1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 struct suspend_stats suspend_stats; 64 static DEFINE_MUTEX(dpm_list_mtx); 65 static pm_message_t pm_transition; 66 67 static int async_error; 68 69 static const char *pm_verb(int event) 70 { 71 switch (event) { 72 case PM_EVENT_SUSPEND: 73 return "suspend"; 74 case PM_EVENT_RESUME: 75 return "resume"; 76 case PM_EVENT_FREEZE: 77 return "freeze"; 78 case PM_EVENT_QUIESCE: 79 return "quiesce"; 80 case PM_EVENT_HIBERNATE: 81 return "hibernate"; 82 case PM_EVENT_THAW: 83 return "thaw"; 84 case PM_EVENT_RESTORE: 85 return "restore"; 86 case PM_EVENT_RECOVER: 87 return "recover"; 88 default: 89 return "(unknown PM event)"; 90 } 91 } 92 93 /** 94 * device_pm_sleep_init - Initialize system suspend-related device fields. 95 * @dev: Device object being initialized. 96 */ 97 void device_pm_sleep_init(struct device *dev) 98 { 99 dev->power.is_prepared = false; 100 dev->power.is_suspended = false; 101 dev->power.is_noirq_suspended = false; 102 dev->power.is_late_suspended = false; 103 init_completion(&dev->power.completion); 104 complete_all(&dev->power.completion); 105 dev->power.wakeup = NULL; 106 INIT_LIST_HEAD(&dev->power.entry); 107 } 108 109 /** 110 * device_pm_lock - Lock the list of active devices used by the PM core. 111 */ 112 void device_pm_lock(void) 113 { 114 mutex_lock(&dpm_list_mtx); 115 } 116 117 /** 118 * device_pm_unlock - Unlock the list of active devices used by the PM core. 119 */ 120 void device_pm_unlock(void) 121 { 122 mutex_unlock(&dpm_list_mtx); 123 } 124 125 /** 126 * device_pm_add - Add a device to the PM core's list of active devices. 127 * @dev: Device to add to the list. 128 */ 129 void device_pm_add(struct device *dev) 130 { 131 /* Skip PM setup/initialization. */ 132 if (device_pm_not_required(dev)) 133 return; 134 135 pr_debug("Adding info for %s:%s\n", 136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 137 device_pm_check_callbacks(dev); 138 mutex_lock(&dpm_list_mtx); 139 if (dev->parent && dev->parent->power.is_prepared) 140 dev_warn(dev, "parent %s should not be sleeping\n", 141 dev_name(dev->parent)); 142 list_add_tail(&dev->power.entry, &dpm_list); 143 dev->power.in_dpm_list = true; 144 mutex_unlock(&dpm_list_mtx); 145 } 146 147 /** 148 * device_pm_remove - Remove a device from the PM core's list of active devices. 149 * @dev: Device to be removed from the list. 150 */ 151 void device_pm_remove(struct device *dev) 152 { 153 if (device_pm_not_required(dev)) 154 return; 155 156 pr_debug("Removing info for %s:%s\n", 157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 158 complete_all(&dev->power.completion); 159 mutex_lock(&dpm_list_mtx); 160 list_del_init(&dev->power.entry); 161 dev->power.in_dpm_list = false; 162 mutex_unlock(&dpm_list_mtx); 163 device_wakeup_disable(dev); 164 pm_runtime_remove(dev); 165 device_pm_check_callbacks(dev); 166 } 167 168 /** 169 * device_pm_move_before - Move device in the PM core's list of active devices. 170 * @deva: Device to move in dpm_list. 171 * @devb: Device @deva should come before. 172 */ 173 void device_pm_move_before(struct device *deva, struct device *devb) 174 { 175 pr_debug("Moving %s:%s before %s:%s\n", 176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 178 /* Delete deva from dpm_list and reinsert before devb. */ 179 list_move_tail(&deva->power.entry, &devb->power.entry); 180 } 181 182 /** 183 * device_pm_move_after - Move device in the PM core's list of active devices. 184 * @deva: Device to move in dpm_list. 185 * @devb: Device @deva should come after. 186 */ 187 void device_pm_move_after(struct device *deva, struct device *devb) 188 { 189 pr_debug("Moving %s:%s after %s:%s\n", 190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 192 /* Delete deva from dpm_list and reinsert after devb. */ 193 list_move(&deva->power.entry, &devb->power.entry); 194 } 195 196 /** 197 * device_pm_move_last - Move device to end of the PM core's list of devices. 198 * @dev: Device to move in dpm_list. 199 */ 200 void device_pm_move_last(struct device *dev) 201 { 202 pr_debug("Moving %s:%s to end of list\n", 203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 204 list_move_tail(&dev->power.entry, &dpm_list); 205 } 206 207 static ktime_t initcall_debug_start(struct device *dev, void *cb) 208 { 209 if (!pm_print_times_enabled) 210 return 0; 211 212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 213 task_pid_nr(current), 214 dev->parent ? dev_name(dev->parent) : "none"); 215 return ktime_get(); 216 } 217 218 static void initcall_debug_report(struct device *dev, ktime_t calltime, 219 void *cb, int error) 220 { 221 ktime_t rettime; 222 223 if (!pm_print_times_enabled) 224 return; 225 226 rettime = ktime_get(); 227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 228 (unsigned long long)ktime_us_delta(rettime, calltime)); 229 } 230 231 /** 232 * dpm_wait - Wait for a PM operation to complete. 233 * @dev: Device to wait for. 234 * @async: If unset, wait only if the device's power.async_suspend flag is set. 235 */ 236 static void dpm_wait(struct device *dev, bool async) 237 { 238 if (!dev) 239 return; 240 241 if (async || (pm_async_enabled && dev->power.async_suspend)) 242 wait_for_completion(&dev->power.completion); 243 } 244 245 static int dpm_wait_fn(struct device *dev, void *async_ptr) 246 { 247 dpm_wait(dev, *((bool *)async_ptr)); 248 return 0; 249 } 250 251 static void dpm_wait_for_children(struct device *dev, bool async) 252 { 253 device_for_each_child(dev, &async, dpm_wait_fn); 254 } 255 256 static void dpm_wait_for_suppliers(struct device *dev, bool async) 257 { 258 struct device_link *link; 259 int idx; 260 261 idx = device_links_read_lock(); 262 263 /* 264 * If the supplier goes away right after we've checked the link to it, 265 * we'll wait for its completion to change the state, but that's fine, 266 * because the only things that will block as a result are the SRCU 267 * callbacks freeing the link objects for the links in the list we're 268 * walking. 269 */ 270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 271 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 272 dpm_wait(link->supplier, async); 273 274 device_links_read_unlock(idx); 275 } 276 277 static bool dpm_wait_for_superior(struct device *dev, bool async) 278 { 279 struct device *parent; 280 281 /* 282 * If the device is resumed asynchronously and the parent's callback 283 * deletes both the device and the parent itself, the parent object may 284 * be freed while this function is running, so avoid that by reference 285 * counting the parent once more unless the device has been deleted 286 * already (in which case return right away). 