xref: /openbmc/linux/drivers/base/power/main.c (revision 31b90347)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpuidle.h>
33 #include <linux/timer.h>
34 
35 #include "../base.h"
36 #include "power.h"
37 
38 typedef int (*pm_callback_t)(struct device *);
39 
40 /*
41  * The entries in the dpm_list list are in a depth first order, simply
42  * because children are guaranteed to be discovered after parents, and
43  * are inserted at the back of the list on discovery.
44  *
45  * Since device_pm_add() may be called with a device lock held,
46  * we must never try to acquire a device lock while holding
47  * dpm_list_mutex.
48  */
49 
50 LIST_HEAD(dpm_list);
51 static LIST_HEAD(dpm_prepared_list);
52 static LIST_HEAD(dpm_suspended_list);
53 static LIST_HEAD(dpm_late_early_list);
54 static LIST_HEAD(dpm_noirq_list);
55 
56 struct suspend_stats suspend_stats;
57 static DEFINE_MUTEX(dpm_list_mtx);
58 static pm_message_t pm_transition;
59 
60 static int async_error;
61 
62 static char *pm_verb(int event)
63 {
64 	switch (event) {
65 	case PM_EVENT_SUSPEND:
66 		return "suspend";
67 	case PM_EVENT_RESUME:
68 		return "resume";
69 	case PM_EVENT_FREEZE:
70 		return "freeze";
71 	case PM_EVENT_QUIESCE:
72 		return "quiesce";
73 	case PM_EVENT_HIBERNATE:
74 		return "hibernate";
75 	case PM_EVENT_THAW:
76 		return "thaw";
77 	case PM_EVENT_RESTORE:
78 		return "restore";
79 	case PM_EVENT_RECOVER:
80 		return "recover";
81 	default:
82 		return "(unknown PM event)";
83 	}
84 }
85 
86 /**
87  * device_pm_sleep_init - Initialize system suspend-related device fields.
88  * @dev: Device object being initialized.
89  */
90 void device_pm_sleep_init(struct device *dev)
91 {
92 	dev->power.is_prepared = false;
93 	dev->power.is_suspended = false;
94 	init_completion(&dev->power.completion);
95 	complete_all(&dev->power.completion);
96 	dev->power.wakeup = NULL;
97 	INIT_LIST_HEAD(&dev->power.entry);
98 }
99 
100 /**
101  * device_pm_lock - Lock the list of active devices used by the PM core.
102  */
103 void device_pm_lock(void)
104 {
105 	mutex_lock(&dpm_list_mtx);
106 }
107 
108 /**
109  * device_pm_unlock - Unlock the list of active devices used by the PM core.
110  */
111 void device_pm_unlock(void)
112 {
113 	mutex_unlock(&dpm_list_mtx);
114 }
115 
116 /**
117  * device_pm_add - Add a device to the PM core's list of active devices.
118  * @dev: Device to add to the list.
119  */
120 void device_pm_add(struct device *dev)
121 {
122 	pr_debug("PM: Adding info for %s:%s\n",
123 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
124 	mutex_lock(&dpm_list_mtx);
125 	if (dev->parent && dev->parent->power.is_prepared)
126 		dev_warn(dev, "parent %s should not be sleeping\n",
127 			dev_name(dev->parent));
128 	list_add_tail(&dev->power.entry, &dpm_list);
129 	mutex_unlock(&dpm_list_mtx);
130 }
131 
132 /**
133  * device_pm_remove - Remove a device from the PM core's list of active devices.
134  * @dev: Device to be removed from the list.
135  */
136 void device_pm_remove(struct device *dev)
137 {
138 	pr_debug("PM: Removing info for %s:%s\n",
139 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
140 	complete_all(&dev->power.completion);
141 	mutex_lock(&dpm_list_mtx);
142 	list_del_init(&dev->power.entry);
143 	mutex_unlock(&dpm_list_mtx);
144 	device_wakeup_disable(dev);
145 	pm_runtime_remove(dev);
146 }
147 
148 /**
149  * device_pm_move_before - Move device in the PM core's list of active devices.
150  * @deva: Device to move in dpm_list.
151  * @devb: Device @deva should come before.
152  */
153 void device_pm_move_before(struct device *deva, struct device *devb)
154 {
155 	pr_debug("PM: Moving %s:%s before %s:%s\n",
156 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
157 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
158 	/* Delete deva from dpm_list and reinsert before devb. */
159 	list_move_tail(&deva->power.entry, &devb->power.entry);
160 }
161 
162 /**
163  * device_pm_move_after - Move device in the PM core's list of active devices.
164  * @deva: Device to move in dpm_list.
165  * @devb: Device @deva should come after.
166  */
167 void device_pm_move_after(struct device *deva, struct device *devb)
168 {
169 	pr_debug("PM: Moving %s:%s after %s:%s\n",
170 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
171 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
172 	/* Delete deva from dpm_list and reinsert after devb. */
173 	list_move(&deva->power.entry, &devb->power.entry);
174 }
175 
176 /**
177  * device_pm_move_last - Move device to end of the PM core's list of devices.
178  * @dev: Device to move in dpm_list.
