 } 1485 1486 return __device_suspend(dev, pm_transition, false); 1487 } 1488 1489 /** 1490 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1491 * @state: PM transition of the system being carried out. 1492 */ 1493 int dpm_suspend(pm_message_t state) 1494 { 1495 ktime_t starttime = ktime_get(); 1496 int error = 0; 1497 1498 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1499 might_sleep(); 1500 1501 cpufreq_suspend(); 1502 1503 mutex_lock(&dpm_list_mtx); 1504 pm_transition = state; 1505 async_error = 0; 1506 while (!list_empty(&dpm_prepared_list)) { 1507 struct device *dev = to_device(dpm_prepared_list.prev); 1508 1509 get_device(dev); 1510 mutex_unlock(&dpm_list_mtx); 1511 1512 error = device_suspend(dev); 1513 1514 mutex_lock(&dpm_list_mtx); 1515 if (error) { 1516 pm_dev_err(dev, state, "", error); 1517 dpm_save_failed_dev(dev_name(dev)); 1518 put_device(dev); 1519 break; 1520 } 1521 if (!list_empty(&dev->power.entry)) 1522 list_move(&dev->power.entry, &dpm_suspended_list); 1523 put_device(dev); 1524 if (async_error) 1525 break; 1526 } 1527 mutex_unlock(&dpm_list_mtx); 1528 async_synchronize_full(); 1529 if (!error) 1530 error = async_error; 1531 if (error) { 1532 suspend_stats.failed_suspend++; 1533 dpm_save_failed_step(SUSPEND_SUSPEND); 1534 } else 1535 dpm_show_time(starttime, state, NULL); 1536 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1537 return error; 1538 } 1539 1540 /** 1541 * device_prepare - Prepare a device for system power transition. 1542 * @dev: Device to handle. 1543 * @state: PM transition of the system being carried out. 1544 * 1545 * Execute the ->prepare() callback(s) for given device. No new children of the 1546 * device may be registered after this function has returned. 1547 */ 1548 static int device_prepare(struct device *dev, pm_message_t state) 1549 { 1550 int (*callback)(struct device *) = NULL; 1551 char *info = NULL; 1552 int ret = 0; 1553 1554 if (dev->power.syscore) 1555 return 0; 1556 1557 /* 1558 * If a device's parent goes into runtime suspend at the wrong time, 1559 * it won't be possible to resume the device. To prevent this we 1560 * block runtime suspend here, during the prepare phase, and allow 1561 * it again during the complete phase. 1562 */ 1563 pm_runtime_get_noresume(dev); 1564 1565 device_lock(dev); 1566 1567 dev->power.wakeup_path = device_may_wakeup(dev); 1568 1569 if (dev->pm_domain) { 1570 info = "preparing power domain "; 1571 callback = dev->pm_domain->ops.prepare; 1572 } else if (dev->type && dev->type->pm) { 1573 info = "preparing type "; 1574 callback = dev->type->pm->prepare; 1575 } else if (dev->class && dev->class->pm) { 1576 info = "preparing class "; 1577 callback = dev->class->pm->prepare; 1578 } else if (dev->bus && dev->bus->pm) { 1579 info = "preparing bus "; 1580 callback = dev->bus->pm->prepare; 1581 } 1582 1583 if (!callback && dev->driver && dev->driver->pm) { 1584 info = "preparing driver "; 1585 callback = dev->driver->pm->prepare; 1586 } 1587 1588 if (callback) { 1589 trace_device_pm_callback_start(dev, info, state.event); 1590 ret = callback(dev); 1591 trace_device_pm_callback_end(dev, ret); 1592 } 1593 1594 device_unlock(dev); 1595 1596 if (ret < 0) { 1597 suspend_report_result(callback, ret); 1598 pm_runtime_put(dev); 1599 return ret; 1600 } 1601 /* 1602 * A positive return value from ->prepare() means "this device appears 1603 * to be runtime-suspended and its state is fine, so if it really is 1604 * runtime-suspended, you can leave it in that state provided that you 1605 * will do the same thing with all of its descendants". This only 1606 * applies to suspend transitions, however. 1607 */ 1608 spin_lock_irq(&dev->power.lock); 1609 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND; 1610 spin_unlock_irq(&dev->power.lock); 1611 return 0; 1612 } 1613 1614 /** 1615 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1616 * @state: PM transition of the system being carried out. 1617 * 1618 * Execute the ->prepare() callback(s) for all devices. 1619 */ 1620 int dpm_prepare(pm_message_t state) 1621 { 1622 int error = 0; 1623 1624 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1625 might_sleep(); 1626 1627 mutex_lock(&dpm_list_mtx); 1628 while (!list_empty(&dpm_list)) { 1629 struct device *dev = to_device(dpm_list.next); 1630 1631 get_device(dev); 1632 mutex_unlock(&dpm_list_mtx); 1633 1634 error = device_prepare(dev, state); 1635 1636 mutex_lock(&dpm_list_mtx); 1637 if (error) { 1638 if (error == -EAGAIN) { 1639 put_device(dev); 1640 error = 0; 1641 continue; 1642 } 1643 printk(KERN_INFO "PM: Device %s not prepared " 1644 "for power transition: code %d\n", 1645 dev_name(dev), error); 1646 put_device(dev); 1647 break; 1648 } 1649 dev->power.is_prepared = true; 1650 if (!list_empty(&dev->power.entry)) 1651 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1652 put_device(dev); 1653 } 1654 mutex_unlock(&dpm_list_mtx); 1655 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1656 return error; 1657 } 1658 1659 /** 1660 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1661 * @state: PM transition of the system being carried out. 1662 * 1663 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1664 * callbacks for them. 1665 */ 1666 int dpm_suspend_start(pm_message_t state) 1667 { 1668 int error; 1669 1670 error = dpm_prepare(state); 1671 if (error) { 1672 suspend_stats.failed_prepare++; 1673 dpm_save_failed_step(SUSPEND_PREPARE); 1674 } else 1675 error = dpm_suspend(state); 1676 return error; 1677 } 1678 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1679 1680 void __suspend_report_result(const char *function, void *fn, int ret) 1681 { 1682 if (ret) 1683 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret); 1684 } 1685 EXPORT_SYMBOL_GPL(__suspend_report_result); 1686 1687 /** 1688 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1689 * @dev: Device to wait for. 1690 * @subordinate: Device that needs to wait for @dev. 1691 */ 1692 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1693 { 1694 dpm_wait(dev, subordinate->power.async_suspend); 1695 return async_error; 1696 } 1697 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1698 1699 /** 1700 * dpm_for_each_dev - device iterator. 1701 * @data: data for the callback. 1702 * @fn: function to be called for each device. 1703 * 1704 * Iterate over devices in dpm_list, and call @fn for each device, 1705 * passing it @data. 1706 */ 1707 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1708 { 1709 struct device *dev; 1710 1711 if (!fn) 1712 return; 1713 1714 device_pm_lock(); 1715 list_for_each_entry(dev, &dpm_list, power.entry) 1716 fn(dev, data); 1717 device_pm_unlock(); 1718 } 1719 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1720