287 */ 288 mutex_lock(&dpm_list_mtx); 289 290 if (!device_pm_initialized(dev)) { 291 mutex_unlock(&dpm_list_mtx); 292 return false; 293 } 294 295 parent = get_device(dev->parent); 296 297 mutex_unlock(&dpm_list_mtx); 298 299 dpm_wait(parent, async); 300 put_device(parent); 301 302 dpm_wait_for_suppliers(dev, async); 303 304 /* 305 * If the parent's callback has deleted the device, attempting to resume 306 * it would be invalid, so avoid doing that then. 307 */ 308 return device_pm_initialized(dev); 309 } 310 311 static void dpm_wait_for_consumers(struct device *dev, bool async) 312 { 313 struct device_link *link; 314 int idx; 315 316 idx = device_links_read_lock(); 317 318 /* 319 * The status of a device link can only be changed from "dormant" by a 320 * probe, but that cannot happen during system suspend/resume. In 321 * theory it can change to "dormant" at that time, but then it is 322 * reasonable to wait for the target device anyway (eg. if it goes 323 * away, it's better to wait for it to go away completely and then 324 * continue instead of trying to continue in parallel with its 325 * unregistration). 326 */ 327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 328 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 329 dpm_wait(link->consumer, async); 330 331 device_links_read_unlock(idx); 332 } 333 334 static void dpm_wait_for_subordinate(struct device *dev, bool async) 335 { 336 dpm_wait_for_children(dev, async); 337 dpm_wait_for_consumers(dev, async); 338 } 339 340 /** 341 * pm_op - Return the PM operation appropriate for given PM event. 342 * @ops: PM operations to choose from. 343 * @state: PM transition of the system being carried out. 344 */ 345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 346 { 347 switch (state.event) { 348 #ifdef CONFIG_SUSPEND 349 case PM_EVENT_SUSPEND: 350 return ops->suspend; 351 case PM_EVENT_RESUME: 352 return ops->resume; 353 #endif /* CONFIG_SUSPEND */ 354 #ifdef CONFIG_HIBERNATE_CALLBACKS 355 case PM_EVENT_FREEZE: 356 case PM_EVENT_QUIESCE: 357 return ops->freeze; 358 case PM_EVENT_HIBERNATE: 359 return ops->poweroff; 360 case PM_EVENT_THAW: 361 case PM_EVENT_RECOVER: 362 return ops->thaw; 363 case PM_EVENT_RESTORE: 364 return ops->restore; 365 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 366 } 367 368 return NULL; 369 } 370 371 /** 372 * pm_late_early_op - Return the PM operation appropriate for given PM event. 373 * @ops: PM operations to choose from. 374 * @state: PM transition of the system being carried out. 375 * 376 * Runtime PM is disabled for @dev while this function is being executed. 377 */ 378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 379 pm_message_t state) 380 { 381 switch (state.event) { 382 #ifdef CONFIG_SUSPEND 383 case PM_EVENT_SUSPEND: 384 return ops->suspend_late; 385 case PM_EVENT_RESUME: 386 return ops->resume_early; 387 #endif /* CONFIG_SUSPEND */ 388 #ifdef CONFIG_HIBERNATE_CALLBACKS 389 case PM_EVENT_FREEZE: 390 case PM_EVENT_QUIESCE: 391 return ops->freeze_late; 392 case PM_EVENT_HIBERNATE: 393 return ops->poweroff_late; 394 case PM_EVENT_THAW: 395 case PM_EVENT_RECOVER: 396 return ops->thaw_early; 397 case PM_EVENT_RESTORE: 398 return ops->restore_early; 399 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 400 } 401 402 return NULL; 403 } 404 405 /** 406 * pm_noirq_op - Return the PM operation appropriate for given PM event. 407 * @ops: PM operations to choose from. 408 * @state: PM transition of the system being carried out. 409 * 410 * The driver of @dev will not receive interrupts while this function is being 411 * executed. 412 */ 413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 414 { 415 switch (state.event) { 416 #ifdef CONFIG_SUSPEND 417 case PM_EVENT_SUSPEND: 418 return ops->suspend_noirq; 419 case PM_EVENT_RESUME: 420 return ops->resume_noirq; 421 #endif /* CONFIG_SUSPEND */ 422 #ifdef CONFIG_HIBERNATE_CALLBACKS 423 case PM_EVENT_FREEZE: 424 case PM_EVENT_QUIESCE: 425 return ops->freeze_noirq; 426 case PM_EVENT_HIBERNATE: 427 return ops->poweroff_noirq; 428 case PM_EVENT_THAW: 429 case PM_EVENT_RECOVER: 430 return ops->thaw_noirq; 431 case PM_EVENT_RESTORE: 432 return ops->restore_noirq; 433 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 434 } 435 436 return NULL; 437 } 438 439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 440 { 441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 443 ", may wakeup" : "", dev->power.driver_flags); 444 } 445 446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 447 int error) 448 { 449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 450 error); 451 } 452 453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 454 const char *info) 455 { 456 ktime_t calltime; 457 u64 usecs64; 458 int usecs; 459 460 calltime = ktime_get(); 461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 462 do_div(usecs64, NSEC_PER_USEC); 463 usecs = usecs64; 464 if (usecs == 0) 465 usecs = 1; 466 467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 468 info ?: "", info ? " " : "", pm_verb(state.event), 469 error ? "aborted" : "complete", 470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 471 } 472 473 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 474 pm_message_t state, const char *info) 475 { 476 ktime_t calltime; 477 int error; 478 479 if (!cb) 480 return 0; 481 482 calltime = initcall_debug_start(dev, cb); 483 484 pm_dev_dbg(dev, state, info); 485 trace_device_pm_callback_start(dev, info, state.event); 486 error = cb(dev); 487 trace_device_pm_callback_end(dev, error); 488 suspend_report_result(dev, cb, error); 489 490 initcall_debug_report(dev, calltime, cb, error); 491 492 return error; 493 } 494 495 #ifdef CONFIG_DPM_WATCHDOG 496 struct dpm_watchdog { 497 struct device *dev; 498 struct task_struct *tsk; 499 struct timer_list timer; 500 }; 501 502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 503 struct dpm_watchdog wd 504 505 /** 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 507 * @t: The timer that PM watchdog depends on. 508 * 509 * Called when a driver has timed out suspending or resuming. 