179  */
180 void device_pm_move_last(struct device *dev)
181 {
182 	pr_debug("PM: Moving %s:%s to end of list\n",
183 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
184 	list_move_tail(&dev->power.entry, &dpm_list);
185 }
186 
187 static ktime_t initcall_debug_start(struct device *dev)
188 {
189 	ktime_t calltime = ktime_set(0, 0);
190 
191 	if (pm_print_times_enabled) {
192 		pr_info("calling  %s+ @ %i, parent: %s\n",
193 			dev_name(dev), task_pid_nr(current),
194 			dev->parent ? dev_name(dev->parent) : "none");
195 		calltime = ktime_get();
196 	}
197 
198 	return calltime;
199 }
200 
201 static void initcall_debug_report(struct device *dev, ktime_t calltime,
202 				  int error, pm_message_t state, char *info)
203 {
204 	ktime_t rettime;
205 	s64 nsecs;
206 
207 	rettime = ktime_get();
208 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
209 
210 	if (pm_print_times_enabled) {
211 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
212 			error, (unsigned long long)nsecs >> 10);
213 	}
214 
215 	trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event),
216 				    error);
217 }
218 
219 /**
220  * dpm_wait - Wait for a PM operation to complete.
221  * @dev: Device to wait for.
222  * @async: If unset, wait only if the device's power.async_suspend flag is set.
223  */
224 static void dpm_wait(struct device *dev, bool async)
225 {
226 	if (!dev)
227 		return;
228 
229 	if (async || (pm_async_enabled && dev->power.async_suspend))
230 		wait_for_completion(&dev->power.completion);
231 }
232 
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
234 {
235 	dpm_wait(dev, *((bool *)async_ptr));
236 	return 0;
237 }
238 
239 static void dpm_wait_for_children(struct device *dev, bool async)
240 {
241        device_for_each_child(dev, &async, dpm_wait_fn);
242 }
243 
244 /**
245  * pm_op - Return the PM operation appropriate for given PM event.
246  * @ops: PM operations to choose from.
247  * @state: PM transition of the system being carried out.
248  */
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
250 {
251 	switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253 	case PM_EVENT_SUSPEND:
254 		return ops->suspend;
255 	case PM_EVENT_RESUME:
256 		return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259 	case PM_EVENT_FREEZE:
260 	case PM_EVENT_QUIESCE:
261 		return ops->freeze;
262 	case PM_EVENT_HIBERNATE:
263 		return ops->poweroff;
264 	case PM_EVENT_THAW:
265 	case PM_EVENT_RECOVER:
266 		return ops->thaw;
267 		break;
268 	case PM_EVENT_RESTORE:
269 		return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
271 	}
272 
273 	return NULL;
274 }
275 
276 /**
277  * pm_late_early_op - Return the PM operation appropriate for given PM event.
278  * @ops: PM operations to choose from.
279  * @state: PM transition of the system being carried out.
280  *
281  * Runtime PM is disabled for @dev while this function is being executed.
282  */
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284 				      pm_message_t state)
285 {
286 	switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288 	case PM_EVENT_SUSPEND:
289 		return ops->suspend_late;
290 	case PM_EVENT_RESUME:
291 		return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294 	case PM_EVENT_FREEZE:
295 	case PM_EVENT_QUIESCE:
296 		return ops->freeze_late;
297 	case PM_EVENT_HIBERNATE:
298 		return ops->poweroff_late;
299 	case PM_EVENT_THAW:
300 	case PM_EVENT_RECOVER:
301 		return ops->thaw_early;
302 	case PM_EVENT_RESTORE:
303 		return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
305 	}
306 
307 	return NULL;
308 }
309 
310 /**
311  * pm_noirq_op - Return the PM operation appropriate for given PM event.
312  * @ops: PM operations to choose from.
313  * @state: PM transition of the system being carried out.
314  *
315  * The driver of @dev will not receive interrupts while this function is being
316  * executed.
317  */
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
319 {
320 	switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322 	case PM_EVENT_SUSPEND:
323 		return ops->suspend_noirq;
324 	case PM_EVENT_RESUME:
325 		return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328 	case PM_EVENT_FREEZE:
329 	case PM_EVENT_QUIESCE:
330 		return ops->freeze_noirq;
331 	case PM_EVENT_HIBERNATE:
332 		return ops->poweroff_noirq;
333 	case PM_EVENT_THAW:
334 	case PM_EVENT_RECOVER:
335 		return ops->thaw_noirq;
336 	case PM_EVENT_RESTORE:
337 		return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
339 	}
340 
341 	return NULL;
342 }
343 
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
345 {
346 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348 		", may wakeup" : "");
349 }
350 
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352 			int error)
353 {
354 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355 		dev_name(dev), pm_verb(state.event), info, error);
356 }
357 
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
359 {
360 	ktime_t calltime;
361 	u64 usecs64;
362 	int usecs;
363 
364 	calltime = ktime_get();
365 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366 	do_div(usecs64, NSEC_PER_USEC);
367 	usecs = usecs64;
368 	if (usecs == 0)
369 		usecs = 1;
370 	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371 		info ?: "", info ? " " : "", pm_verb(state.event),
372 		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
373 }
374 
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376 			    pm_message_t state, char *info)
377 {
378 	ktime_t calltime;
379 	int error;
380 
381 	if (!cb)
382 		return 0;
383 
384 	calltime = initcall_debug_start(dev);
385 
386 	pm_dev_dbg(dev, state, info);
387 	error = cb(dev);
388 	suspend_report_result(cb, error);
389 
390 	initcall_debug_report(dev, calltime, error, state, info);
391 
392 	return error;
393 }
394 
395 #ifdef CONFIG_DPM_WATCHDOG
396 struct dpm_watchdog {
397 	struct device		*dev;
398 	struct task_struct	*tsk;
399 	struct timer_list	timer;
400 };
401 
402 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
403 	struct dpm_watchdog wd
404 
405 /**
406  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
407  * @data: Watchdog object address.
408  *
409  * Called when a driver has timed out suspending or resuming.
410  * There's not much we can do here to recover so panic() to
411  * capture a crash-dump in pstore.
412  */
413 static void dpm_watchdog_handler(unsigned long data)
414 {
415 	struct dpm_watchdog *wd = (void *)data;
416 
417 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
418 	show_stack(wd->tsk, NULL);
419 	panic("%s %s: unrecoverable failure\n",
420 		dev_driver_string(wd->dev), dev_name(wd->dev));
421 }
422 
423 /**
424  * dpm_watchdog_set - Enable pm watchdog for given device.
425  * @wd: Watchdog. Must be allocated on the stack.
426  * @dev: Device to handle.
427  */
428 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
429 {
430 	struct timer_list *timer = &wd->timer;
431 
432 	wd->dev = dev;
433 	wd->tsk = current;
434 
435 	init_timer_on_stack(timer);
436 	/* use same timeout value for both suspend and resume */
437 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
438 	timer->function = dpm_watchdog_handler;
439 	timer->data = (unsigned long)wd;
440 	add_timer(timer);
441 }
442 
443 /**
444  * dpm_watchdog_clear - Disable suspend/resume watchdog.
445  * @wd: Watchdog to disable.
446  */
447 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
448 {
449 	struct timer_list *timer = &wd->timer;
450 
451 	del_timer_sync(timer);
452 	destroy_timer_on_stack(timer);
453 }
454 #else
455 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
456 #define dpm_watchdog_set(x, y)
457 #define dpm_watchdog_clear(x)
458 #endif
459 
460 /*------------------------- Resume routines -------------------------*/
461 
462 /**
463  * device_resume_noirq - Execute an "early resume" callback for given device.
464  * @dev: Device to handle.
465  * @state: PM transition of the system being carried out.
466  *
467  * The driver of @dev will not receive interrupts while this function is being
468  * executed.
469  */
470 static int device_resume_noirq(struct device *dev, pm_message_t state)
471 {
472 	pm_callback_t callback = NULL;
473 	char *info = NULL;
474 	int error = 0;
475 
476 	TRACE_DEVICE(dev);
477 	TRACE_RESUME(0);
478 
479 	if (dev->power.syscore)
480 		goto Out;
481 
482 	if (dev->pm_domain) {
483 		info = "noirq power domain ";
484 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
485 	} else if (dev->type && dev->type->pm) {
486 		info = "noirq type ";
487 		callback = pm_noirq_op(dev->type->pm, state);
488 	} else if (dev->class && dev->class->pm) {
489 		info = "noirq class ";
490 		callback = pm_noirq_op(dev->class->pm, state);
491 	} else if (dev->bus && dev->bus->pm) {
492 		info = "noirq bus ";
493 		callback = pm_noirq_op(dev->bus->pm, state);
494 	}
495 
496 	if (!callback && dev->driver && dev->driver->pm) {
497 		info = "noirq driver ";
498 		callback = pm_noirq_op(dev->driver->pm, state);
499 	}
500 
501 	error = dpm_run_callback(callback, dev, state, info);
502 
503  Out:
504 	TRACE_RESUME(error);
505 	return error;
506 }
507 
508 /**
509  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
510  * @state: PM transition of the system being carried out.
511  *
512  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
513  * enable device drivers to receive interrupts.
514  */
515 static void dpm_resume_noirq(pm_message_t state)
516 {
517 	ktime_t starttime = ktime_get();
518 
519 	mutex_lock(&dpm_list_mtx);
520 	while (!list_empty(&dpm_noirq_list)) {
521 		struct device *dev = to_device(dpm_noirq_list.next);
522 		int error;
523 
524 		get_device(dev);
525 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
526 		mutex_unlock(&dpm_list_mtx);
527 
528 		error = device_resume_noirq(dev, state);
529 		if (error) {
530 			suspend_stats.failed_resume_noirq++;
531 			dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
532 			dpm_save_failed_dev(dev_name(dev));
533 			pm_dev_err(dev, state, " noirq", error);
534 		}
535 
536 		mutex_lock(&dpm_list_mtx);
537 		put_device(dev);
538 	}
539 	mutex_unlock(&dpm_list_mtx);
540 	dpm_show_time(starttime, state, "noirq");
541 	resume_device_irqs();
542 	cpuidle_resume();
543 }
544 
545 /**
546  * device_resume_early - Execute an "early resume" callback for given device.
547  * @dev: Device to handle.
548  * @state: PM transition of the system being carried out.
549  *
550  * Runtime PM is disabled for @dev while this function is being executed.
551  */
552 static int device_resume_early(struct device *dev, pm_message_t state)
553 {
554 	pm_callback_t callback = NULL;
555 	char *info = NULL;
556 	int error = 0;
557 
558 	TRACE_DEVICE(dev);
559 	TRACE_RESUME(0);
560 
561 	if (dev->power.syscore)
562 		goto Out;
563 
564 	if (dev->pm_domain) {
565 		info = "early power domain ";
566 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
567 	} else if (dev->type && dev->type->pm) {
568 		info = "early type ";
569 		callback = pm_late_early_op(dev->type->pm, state);
570 	} else if (dev->class && dev->class->pm) {
571 		info = "early class ";
572 		callback = pm_late_early_op(dev->class->pm, state);
573 	} else if (dev->bus && dev->bus->pm) {
574 		info = "early bus ";
575 		callback = pm_late_early_op(dev->bus->pm, state);
576 	}
577 
578 	if (!callback && dev->driver && dev->driver->pm) {
579 		info = "early driver ";
580 		callback = pm_late_early_op(dev->driver->pm, state);
581 	}
582 
583 	error = dpm_run_callback(callback, dev, state, info);
584 
585  Out:
586 	TRACE_RESUME(error);
587 
588 	pm_runtime_enable(dev);
589 	return error;
590 }
591 
592 /**
593  * dpm_resume_early - Execute "early resume" callbacks for all devices.