510 * There's not much we can do here to recover so panic() to 511 * capture a crash-dump in pstore. 512 */ 513 static void dpm_watchdog_handler(struct timer_list *t) 514 { 515 struct dpm_watchdog *wd = from_timer(wd, t, timer); 516 517 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 518 show_stack(wd->tsk, NULL, KERN_EMERG); 519 panic("%s %s: unrecoverable failure\n", 520 dev_driver_string(wd->dev), dev_name(wd->dev)); 521 } 522 523 /** 524 * dpm_watchdog_set - Enable pm watchdog for given device. 525 * @wd: Watchdog. Must be allocated on the stack. 526 * @dev: Device to handle. 527 */ 528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 529 { 530 struct timer_list *timer = &wd->timer; 531 532 wd->dev = dev; 533 wd->tsk = current; 534 535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 536 /* use same timeout value for both suspend and resume */ 537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 538 add_timer(timer); 539 } 540 541 /** 542 * dpm_watchdog_clear - Disable suspend/resume watchdog. 543 * @wd: Watchdog to disable. 544 */ 545 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 546 { 547 struct timer_list *timer = &wd->timer; 548 549 del_timer_sync(timer); 550 destroy_timer_on_stack(timer); 551 } 552 #else 553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 554 #define dpm_watchdog_set(x, y) 555 #define dpm_watchdog_clear(x) 556 #endif 557 558 /*------------------------- Resume routines -------------------------*/ 559 560 /** 561 * dev_pm_skip_resume - System-wide device resume optimization check. 562 * @dev: Target device. 563 * 564 * Return: 565 * - %false if the transition under way is RESTORE. 566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 567 * - The logical negation of %power.must_resume otherwise (that is, when the 568 * transition under way is RESUME). 569 */ 570 bool dev_pm_skip_resume(struct device *dev) 571 { 572 if (pm_transition.event == PM_EVENT_RESTORE) 573 return false; 574 575 if (pm_transition.event == PM_EVENT_THAW) 576 return dev_pm_skip_suspend(dev); 577 578 return !dev->power.must_resume; 579 } 580 581 /** 582 * __device_resume_noirq - Execute a "noirq resume" callback for given device. 583 * @dev: Device to handle. 584 * @state: PM transition of the system being carried out. 585 * @async: If true, the device is being resumed asynchronously. 586 * 587 * The driver of @dev will not receive interrupts while this function is being 588 * executed. 589 */ 590 static void __device_resume_noirq(struct device *dev, pm_message_t state, bool async) 591 { 592 pm_callback_t callback = NULL; 593 const char *info = NULL; 594 bool skip_resume; 595 int error = 0; 596 597 TRACE_DEVICE(dev); 598 TRACE_RESUME(0); 599 600 if (dev->power.syscore || dev->power.direct_complete) 601 goto Out; 602 603 if (!dev->power.is_noirq_suspended) 604 goto Out; 605 606 if (!dpm_wait_for_superior(dev, async)) 607 goto Out; 608 609 skip_resume = dev_pm_skip_resume(dev); 610 /* 611 * If the driver callback is skipped below or by the middle layer 612 * callback and device_resume_early() also skips the driver callback for 613 * this device later, it needs to appear as "suspended" to PM-runtime, 614 * so change its status accordingly. 615 * 616 * Otherwise, the device is going to be resumed, so set its PM-runtime 617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 618 * to avoid confusing drivers that don't use it. 619 */ 620 if (skip_resume) 621 pm_runtime_set_suspended(dev); 622 else if (dev_pm_skip_suspend(dev)) 623 pm_runtime_set_active(dev); 624 625 if (dev->pm_domain) { 626 info = "noirq power domain "; 627 callback = pm_noirq_op(&dev->pm_domain->ops, state); 628 } else if (dev->type && dev->type->pm) { 629 info = "noirq type "; 630 callback = pm_noirq_op(dev->type->pm, state); 631 } else if (dev->class && dev->class->pm) { 632 info = "noirq class "; 633 callback = pm_noirq_op(dev->class->pm, state); 634 } else if (dev->bus && dev->bus->pm) { 635 info = "noirq bus "; 636 callback = pm_noirq_op(dev->bus->pm, state); 637 } 638 if (callback) 639 goto Run; 640 641 if (skip_resume) 642 goto Skip; 643 644 if (dev->driver && dev->driver->pm) { 645 info = "noirq driver "; 646 callback = pm_noirq_op(dev->driver->pm, state); 647 } 648 649 Run: 650 error = dpm_run_callback(callback, dev, state, info); 651 652 Skip: 653 dev->power.is_noirq_suspended = false; 654 655 Out: 656 complete_all(&dev->power.completion); 657 TRACE_RESUME(error); 658 659 if (error) { 660 suspend_stats.failed_resume_noirq++; 661 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 662 dpm_save_failed_dev(dev_name(dev)); 663 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 664 } 665 } 666 667 static bool is_async(struct device *dev) 668 { 669 return dev->power.async_suspend && pm_async_enabled 670 && !pm_trace_is_enabled(); 671 } 672 673 static bool dpm_async_fn(struct device *dev, async_func_t func) 674 { 675 reinit_completion(&dev->power.completion); 676 677 if (!is_async(dev)) 678 return false; 679 680 get_device(dev); 681 682 if (async_schedule_dev_nocall(func, dev)) 683 return true; 684 685 put_device(dev); 686 687 return false; 688 } 689 690 static void async_resume_noirq(void *data, async_cookie_t cookie) 691 { 692 struct device *dev = data; 693 694 __device_resume_noirq(dev, pm_transition, true); 695 put_device(dev); 696 } 697 698 static void device_resume_noirq(struct device *dev) 699 { 700 if (dpm_async_fn(dev, async_resume_noirq)) 701 return; 702 703 __device_resume_noirq(dev, pm_transition, false); 704 } 705 706 static void dpm_noirq_resume_devices(pm_message_t state) 707 { 708 struct device *dev; 709 ktime_t starttime = ktime_get(); 710 711 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 712 mutex_lock(&dpm_list_mtx); 713 pm_transition = state; 714 715 while (!list_empty(&dpm_noirq_list)) { 716 dev = to_device(dpm_noirq_list.next); 717 get_device(dev); 718 list_move_tail(&dev->power.entry, &dpm_late_early_list); 719 720 mutex_unlock(&dpm_list_mtx); 721 722 device_resume_noirq(dev); 723 724 put_device(dev); 725 726 mutex_lock(&dpm_list_mtx); 727 } 728 mutex_unlock(&dpm_list_mtx); 729 async_synchronize_full(); 730 dpm_show_time(starttime, state, 0, "noirq"); 731 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 732 } 733 734 /** 735 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 736 * @state: PM transition of the system being carried out. 737 * 738 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 739 * allow device drivers' interrupt handlers to be called. 740 */ 741 void dpm_resume_noirq(pm_message_t state) 742 { 743 dpm_noirq_resume_devices(state); 744 745 resume_device_irqs(); 746 device_wakeup_disarm_wake_irqs(); 747 } 748 749 /** 750 * __device_resume_early - Execute an "early resume" callback for given device. 751 * @dev: Device to handle. 752 * @state: PM transition of the system being carried out. 753 * @async: If true, the device is being resumed asynchronously. 754 * 755 * Runtime PM is disabled for @dev while this function is being executed. 756 */ 757 static void __device_resume_early(struct device *dev, pm_message_t state, bool async) 758 { 759 pm_callback_t callback = NULL; 760 const char *info = NULL; 761 int error = 0; 762 763 TRACE_DEVICE(dev); 764 TRACE_RESUME(0); 765 766 if (dev->power.syscore || dev->power.direct_complete) 767 goto Out; 768 769 if (!dev->power.is_late_suspended) 770 goto Out; 771 772 if (!dpm_wait_for_superior(dev, async)) 773 goto Out; 774 775 if (dev->pm_domain) { 776 info = "early power domain "; 777 callback = pm_late_early_op(&dev->pm_domain->ops, state); 778 } else if (dev->type && dev->type->pm) { 779 info = "early type "; 780 callback = pm_late_early_op(dev->type->pm, state); 781 } else if (dev->class && dev->class->pm) { 782 info = "early class "; 783 callback = pm_late_early_op(dev->class->pm, state); 784 } else if (dev->bus && dev->bus->pm) { 785 info = "early bus "; 786 callback = pm_late_early_op(dev->bus->pm, state); 787 } 788 if (callback) 789 goto Run; 790 791 if (dev_pm_skip_resume(dev)) 792 goto Skip; 793 794 if (dev->driver && dev->driver->pm) { 795 info = "early driver "; 796 callback = pm_late_early_op(dev->driver->pm, state); 797 } 798 799 Run: 800 error = dpm_run_callback(callback, dev, state, info); 801 802 Skip: 803 dev->power.is_late_suspended = false; 804 805 Out: 806 TRACE_RESUME(error); 807 808 pm_runtime_enable(dev); 809 complete_all(&dev->power.completion); 810 811 if (error) { 812 suspend_stats.failed_resume_early++; 813 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 814 dpm_save_failed_dev(dev_name(dev)); 815 pm_dev_err(dev, state, async ? " async early" : " early", error); 816 } 817 } 818 819 static void async_resume_early(void *data, async_cookie_t cookie) 820 { 821 struct device *dev = data; 822 823 __device_resume_early(dev, pm_transition, true); 824 put_device(dev); 825 } 826 827 static void device_resume_early(struct device *dev) 828 { 829 if (dpm_async_fn(dev, async_resume_early)) 830 return; 831 832 __device_resume_early(dev, pm_transition, false); 833 } 834 835 /** 836 * dpm_resume_early - Execute "early resume" callbacks for all devices. 837 * @state: PM transition of the system being carried out. 838 */ 839 void dpm_resume_early(pm_message_t state) 840 { 841 struct device *dev; 842 ktime_t starttime = ktime_get(); 843 844 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 845 mutex_lock(&dpm_list_mtx); 846 pm_transition = state; 847 848 while (!list_empty(&dpm_late_early_list)) { 849 dev = to_device(dpm_late_early_list.next); 850 get_device(dev); 851 list_move_tail(&dev->power.entry, &dpm_suspended_list); 852 853 mutex_unlock(&dpm_list_mtx); 854 855 device_resume_early(dev); 856 857 put_device(dev); 858 859 mutex_lock(&dpm_list_mtx); 860 } 861 mutex_unlock(&dpm_list_mtx); 862 async_synchronize_full(); 863 dpm_show_time(starttime, state, 0, "early"); 864 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 865 } 866 867 /** 868 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 869 * @state: PM transition of the system being carried out. 870 */ 871 void dpm_resume_start(pm_message_t state) 872 { 873 dpm_resume_noirq(state); 874 dpm_resume_early(state); 875 } 876 EXPORT_SYMBOL_GPL(dpm_resume_start); 877 878 /** 879 * __device_resume - Execute "resume" callbacks for given device. 880 * @dev: Device to handle. 881 * @state: PM transition of the system being carried out. 882 * @async: If true, the device is being resumed asynchronously. 883 */ 884 static void __device_resume(struct device *dev, pm_message_t state, bool async) 885 { 886 pm_callback_t callback = NULL; 887 const char *info = NULL; 888 int error = 0; 889 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 890 891 TRACE_DEVICE(dev); 892 TRACE_RESUME(0); 893 894 if (dev->power.syscore) 895 goto Complete; 896 897 if (dev->power.direct_complete) { 898 /* Match the pm_runtime_disable() in __device_suspend(). */ 899 pm_runtime_enable(dev); 900 goto Complete; 901 } 902 903 if (!dpm_wait_for_superior(dev, async)) 904 goto Complete; 905 906 dpm_watchdog_set(&wd, dev); 907 device_lock(dev); 908 909 /* 910 * This is a fib. But we'll allow new children to be added below 911 * a resumed device, even if the device hasn't been completed yet. 912 */ 913 dev->power.is_prepared = false; 914 915 if (!dev->power.is_suspended) 916 goto Unlock; 917 918 if (dev->pm_domain) { 919 info = "power domain "; 920 callback = pm_op(&dev->pm_domain->ops, state); 921 goto Driver; 922 } 923 924 if (dev->type && dev->type->pm) { 925 info = "type "; 926 callback = pm_op(dev->type->pm, state); 927 goto Driver; 928 } 929 930 if (dev->class && dev->class->pm) { 931 info = "class "; 932 callback = pm_op(dev->class->pm, state); 933 goto Driver; 934 } 935 936 if (dev->bus) { 937 if (dev->bus->pm) { 938 info = "bus "; 939 callback = pm_op(dev->bus->pm, state); 940 } else if (dev->bus->resume) { 941 info = "legacy bus "; 942 callback = dev->bus->resume; 943 goto End; 944 } 945 } 946 947 Driver: 948 if (!callback && dev->driver && dev->driver->pm) { 949 info = "driver "; 950 callback = pm_op(dev->driver->pm, state); 951 } 952 953 End: 954 error = dpm_run_callback(callback, dev, state, info); 955 dev->power.is_suspended = false; 956 957 Unlock: 958 device_unlock(dev); 959 dpm_watchdog_clear(&wd); 960 961 Complete: 962 complete_all(&dev->power.completion); 963 964 TRACE_RESUME(error); 965 966 if (error) { 967 suspend_stats.failed_resume++; 968 dpm_save_failed_step(SUSPEND_RESUME); 969 dpm_save_failed_dev(dev_name(dev)); 970 pm_dev_err(dev, state, async ? " async" : "", error); 971 } 972 } 973 974 static void async_resume(void *data, async_cookie_t cookie) 975 { 976 struct device *dev = data; 977 978 __device_resume(dev, pm_transition, true); 979 put_device(dev); 980 } 981 982 static void device_resume(struct device *dev) 983 { 984 if (dpm_async_fn(dev, async_resume)) 985 return; 986 987 __device_resume(dev, pm_transition, false); 988 } 989 990 /** 991 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 992 * @state: PM transition of the system being carried out. 993 * 994 * Execute the appropriate "resume" callback for all devices whose status 995 * indicates that they are suspended. 