594  * @state: PM transition of the system being carried out.
595  */
596 static void dpm_resume_early(pm_message_t state)
597 {
598 	ktime_t starttime = ktime_get();
599 
600 	mutex_lock(&dpm_list_mtx);
601 	while (!list_empty(&dpm_late_early_list)) {
602 		struct device *dev = to_device(dpm_late_early_list.next);
603 		int error;
604 
605 		get_device(dev);
606 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
607 		mutex_unlock(&dpm_list_mtx);
608 
609 		error = device_resume_early(dev, state);
610 		if (error) {
611 			suspend_stats.failed_resume_early++;
612 			dpm_save_failed_step(SUSPEND_RESUME_EARLY);
613 			dpm_save_failed_dev(dev_name(dev));
614 			pm_dev_err(dev, state, " early", error);
615 		}
616 
617 		mutex_lock(&dpm_list_mtx);
618 		put_device(dev);
619 	}
620 	mutex_unlock(&dpm_list_mtx);
621 	dpm_show_time(starttime, state, "early");
622 }
623 
624 /**
625  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
626  * @state: PM transition of the system being carried out.
627  */
628 void dpm_resume_start(pm_message_t state)
629 {
630 	dpm_resume_noirq(state);
631 	dpm_resume_early(state);
632 }
633 EXPORT_SYMBOL_GPL(dpm_resume_start);
634 
635 /**
636  * device_resume - Execute "resume" callbacks for given device.
637  * @dev: Device to handle.
638  * @state: PM transition of the system being carried out.
639  * @async: If true, the device is being resumed asynchronously.
640  */
641 static int device_resume(struct device *dev, pm_message_t state, bool async)
642 {
643 	pm_callback_t callback = NULL;
644 	char *info = NULL;
645 	int error = 0;
646 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
647 
648 	TRACE_DEVICE(dev);
649 	TRACE_RESUME(0);
650 
651 	if (dev->power.syscore)
652 		goto Complete;
653 
654 	dpm_wait(dev->parent, async);
655 	dpm_watchdog_set(&wd, dev);
656 	device_lock(dev);
657 
658 	/*
659 	 * This is a fib.  But we'll allow new children to be added below
660 	 * a resumed device, even if the device hasn't been completed yet.
661 	 */
662 	dev->power.is_prepared = false;
663 
664 	if (!dev->power.is_suspended)
665 		goto Unlock;
666 
667 	if (dev->pm_domain) {
668 		info = "power domain ";
669 		callback = pm_op(&dev->pm_domain->ops, state);
670 		goto Driver;
671 	}
672 
673 	if (dev->type && dev->type->pm) {
674 		info = "type ";
675 		callback = pm_op(dev->type->pm, state);
676 		goto Driver;
677 	}
678 
679 	if (dev->class) {
680 		if (dev->class->pm) {
681 			info = "class ";
682 			callback = pm_op(dev->class->pm, state);
683 			goto Driver;
684 		} else if (dev->class->resume) {
685 			info = "legacy class ";
686 			callback = dev->class->resume;
687 			goto End;
688 		}
689 	}
690 
691 	if (dev->bus) {
692 		if (dev->bus->pm) {
693 			info = "bus ";
694 			callback = pm_op(dev->bus->pm, state);
695 		} else if (dev->bus->resume) {
696 			info = "legacy bus ";
697 			callback = dev->bus->resume;
698 			goto End;
699 		}
700 	}
701 
702  Driver:
703 	if (!callback && dev->driver && dev->driver->pm) {
704 		info = "driver ";
705 		callback = pm_op(dev->driver->pm, state);
706 	}
707 
708  End:
709 	error = dpm_run_callback(callback, dev, state, info);
710 	dev->power.is_suspended = false;
711 
712  Unlock:
713 	device_unlock(dev);
714 	dpm_watchdog_clear(&wd);
715 
716  Complete:
717 	complete_all(&dev->power.completion);
718 
719 	TRACE_RESUME(error);
720 
721 	return error;
722 }
723 
724 static void async_resume(void *data, async_cookie_t cookie)
725 {
726 	struct device *dev = (struct device *)data;
727 	int error;
728 
729 	error = device_resume(dev, pm_transition, true);
730 	if (error)
731 		pm_dev_err(dev, pm_transition, " async", error);
732 	put_device(dev);
733 }
734 
735 static bool is_async(struct device *dev)
736 {
737 	return dev->power.async_suspend && pm_async_enabled
738 		&& !pm_trace_is_enabled();
739 }
740 
741 /**
742  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
743  * @state: PM transition of the system being carried out.
744  *
745  * Execute the appropriate "resume" callback for all devices whose status
746  * indicates that they are suspended.
747  */
748 void dpm_resume(pm_message_t state)
749 {
750 	struct device *dev;
751 	ktime_t starttime = ktime_get();
752 
753 	might_sleep();
754 
755 	mutex_lock(&dpm_list_mtx);
756 	pm_transition = state;
757 	async_error = 0;
758 
759 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
760 		reinit_completion(&dev->power.completion);
761 		if (is_async(dev)) {
762 			get_device(dev);
763 			async_schedule(async_resume, dev);
764 		}
765 	}
766 
767 	while (!list_empty(&dpm_suspended_list)) {
768 		dev = to_device(dpm_suspended_list.next);
769 		get_device(dev);
770 		if (!is_async(dev)) {
771 			int error;
772 
773 			mutex_unlock(&dpm_list_mtx);
774 
775 			error = device_resume(dev, state, false);
776 			if (error) {
777 				suspend_stats.failed_resume++;
778 				dpm_save_failed_step(SUSPEND_RESUME);
779 				dpm_save_failed_dev(dev_name(dev));
780 				pm_dev_err(dev, state, "", error);
781 			}
782 
783 			mutex_lock(&dpm_list_mtx);
784 		}
785 		if (!list_empty(&dev->power.entry))
786 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
787 		put_device(dev);
788 	}
789 	mutex_unlock(&dpm_list_mtx);
790 	async_synchronize_full();
791 	dpm_show_time(starttime, state, NULL);
792 }
793 
794 /**
795  * device_complete - Complete a PM transition for given device.
796  * @dev: Device to handle.
797  * @state: PM transition of the system being carried out.
798  */
799 static void device_complete(struct device *dev, pm_message_t state)
800 {
801 	void (*callback)(struct device *) = NULL;
802 	char *info = NULL;
803 
804 	if (dev->power.syscore)
805 		return;
806 
807 	device_lock(dev);
808 
809 	if (dev->pm_domain) {
810 		info = "completing power domain ";
811 		callback = dev->pm_domain->ops.complete;
812 	} else if (dev->type && dev->type->pm) {
813 		info = "completing type ";
814 		callback = dev->type->pm->complete;
815 	} else if (dev->class && dev->class->pm) {
816 		info = "completing class ";
817 		callback = dev->class->pm->complete;
818 	} else if (dev->bus && dev->bus->pm) {
819 		info = "completing bus ";
820 		callback = dev->bus->pm->complete;
821 	}
822 
823 	if (!callback && dev->driver && dev->driver->pm) {
824 		info = "completing driver ";
825 		callback = dev->driver->pm->complete;
826 	}
827 
828 	if (callback) {
829 		pm_dev_dbg(dev, state, info);
830 		callback(dev);
831 	}
832 
833 	device_unlock(dev);
834 
835 	pm_runtime_put(dev);
836 }
837 
838 /**
839  * dpm_complete - Complete a PM transition for all non-sysdev devices.
840  * @state: PM transition of the system being carried out.
841  *
842  * Execute the ->complete() callbacks for all devices whose PM status is not
843  * DPM_ON (this allows new devices to be registered).
844  */
845 void dpm_complete(pm_message_t state)
846 {
847 	struct list_head list;
848 
849 	might_sleep();
850 
851 	INIT_LIST_HEAD(&list);
852 	mutex_lock(&dpm_list_mtx);
853 	while (!list_empty(&dpm_prepared_list)) {
854 		struct device *dev = to_device(dpm_prepared_list.prev);
855 
856 		get_device(dev);
857 		dev->power.is_prepared = false;
858 		list_move(&dev->power.entry, &list);
859 		mutex_unlock(&dpm_list_mtx);
860 
861 		device_complete(dev, state);
862 
863 		mutex_lock(&dpm_list_mtx);
864 		put_device(dev);
865 	}
866 	list_splice(&list, &dpm_list);
867 	mutex_unlock(&dpm_list_mtx);
868 }
869 
870 /**
871  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
872  * @state: PM transition of the system being carried out.
873  *
874  * Execute "resume" callbacks for all devices and complete the PM transition of
875  * the system.
876  */
877 void dpm_resume_end(pm_message_t state)
878 {
879 	dpm_resume(state);
880 	dpm_complete(state);
881 }
882 EXPORT_SYMBOL_GPL(dpm_resume_end);
883 
884 
885 /*------------------------- Suspend routines -------------------------*/
886 
887 /**
888  * resume_event - Return a "resume" message for given "suspend" sleep state.
889  * @sleep_state: PM message representing a sleep state.
890  *
891  * Return a PM message representing the resume event corresponding to given
892  * sleep state.
893  */
894 static pm_message_t resume_event(pm_message_t sleep_state)
895 {
896 	switch (sleep_state.event) {
897 	case PM_EVENT_SUSPEND:
898 		return PMSG_RESUME;
899 	case PM_EVENT_FREEZE:
900 	case PM_EVENT_QUIESCE:
901 		return PMSG_RECOVER;
902 	case PM_EVENT_HIBERNATE:
903 		return PMSG_RESTORE;
904 	}
905 	return PMSG_ON;
906 }
907 
908 /**
909  * device_suspend_noirq - Execute a "late suspend" callback for given device.
910  * @dev: Device to handle.
911  * @state: PM transition of the system being carried out.
912  *
913  * The driver of @dev will not receive interrupts while this function is being
914  * executed.
915  */
916 static int device_suspend_noirq(struct device *dev, pm_message_t state)
917 {
918 	pm_callback_t callback = NULL;
919 	char *info = NULL;
920 
921 	if (dev->power.syscore)
922 		return 0;
923 
924 	if (dev->pm_domain) {
925 		info = "noirq power domain ";
926 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
927 	} else if (dev->type && dev->type->pm) {
928 		info = "noirq type ";
929 		callback = pm_noirq_op(dev->type->pm, state);
930 	} else if (dev->class && dev->class->pm) {
931 		info = "noirq class ";
932 		callback = pm_noirq_op(dev->class->pm, state);
933 	} else if (dev->bus && dev->bus->pm) {
934 		info = "noirq bus ";
935 		callback = pm_noirq_op(dev->bus->pm, state);
936 	}
937 
938 	if (!callback && dev->driver && dev->driver->pm) {
939 		info = "noirq driver ";
940 		callback = pm_noirq_op(dev->driver->pm, state);
941 	}
942 
943 	return dpm_run_callback(callback, dev, state, info);
944 }
945 
946 /**
947  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
948  * @state: PM transition of the system being carried out.