996 */ 997 void dpm_resume(pm_message_t state) 998 { 999 struct device *dev; 1000 ktime_t starttime = ktime_get(); 1001 1002 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1003 might_sleep(); 1004 1005 mutex_lock(&dpm_list_mtx); 1006 pm_transition = state; 1007 async_error = 0; 1008 1009 while (!list_empty(&dpm_suspended_list)) { 1010 dev = to_device(dpm_suspended_list.next); 1011 1012 get_device(dev); 1013 1014 mutex_unlock(&dpm_list_mtx); 1015 1016 device_resume(dev); 1017 1018 mutex_lock(&dpm_list_mtx); 1019 1020 if (!list_empty(&dev->power.entry)) 1021 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1022 1023 mutex_unlock(&dpm_list_mtx); 1024 1025 put_device(dev); 1026 1027 mutex_lock(&dpm_list_mtx); 1028 } 1029 mutex_unlock(&dpm_list_mtx); 1030 async_synchronize_full(); 1031 dpm_show_time(starttime, state, 0, NULL); 1032 1033 cpufreq_resume(); 1034 devfreq_resume(); 1035 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1036 } 1037 1038 /** 1039 * device_complete - Complete a PM transition for given device. 1040 * @dev: Device to handle. 1041 * @state: PM transition of the system being carried out. 1042 */ 1043 static void device_complete(struct device *dev, pm_message_t state) 1044 { 1045 void (*callback)(struct device *) = NULL; 1046 const char *info = NULL; 1047 1048 if (dev->power.syscore) 1049 goto out; 1050 1051 device_lock(dev); 1052 1053 if (dev->pm_domain) { 1054 info = "completing power domain "; 1055 callback = dev->pm_domain->ops.complete; 1056 } else if (dev->type && dev->type->pm) { 1057 info = "completing type "; 1058 callback = dev->type->pm->complete; 1059 } else if (dev->class && dev->class->pm) { 1060 info = "completing class "; 1061 callback = dev->class->pm->complete; 1062 } else if (dev->bus && dev->bus->pm) { 1063 info = "completing bus "; 1064 callback = dev->bus->pm->complete; 1065 } 1066 1067 if (!callback && dev->driver && dev->driver->pm) { 1068 info = "completing driver "; 1069 callback = dev->driver->pm->complete; 1070 } 1071 1072 if (callback) { 1073 pm_dev_dbg(dev, state, info); 1074 callback(dev); 1075 } 1076 1077 device_unlock(dev); 1078 1079 out: 1080 pm_runtime_put(dev); 1081 } 1082 1083 /** 1084 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1085 * @state: PM transition of the system being carried out. 1086 * 1087 * Execute the ->complete() callbacks for all devices whose PM status is not 1088 * DPM_ON (this allows new devices to be registered). 1089 */ 1090 void dpm_complete(pm_message_t state) 1091 { 1092 struct list_head list; 1093 1094 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1095 might_sleep(); 1096 1097 INIT_LIST_HEAD(&list); 1098 mutex_lock(&dpm_list_mtx); 1099 while (!list_empty(&dpm_prepared_list)) { 1100 struct device *dev = to_device(dpm_prepared_list.prev); 1101 1102 get_device(dev); 1103 dev->power.is_prepared = false; 1104 list_move(&dev->power.entry, &list); 1105 1106 mutex_unlock(&dpm_list_mtx); 1107 1108 trace_device_pm_callback_start(dev, "", state.event); 1109 device_complete(dev, state); 1110 trace_device_pm_callback_end(dev, 0); 1111 1112 put_device(dev); 1113 1114 mutex_lock(&dpm_list_mtx); 1115 } 1116 list_splice(&list, &dpm_list); 1117 mutex_unlock(&dpm_list_mtx); 1118 1119 /* Allow device probing and trigger re-probing of deferred devices */ 1120 device_unblock_probing(); 1121 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1122 } 1123 1124 /** 1125 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1126 * @state: PM transition of the system being carried out. 1127 * 1128 * Execute "resume" callbacks for all devices and complete the PM transition of 1129 * the system. 1130 */ 1131 void dpm_resume_end(pm_message_t state) 1132 { 1133 dpm_resume(state); 1134 dpm_complete(state); 1135 } 1136 EXPORT_SYMBOL_GPL(dpm_resume_end); 1137 1138 1139 /*------------------------- Suspend routines -------------------------*/ 1140 1141 /** 1142 * resume_event - Return a "resume" message for given "suspend" sleep state. 1143 * @sleep_state: PM message representing a sleep state. 1144 * 1145 * Return a PM message representing the resume event corresponding to given 1146 * sleep state. 1147 */ 1148 static pm_message_t resume_event(pm_message_t sleep_state) 1149 { 1150 switch (sleep_state.event) { 1151 case PM_EVENT_SUSPEND: 1152 return PMSG_RESUME; 1153 case PM_EVENT_FREEZE: 1154 case PM_EVENT_QUIESCE: 1155 return PMSG_RECOVER; 1156 case PM_EVENT_HIBERNATE: 1157 return PMSG_RESTORE; 1158 } 1159 return PMSG_ON; 1160 } 1161 1162 static void dpm_superior_set_must_resume(struct device *dev) 1163 { 1164 struct device_link *link; 1165 int idx; 1166 1167 if (dev->parent) 1168 dev->parent->power.must_resume = true; 1169 1170 idx = device_links_read_lock(); 1171 1172 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1173 link->supplier->power.must_resume = true; 1174 1175 device_links_read_unlock(idx); 1176 } 1177 1178 /** 1179 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1180 * @dev: Device to handle. 1181 * @state: PM transition of the system being carried out. 1182 * @async: If true, the device is being suspended asynchronously. 1183 * 1184 * The driver of @dev will not receive interrupts while this function is being 1185 * executed. 1186 */ 1187 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1188 { 1189 pm_callback_t callback = NULL; 1190 const char *info = NULL; 1191 int error = 0; 1192 1193 TRACE_DEVICE(dev); 1194 TRACE_SUSPEND(0); 1195 1196 dpm_wait_for_subordinate(dev, async); 1197 1198 if (async_error) 1199 goto Complete; 1200 1201 if (dev->power.syscore || dev->power.direct_complete) 1202 goto Complete; 1203 1204 if (dev->pm_domain) { 1205 info = "noirq power domain "; 1206 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1207 } else if (dev->type && dev->type->pm) { 1208 info = "noirq type "; 1209 callback = pm_noirq_op(dev->type->pm, state); 1210 } else if (dev->class && dev->class->pm) { 1211 info = "noirq class "; 1212 callback = pm_noirq_op(dev->class->pm, state); 1213 } else if (dev->bus && dev->bus->pm) { 1214 info = "noirq bus "; 1215 callback = pm_noirq_op(dev->bus->pm, state); 1216 } 1217 if (callback) 1218 goto Run; 1219 1220 if (dev_pm_skip_suspend(dev)) 1221 goto Skip; 1222 1223 if (dev->driver && dev->driver->pm) { 1224 info = "noirq driver "; 1225 callback = pm_noirq_op(dev->driver->pm, state); 1226 } 1227 1228 Run: 1229 error = dpm_run_callback(callback, dev, state, info); 1230 if (error) { 1231 async_error = error; 1232 goto Complete; 1233 } 1234 1235 Skip: 1236 dev->power.is_noirq_suspended = true; 1237 1238 /* 1239 * Skipping the resume of devices that were in use right before the 1240 * system suspend (as indicated by their PM-runtime usage counters) 1241 * would be suboptimal. Also resume them if doing that is not allowed 1242 * to be skipped. 1243 */ 1244 if (atomic_read(&dev->power.usage_count) > 1 || 1245 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1246 dev->power.may_skip_resume)) 1247 dev->power.must_resume = true; 1248 1249 if (dev->power.must_resume) 1250 dpm_superior_set_must_resume(dev); 1251 1252 Complete: 1253 complete_all(&dev->power.completion); 1254 TRACE_SUSPEND(error); 1255 return error; 1256 } 1257 1258 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1259 { 1260 struct device *dev = data; 1261 int error; 1262 1263 error = __device_suspend_noirq(dev, pm_transition, true); 1264 if (error) { 1265 dpm_save_failed_dev(dev_name(dev)); 1266 pm_dev_err(dev, pm_transition, " async", error); 1267 } 1268 1269 put_device(dev); 1270 } 1271 1272 static int device_suspend_noirq(struct device *dev) 1273 { 1274 if (dpm_async_fn(dev, async_suspend_noirq)) 1275 return 0; 1276 1277 return __device_suspend_noirq(dev, pm_transition, false); 1278 } 1279 1280 static int dpm_noirq_suspend_devices(pm_message_t state) 1281 { 1282 ktime_t starttime = ktime_get(); 1283 int error = 0; 1284 1285 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1286 mutex_lock(&dpm_list_mtx); 1287 pm_transition = state; 1288 async_error = 0; 1289 1290 while (!list_empty(&dpm_late_early_list)) { 1291 struct device *dev = to_device(dpm_late_early_list.prev); 1292 1293 get_device(dev); 1294 mutex_unlock(&dpm_list_mtx); 1295 1296 error = device_suspend_noirq(dev); 1297 1298 mutex_lock(&dpm_list_mtx); 1299 1300 if (error) { 1301 pm_dev_err(dev, state, " noirq", error); 1302 dpm_save_failed_dev(dev_name(dev)); 1303 } else if (!list_empty(&dev->power.entry)) { 1304 list_move(&dev->power.entry, &dpm_noirq_list); 1305 } 1306 1307 mutex_unlock(&dpm_list_mtx); 1308 1309 put_device(dev); 1310 1311 mutex_lock(&dpm_list_mtx); 1312 1313 if (error || async_error) 1314 break; 1315 } 1316 mutex_unlock(&dpm_list_mtx); 1317 async_synchronize_full(); 1318 if (!error) 1319 error = async_error; 1320 1321 if (error) { 1322 suspend_stats.failed_suspend_noirq++; 1323 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1324 } 1325 dpm_show_time(starttime, state, error, "noirq"); 1326 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1327 return error; 1328 } 1329 1330 /** 1331 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1332 * @state: PM transition of the system being carried out. 1333 * 1334 * Prevent device drivers' interrupt handlers from being called and invoke 1335 * "noirq" suspend callbacks for all non-sysdev devices. 1336 */ 1337 int dpm_suspend_noirq(pm_message_t state) 1338 { 1339 int ret; 1340 1341 device_wakeup_arm_wake_irqs(); 1342 suspend_device_irqs(); 1343 1344 ret = dpm_noirq_suspend_devices(state); 1345 if (ret) 1346 dpm_resume_noirq(resume_event(state)); 1347 1348 return ret; 1349 } 1350 1351 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1352 { 1353 struct device *parent = dev->parent; 1354 1355 if (!parent) 1356 return; 1357 1358 spin_lock_irq(&parent->power.lock); 1359 1360 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1361 parent->power.wakeup_path = true; 1362 1363 spin_unlock_irq(&parent->power.lock); 1364 } 1365 1366 /** 1367 * __device_suspend_late - Execute a "late suspend" callback for given device. 1368 * @dev: Device to handle. 1369 * @state: PM transition of the system being carried out. 1370 * @async: If true, the device is being suspended asynchronously. 1371 * 1372 * Runtime PM is disabled for @dev while this function is being executed. 1373 */ 1374 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1375 { 1376 pm_callback_t callback = NULL; 1377 const char *info = NULL; 1378 int error = 0; 1379 1380 TRACE_DEVICE(dev); 1381 TRACE_SUSPEND(0); 1382 1383 __pm_runtime_disable(dev, false); 1384 1385 dpm_wait_for_subordinate(dev, async); 1386 1387 if (async_error) 1388 goto Complete; 1389 1390 if (pm_wakeup_pending()) { 1391 async_error = -EBUSY; 1392 goto Complete; 1393 } 1394 1395 if (dev->power.syscore || dev->power.direct_complete) 1396 goto Complete; 1397 1398 if (dev->pm_domain) { 1399 info = "late power domain "; 1400 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1401 } else if (dev->type && dev->type->pm) { 1402 info = "late type "; 1403 callback = pm_late_early_op(dev->type->pm, state); 1404 } else if (dev->class && dev->class->pm) { 1405 info = "late class "; 1406 callback = pm_late_early_op(dev->class->pm, state); 1407 } else if (dev->bus && dev->bus->pm) { 1408 info = "late bus "; 1409 callback = pm_late_early_op(dev->bus->pm, state); 1410 } 1411 if (callback) 1412 goto Run; 1413 1414 if (dev_pm_skip_suspend(dev)) 1415 goto Skip; 1416 1417 if (dev->driver && dev->driver->pm) { 1418 info = "late driver "; 1419 callback = pm_late_early_op(dev->driver->pm, state); 1420 } 1421 1422 Run: 1423 error = dpm_run_callback(callback, dev, state, info); 1424 if (error) { 1425 async_error = error; 1426 goto Complete; 1427 } 1428 dpm_propagate_wakeup_to_parent(dev); 1429 1430 Skip: 1431 dev->power.is_late_suspended = true; 1432 1433 Complete: 1434 TRACE_SUSPEND(error); 1435 complete_all(&dev->power.completion); 1436 return error; 1437 } 1438 1439 static void async_suspend_late(void *data, async_cookie_t cookie) 1440 { 1441 struct device *dev = data; 1442 int error; 1443 1444 error = __device_suspend_late(dev, pm_transition, true); 1445 if (error) { 1446 dpm_save_failed_dev(dev_name(dev)); 1447 pm_dev_err(dev, pm_transition, " async", error); 1448 } 1449 put_device(dev); 1450 } 1451 1452 static