949  *
950  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
951  * handlers for all non-sysdev devices.
952  */
953 static int dpm_suspend_noirq(pm_message_t state)
954 {
955 	ktime_t starttime = ktime_get();
956 	int error = 0;
957 
958 	cpuidle_pause();
959 	suspend_device_irqs();
960 	mutex_lock(&dpm_list_mtx);
961 	while (!list_empty(&dpm_late_early_list)) {
962 		struct device *dev = to_device(dpm_late_early_list.prev);
963 
964 		get_device(dev);
965 		mutex_unlock(&dpm_list_mtx);
966 
967 		error = device_suspend_noirq(dev, state);
968 
969 		mutex_lock(&dpm_list_mtx);
970 		if (error) {
971 			pm_dev_err(dev, state, " noirq", error);
972 			suspend_stats.failed_suspend_noirq++;
973 			dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
974 			dpm_save_failed_dev(dev_name(dev));
975 			put_device(dev);
976 			break;
977 		}
978 		if (!list_empty(&dev->power.entry))
979 			list_move(&dev->power.entry, &dpm_noirq_list);
980 		put_device(dev);
981 
982 		if (pm_wakeup_pending()) {
983 			error = -EBUSY;
984 			break;
985 		}
986 	}
987 	mutex_unlock(&dpm_list_mtx);
988 	if (error)
989 		dpm_resume_noirq(resume_event(state));
990 	else
991 		dpm_show_time(starttime, state, "noirq");
992 	return error;
993 }
994 
995 /**
996  * device_suspend_late - Execute a "late suspend" callback for given device.
997  * @dev: Device to handle.
998  * @state: PM transition of the system being carried out.
999  *
1000  * Runtime PM is disabled for @dev while this function is being executed.
1001  */
1002 static int device_suspend_late(struct device *dev, pm_message_t state)
1003 {
1004 	pm_callback_t callback = NULL;
1005 	char *info = NULL;
1006 
1007 	__pm_runtime_disable(dev, false);
1008 
1009 	if (dev->power.syscore)
1010 		return 0;
1011 
1012 	if (dev->pm_domain) {
1013 		info = "late power domain ";
1014 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1015 	} else if (dev->type && dev->type->pm) {
1016 		info = "late type ";
1017 		callback = pm_late_early_op(dev->type->pm, state);
1018 	} else if (dev->class && dev->class->pm) {
1019 		info = "late class ";
1020 		callback = pm_late_early_op(dev->class->pm, state);
1021 	} else if (dev->bus && dev->bus->pm) {
1022 		info = "late bus ";
1023 		callback = pm_late_early_op(dev->bus->pm, state);
1024 	}
1025 
1026 	if (!callback && dev->driver && dev->driver->pm) {
1027 		info = "late driver ";
1028 		callback = pm_late_early_op(dev->driver->pm, state);
1029 	}
1030 
1031 	return dpm_run_callback(callback, dev, state, info);
1032 }
1033 
1034 /**
1035  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1036  * @state: PM transition of the system being carried out.
1037  */
1038 static int dpm_suspend_late(pm_message_t state)
1039 {
1040 	ktime_t starttime = ktime_get();
1041 	int error = 0;
1042 
1043 	mutex_lock(&dpm_list_mtx);
1044 	while (!list_empty(&dpm_suspended_list)) {
1045 		struct device *dev = to_device(dpm_suspended_list.prev);
1046 
1047 		get_device(dev);
1048 		mutex_unlock(&dpm_list_mtx);
1049 
1050 		error = device_suspend_late(dev, state);
1051 
1052 		mutex_lock(&dpm_list_mtx);
1053 		if (error) {
1054 			pm_dev_err(dev, state, " late", error);
1055 			suspend_stats.failed_suspend_late++;
1056 			dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1057 			dpm_save_failed_dev(dev_name(dev));
1058 			put_device(dev);
1059 			break;
1060 		}
1061 		if (!list_empty(&dev->power.entry))
1062 			list_move(&dev->power.entry, &dpm_late_early_list);
1063 		put_device(dev);
1064 
1065 		if (pm_wakeup_pending()) {
1066 			error = -EBUSY;
1067 			break;
1068 		}
1069 	}
1070 	mutex_unlock(&dpm_list_mtx);
1071 	if (error)
1072 		dpm_resume_early(resume_event(state));
1073 	else
1074 		dpm_show_time(starttime, state, "late");
1075 
1076 	return error;
1077 }
1078 
1079 /**
1080  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1081  * @state: PM transition of the system being carried out.
1082  */
1083 int dpm_suspend_end(pm_message_t state)
1084 {
1085 	int error = dpm_suspend_late(state);
1086 	if (error)
1087 		return error;
1088 
1089 	error = dpm_suspend_noirq(state);
1090 	if (error) {
1091 		dpm_resume_early(resume_event(state));
1092 		return error;
1093 	}
1094 
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1098 
1099 /**
1100  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1101  * @dev: Device to suspend.
1102  * @state: PM transition of the system being carried out.
1103  * @cb: Suspend callback to execute.
1104  */
1105 static int legacy_suspend(struct device *dev, pm_message_t state,
1106 			  int (*cb)(struct device *dev, pm_message_t state),
1107 			  char *info)
1108 {
1109 	int error;
1110 	ktime_t calltime;
1111 
1112 	calltime = initcall_debug_start(dev);
1113 
1114 	error = cb(dev, state);
1115 	suspend_report_result(cb, error);
1116 
1117 	initcall_debug_report(dev, calltime, error, state, info);
1118 
1119 	return error;
1120 }
1121 
1122 /**
1123  * device_suspend - Execute "suspend" callbacks for given device.
1124  * @dev: Device to handle.
1125  * @state: PM transition of the system being carried out.
1126  * @async: If true, the device is being suspended asynchronously.
1127  */
1128 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1129 {
1130 	pm_callback_t callback = NULL;
1131 	char *info = NULL;
1132 	int error = 0;
1133 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1134 
1135 	dpm_wait_for_children(dev, async);
1136 
1137 	if (async_error)
1138 		goto Complete;
1139 
1140 	/*
1141 	 * If a device configured to wake up the system from sleep states
1142 	 * has been suspended at run time and there's a resume request pending
1143 	 * for it, this is equivalent to the device signaling wakeup, so the
1144 	 * system suspend operation should be aborted.
1145 	 */
1146 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1147 		pm_wakeup_event(dev, 0);
1148 
1149 	if (pm_wakeup_pending()) {
1150 		async_error = -EBUSY;
1151 		goto Complete;
1152 	}
1153 
1154 	if (dev->power.syscore)
1155 		goto Complete;
1156 
1157 	dpm_watchdog_set(&wd, dev);
1158 	device_lock(dev);
1159 
1160 	if (dev->pm_domain) {
1161 		info = "power domain ";
1162 		callback = pm_op(&dev->pm_domain->ops, state);
1163 		goto Run;
1164 	}
1165 
1166 	if (dev->type && dev->type->pm) {
1167 		info = "type ";
1168 		callback = pm_op(dev->type->pm, state);
1169 		goto Run;
1170 	}
1171 
1172 	if (dev->class) {
1173 		if (dev->class->pm) {
1174 			info = "class ";
1175 			callback = pm_op(dev->class->pm, state);
1176 			goto Run;
1177 		} else if (dev->class->suspend) {
1178 			pm_dev_dbg(dev, state, "legacy class ");
1179 			error = legacy_suspend(dev, state, dev->class->suspend,
1180 						"legacy class ");
1181 			goto End;
1182 		}
1183 	}
1184 
1185 	if (dev->bus) {
1186 		if (dev->bus->pm) {
1187 			info = "bus ";
1188 			callback = pm_op(dev->bus->pm, state);
1189 		} else if (dev->bus->suspend) {
1190 			pm_dev_dbg(dev, state, "legacy bus ");
1191 			error = legacy_suspend(dev, state, dev->bus->suspend,
1192 						"legacy bus ");
1193 			goto End;
1194 		}
1195 	}
1196 
1197  Run:
1198 	if (!callback && dev->driver && dev->driver->pm) {
1199 		info = "driver ";
1200 		callback = pm_op(dev->driver->pm, state);
1201 	}
1202 
1203 	error = dpm_run_callback(callback, dev, state, info);
1204 
1205  End:
1206 	if (!error) {
1207 		dev->power.is_suspended = true;
1208 		if (dev->power.wakeup_path
1209 		    && dev->parent && !dev->parent->power.ignore_children)
1210 			dev->parent->power.wakeup_path = true;
1211 	}
1212 
1213 	device_unlock(dev);
1214 	dpm_watchdog_clear(&wd);
1215 
1216  Complete:
1217 	complete_all(&dev->power.completion);
1218 	if (error)
1219 		async_error = error;
1220 
1221 	return error;
1222 }
1223 
1224 static void async_suspend(void *data, async_cookie_t cookie)
1225 {
1226 	struct device *dev = (struct device *)data;
1227 	int error;
1228 
1229 	error = __device_suspend(dev, pm_transition, true);
1230 	if (error) {
1231 		dpm_save_failed_dev(dev_name(dev));
1232 		pm_dev_err(dev, pm_transition, " async", error);
1233 	}
1234 
1235 	put_device(dev);
1236 }
1237 
1238 static int device_suspend(struct device *dev)
1239 {
1240 	reinit_completion(&dev->power.completion);
1241 
1242 	if (pm_async_enabled && dev->power.async_suspend) {
1243 		get_device(dev);
1244 		async_schedule(async_suspend, dev);
1245 		return 0;
1246 	}
1247 
1248 	return __device_suspend(dev, pm_transition, false);
1249 }
1250 
1251 /**
1252  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1253  * @state: PM transition of the system being carried out.
1254  */
1255 int dpm_suspend(pm_message_t state)
1256 {
1257 	ktime_t starttime = ktime_get();
1258 	int error = 0;
1259 
1260 	might_sleep();
1261 
1262 	mutex_lock(&dpm_list_mtx);
1263 	pm_transition = state;
1264 	async_error = 0;
1265 	while (!list_empty(&dpm_prepared_list)) {
1266 		struct device *dev = to_device(dpm_prepared_list.prev);
1267 
1268 		get_device(dev);
1269 		mutex_unlock(&dpm_list_mtx);
1270 
1271 		error = device_suspend(dev);
1272 
1273 		mutex_lock(&dpm_list_mtx);
1274 		if (error) {
1275 			pm_dev_err(dev, state, "", error);
1276 			dpm_save_failed_dev(dev_name(dev));
1277 			put_device(dev);
1278 			break;
1279 		}
1280 		if (!list_empty(&dev->power.entry))
1281 			list_move(&dev->power.entry, &dpm_suspended_list);
1282 		put_device(dev);
1283 		if (async_error)
1284 			break;
1285 	}
1286 	mutex_unlock(&dpm_list_mtx);
1287 	async_synchronize_full();
1288 	if (!error)
1289 		error = async_error;
1290 	if (error) {
1291 		suspend_stats.failed_suspend++;
1292 		dpm_save_failed_step(SUSPEND_SUSPEND);
1293 	} else
1294 		dpm_show_time(starttime, state, NULL);
1295 	return error;
1296 }
1297 
1298 /**
1299  * device_prepare - Prepare a device for system power transition.
1300  * @dev: Device to handle.
1301  * @state: PM transition of the system being carried out.
1302  *
1303  * Execute the ->prepare() callback(s) for given device.  No new children of the
1304  * device may be registered after this function has returned.
1305  */
1306 static int device_prepare(struct device *dev, pm_message_t state)
1307 {
1308 	int (*callback)(struct device *) = NULL;
1309 	char *info = NULL;
1310 	int error = 0;
1311 
1312 	if (dev->power.syscore)
1313 		return 0;
1314 
1315 	/*
1316 	 * If a device's parent goes into runtime suspend at the wrong time,
1317 	 * it won't be possible to resume the device.  To prevent this we
1318 	 * block runtime suspend here, during the prepare phase, and allow
1319 	 * it again during the complete phase.
1320 	 */
1321 	pm_runtime_get_noresume(dev);
1322 
1323 	device_lock(dev);
1324 
1325 	dev->power.wakeup_path = device_may_wakeup(dev);
1326 
1327 	if (dev->pm_domain) {
1328 		info = "preparing power domain ";
1329 		callback = dev->pm_domain->ops.prepare;
1330 	} else if (dev->type && dev->type->pm) {
1331 		info = "preparing type ";
1332 		callback = dev->type->pm->prepare;
1333 	} else if (dev->class && dev->class->pm) {
1334 		info = "preparing class ";
1335 		callback = dev->class->pm->prepare;
1336 	} else if (dev->bus && dev->bus->pm) {
1337 		info = "preparing bus ";
1338 		callback = dev->bus->pm->prepare;
1339 	}
1340 
1341 	if (!callback && dev->driver && dev->driver->pm) {
1342 		info = "preparing driver ";
1343 		callback = dev->driver->pm->prepare;
1344 	}
1345 
1346 	if (callback) {
1347 		error = callback(dev);
1348 		suspend_report_result(callback, error);
1349 	}
1350 
1351 	device_unlock(dev);
1352 
1353 	if (error)
1354 		pm_runtime_put(dev);
1355 
1356 	return error;
1357 }
1358 
1359 /**
1360  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1361  * @state: PM transition of the system being carried out.
1362  *
1363  * Execute the ->prepare() callback(s) for all devices.
1364  */
1365 int dpm_prepare(pm_message_t state)
1366 {
1367 	int error = 0;
1368 
1369 	might_sleep();
1370 
1371 	mutex_lock(&dpm_list_mtx);
1372 	while (!list_empty(&dpm_list)) {
1373 		struct device *dev = to_device(dpm_list.next);
1374 
1375 		get_device(dev);
1376 		mutex_unlock(&dpm_list_mtx);
1377 
1378 		error = device_prepare(dev, state);
1379 
1380 		mutex_lock(&dpm_list_mtx);
1381 		if (error) {
1382 			if (error == -EAGAIN) {
1383 				put_device(dev);
1384 				error = 0;
1385 				continue;
1386 			}
1387 			printk(KERN_INFO "PM: Device %s not prepared "
1388 				"for power transition: code %d\n",
1389 				dev_name(dev), error);
1390 			put_device(dev);
1391 			break;
1392 		}
1393 		dev->power.is_prepared = true;
1394 		if (!list_empty(&dev->power.entry))
1395 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1396 		put_device(dev);
1397 	}
1398 	mutex_unlock(&dpm_list_mtx);
1399 	return error;
1400 }
1401 
1402 /**
1403  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1404  * @state: PM transition of the system being carried out.
1405  *
1406  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1407  * callbacks for them.
1408  */
1409 int dpm_suspend_start(pm_message_t state)
1410 {
1411 	int error;
1412 
1413 	error = dpm_prepare(state);
1414 	if (error) {
1415 		suspend_stats.failed_prepare++;
1416 		dpm_save_failed_step(SUSPEND_PREPARE);
1417 	} else
1418 		error = dpm_suspend(state);
1419 	return error;
1420 }
1421 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1422 
1423 void __suspend_report_result(const char *function, void *fn, int ret)
1424 {
1425 	if (ret)
1426 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1427 }
1428 EXPORT_SYMBOL_GPL(__suspend_report_result);
1429 
1430 /**
1431  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1432  * @dev: Device to wait for.
1433  * @subordinate: Device that needs to wait for @dev.
1434  */
1435 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1436 {
1437 	dpm_wait(dev, subordinate->power.async_suspend);
1438 	return async_error;
1439 }
1440 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1441 
1442 /**
1443  * dpm_for_each_dev - device iterator.
1444  * @data: data for the callback.
1445  * @fn: function to be called for each device.
1446  *
1447  * Iterate over devices in dpm_list, and call @fn for each device,
1448  * passing it @data.
1449  */
1450 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1451 {
1452 	struct device *dev;
1453 
1454 	if (!fn)
1455 		return;
1456 
1457 	device_pm_lock();
1458 	list_for_each_entry(dev, &dpm_list, power.entry)
1459 		fn(dev, data);
1460 	device_pm_unlock();
1461 }
1462 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1463