int device_suspend_late(struct device *dev) 1453 { 1454 if (dpm_async_fn(dev, async_suspend_late)) 1455 return 0; 1456 1457 return __device_suspend_late(dev, pm_transition, false); 1458 } 1459 1460 /** 1461 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1462 * @state: PM transition of the system being carried out. 1463 */ 1464 int dpm_suspend_late(pm_message_t state) 1465 { 1466 ktime_t starttime = ktime_get(); 1467 int error = 0; 1468 1469 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1470 wake_up_all_idle_cpus(); 1471 mutex_lock(&dpm_list_mtx); 1472 pm_transition = state; 1473 async_error = 0; 1474 1475 while (!list_empty(&dpm_suspended_list)) { 1476 struct device *dev = to_device(dpm_suspended_list.prev); 1477 1478 get_device(dev); 1479 1480 mutex_unlock(&dpm_list_mtx); 1481 1482 error = device_suspend_late(dev); 1483 1484 mutex_lock(&dpm_list_mtx); 1485 1486 if (!list_empty(&dev->power.entry)) 1487 list_move(&dev->power.entry, &dpm_late_early_list); 1488 1489 if (error) { 1490 pm_dev_err(dev, state, " late", error); 1491 dpm_save_failed_dev(dev_name(dev)); 1492 } 1493 1494 mutex_unlock(&dpm_list_mtx); 1495 1496 put_device(dev); 1497 1498 mutex_lock(&dpm_list_mtx); 1499 1500 if (error || async_error) 1501 break; 1502 } 1503 mutex_unlock(&dpm_list_mtx); 1504 async_synchronize_full(); 1505 if (!error) 1506 error = async_error; 1507 if (error) { 1508 suspend_stats.failed_suspend_late++; 1509 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1510 dpm_resume_early(resume_event(state)); 1511 } 1512 dpm_show_time(starttime, state, error, "late"); 1513 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1514 return error; 1515 } 1516 1517 /** 1518 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1519 * @state: PM transition of the system being carried out. 1520 */ 1521 int dpm_suspend_end(pm_message_t state) 1522 { 1523 ktime_t starttime = ktime_get(); 1524 int error; 1525 1526 error = dpm_suspend_late(state); 1527 if (error) 1528 goto out; 1529 1530 error = dpm_suspend_noirq(state); 1531 if (error) 1532 dpm_resume_early(resume_event(state)); 1533 1534 out: 1535 dpm_show_time(starttime, state, error, "end"); 1536 return error; 1537 } 1538 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1539 1540 /** 1541 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1542 * @dev: Device to suspend. 1543 * @state: PM transition of the system being carried out. 1544 * @cb: Suspend callback to execute. 1545 * @info: string description of caller. 1546 */ 1547 static int legacy_suspend(struct device *dev, pm_message_t state, 1548 int (*cb)(struct device *dev, pm_message_t state), 1549 const char *info) 1550 { 1551 int error; 1552 ktime_t calltime; 1553 1554 calltime = initcall_debug_start(dev, cb); 1555 1556 trace_device_pm_callback_start(dev, info, state.event); 1557 error = cb(dev, state); 1558 trace_device_pm_callback_end(dev, error); 1559 suspend_report_result(dev, cb, error); 1560 1561 initcall_debug_report(dev, calltime, cb, error); 1562 1563 return error; 1564 } 1565 1566 static void dpm_clear_superiors_direct_complete(struct device *dev) 1567 { 1568 struct device_link *link; 1569 int idx; 1570 1571 if (dev->parent) { 1572 spin_lock_irq(&dev->parent->power.lock); 1573 dev->parent->power.direct_complete = false; 1574 spin_unlock_irq(&dev->parent->power.lock); 1575 } 1576 1577 idx = device_links_read_lock(); 1578 1579 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1580 spin_lock_irq(&link->supplier->power.lock); 1581 link->supplier->power.direct_complete = false; 1582 spin_unlock_irq(&link->supplier->power.lock); 1583 } 1584 1585 device_links_read_unlock(idx); 1586 } 1587 1588 /** 1589 * __device_suspend - Execute "suspend" callbacks for given device. 1590 * @dev: Device to handle. 1591 * @state: PM transition of the system being carried out. 1592 * @async: If true, the device is being suspended asynchronously. 1593 */ 1594 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1595 { 1596 pm_callback_t callback = NULL; 1597 const char *info = NULL; 1598 int error = 0; 1599 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1600 1601 TRACE_DEVICE(dev); 1602 TRACE_SUSPEND(0); 1603 1604 dpm_wait_for_subordinate(dev, async); 1605 1606 if (async_error) { 1607 dev->power.direct_complete = false; 1608 goto Complete; 1609 } 1610 1611 /* 1612 * Wait for possible runtime PM transitions of the device in progress 1613 * to complete and if there's a runtime resume request pending for it, 1614 * resume it before proceeding with invoking the system-wide suspend 1615 * callbacks for it. 1616 * 1617 * If the system-wide suspend callbacks below change the configuration 1618 * of the device, they must disable runtime PM for it or otherwise 1619 * ensure that its runtime-resume callbacks will not be confused by that 1620 * change in case they are invoked going forward. 1621 */ 1622 pm_runtime_barrier(dev); 1623 1624 if (pm_wakeup_pending()) { 1625 dev->power.direct_complete = false; 1626 async_error = -EBUSY; 1627 goto Complete; 1628 } 1629 1630 if (dev->power.syscore) 1631 goto Complete; 1632 1633 /* Avoid direct_complete to let wakeup_path propagate. */ 1634 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1635 dev->power.direct_complete = false; 1636 1637 if (dev->power.direct_complete) { 1638 if (pm_runtime_status_suspended(dev)) { 1639 pm_runtime_disable(dev); 1640 if (pm_runtime_status_suspended(dev)) { 1641 pm_dev_dbg(dev, state, "direct-complete "); 1642 goto Complete; 1643 } 1644 1645 pm_runtime_enable(dev); 1646 } 1647 dev->power.direct_complete = false; 1648 } 1649 1650 dev->power.may_skip_resume = true; 1651 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1652 1653 dpm_watchdog_set(&wd, dev); 1654 device_lock(dev); 1655 1656 if (dev->pm_domain) { 1657 info = "power domain "; 1658 callback = pm_op(&dev->pm_domain->ops, state); 1659 goto Run; 1660 } 1661 1662 if (dev->type && dev->type->pm) { 1663 info = "type "; 1664 callback = pm_op(dev->type->pm, state); 1665 goto Run; 1666 } 1667 1668 if (dev->class && dev->class->pm) { 1669 info = "class "; 1670 callback = pm_op(dev->class->pm, state); 1671 goto Run; 1672 } 1673 1674 if (dev->bus) { 1675 if (dev->bus->pm) { 1676 info = "bus "; 1677 callback = pm_op(dev->bus->pm, state); 1678 } else if (dev->bus->suspend) { 1679 pm_dev_dbg(dev, state, "legacy bus "); 1680 error = legacy_suspend(dev, state, dev->bus->suspend, 1681 "legacy bus "); 1682 goto End; 1683 } 1684 } 1685 1686 Run: 1687 if (!callback && dev->driver && dev->driver->pm) { 1688 info = "driver "; 1689 callback = pm_op(dev->driver->pm, state); 1690 } 1691 1692 error = dpm_run_callback(callback, dev, state, info); 1693 1694 End: 1695 if (!error) { 1696 dev->power.is_suspended = true; 1697 if (device_may_wakeup(dev)) 1698 dev->power.wakeup_path = true; 1699 1700 dpm_propagate_wakeup_to_parent(dev); 1701 dpm_clear_superiors_direct_complete(dev); 1702 } 1703 1704 device_unlock(dev); 1705 dpm_watchdog_clear(&wd); 1706 1707 Complete: 1708 if (error) 1709 async_error = error; 1710 1711 complete_all(&dev->power.completion); 1712 TRACE_SUSPEND(error); 1713 return error; 1714 } 1715 1716 static void async_suspend(void *data, async_cookie_t cookie) 1717 { 1718 struct device *dev = data; 1719 int error; 1720 1721 error = __device_suspend(dev, pm_transition, true); 1722 if (error) { 1723 dpm_save_failed_dev(dev_name(dev)); 1724 pm_dev_err(dev, pm_transition, " async", error); 1725 } 1726 1727 put_device(dev); 1728 } 1729 1730 static int device_suspend(struct device *dev) 1731 { 1732 if (dpm_async_fn(dev, async_suspend)) 1733 return 0; 1734 1735 return __device_suspend(dev, pm_transition, false); 1736 } 1737 1738 /** 1739 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1740 * @state: PM transition of the system being carried out. 1741 */ 1742 int dpm_suspend(pm_message_t state) 1743 { 1744 ktime_t starttime = ktime_get(); 1745 int error = 0; 1746 1747 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1748 might_sleep(); 1749 1750 devfreq_suspend(); 1751 cpufreq_suspend(); 1752 1753 mutex_lock(&dpm_list_mtx); 1754 pm_transition = state; 1755 async_error = 0; 1756 while (!list_empty(&dpm_prepared_list)) { 1757 struct device *dev = to_device(dpm_prepared_list.prev); 1758 1759 get_device(dev); 1760 1761 mutex_unlock(&dpm_list_mtx); 1762 1763 error = device_suspend(dev); 1764 1765 mutex_lock(&dpm_list_mtx); 1766 1767 if (error) { 1768 pm_dev_err(dev, state, "", error); 1769 dpm_save_failed_dev(dev_name(dev)); 1770 } else if (!list_empty(&dev->power.entry)) { 1771 list_move(&dev->power.entry, &dpm_suspended_list); 1772 } 1773 1774 mutex_unlock(&dpm_list_mtx); 1775 1776 put_device(dev); 1777 1778 mutex_lock(&dpm_list_mtx); 1779 1780 if (error || async_error) 1781 break; 1782 } 1783 mutex_unlock(&dpm_list_mtx); 1784 async_synchronize_full(); 1785 if (!error) 1786 error = async_error; 1787 if (error) { 1788 suspend_stats.failed_suspend++; 1789 dpm_save_failed_step(SUSPEND_SUSPEND); 1790 } 1791 dpm_show_time(starttime, state, error, NULL); 1792 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1793 return error; 1794 } 1795 1796 /** 1797 * device_prepare - Prepare a device for system power transition. 1798 * @dev: Device to handle. 1799 * @state: PM transition of the system being carried out. 1800 * 1801 * Execute the ->prepare() callback(s) for given device. No new children of the 1802 * device may be registered after this function has returned. 1803 */ 1804 static int device_prepare(struct device *dev, pm_message_t state) 1805 { 1806 int (*callback)(struct device *) = NULL; 1807 int ret = 0; 1808 1809 /* 1810 * If a device's parent goes into runtime suspend at the wrong time, 1811 * it won't be possible to resume the device. To prevent this we 1812 * block runtime suspend here, during the prepare phase, and allow 1813 * it again during the complete phase. 1814 */ 1815 pm_runtime_get_noresume(dev); 1816 1817 if (dev->power.syscore) 1818 return 0; 1819 1820 device_lock(dev); 1821 1822 dev->power.wakeup_path = false; 1823 1824 if (dev->power.no_pm_callbacks) 1825 goto unlock; 1826 1827 if (dev->pm_domain) 1828 callback = dev->pm_domain->ops.prepare; 1829 else if (dev->type && dev->type->pm) 1830 callback = dev->type->pm->prepare; 1831 else if (dev->class && dev->class->pm) 1832 callback = dev->class->pm->prepare; 1833 else if (dev->bus && dev->bus->pm) 1834 callback = dev->bus->pm->prepare; 1835 1836 if (!callback && dev->driver && dev->driver->pm) 1837 callback = dev->driver->pm->prepare; 1838 1839 if (callback) 1840 ret = callback(dev); 1841 1842 unlock: 1843 device_unlock(dev); 1844 1845 if (ret < 0) { 1846 suspend_report_result(dev, callback, ret); 1847 pm_runtime_put(dev); 1848 return ret; 1849 } 1850 /* 1851 * A positive return value from ->prepare() means "this device appears 1852 * to be runtime-suspended and its state is fine, so if it really is 1853 * runtime-suspended, you can leave it in that state provided that you 1854 * will do the same thing with all of its descendants". This only 1855 * applies to suspend transitions, however. 1856 */ 1857 spin_lock_irq(&dev->power.lock); 1858 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1859 (ret > 0 || dev->power.no_pm_callbacks) && 1860 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1861 spin_unlock_irq(&dev->power.lock); 1862 return 0; 1863 } 1864 1865 /** 1866 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1867 * @state: PM transition of the system being carried out. 1868 * 1869 * Execute the ->prepare() callback(s) for all devices. 1870 */ 1871 int dpm_prepare(pm_message_t state) 1872 { 1873 int error = 0; 1874 1875 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1876 might_sleep(); 1877 1878 /* 1879 * Give a chance for the known devices to complete their probes, before 1880 * disable probing of devices. This sync point is important at least 1881 * at boot time + hibernation restore. 1882 */ 1883 wait_for_device_probe(); 1884 /* 1885 * It is unsafe if probing of devices will happen during suspend or 1886 * hibernation and system behavior will be unpredictable in this case. 1887 * So, let's prohibit device's probing here and defer their probes 1888 * instead. The normal behavior will be restored in dpm_complete(). 1889 */ 1890 device_block_probing(); 1891 1892 mutex_lock(&dpm_list_mtx); 1893 while (!list_empty(&dpm_list) && !error) { 1894 struct device *dev = to_device(dpm_list.next); 1895 1896 get_device(dev); 1897 1898 mutex_unlock(&dpm_list_mtx); 1899 1900 trace_device_pm_callback_start(dev, "", state.event); 1901 error = device_prepare(dev, state); 1902 trace_device_pm_callback_end(dev, error); 1903 1904 mutex_lock(&dpm_list_mtx); 1905 1906 if (!error) { 1907 dev->power.is_prepared = true; 1908 if (!list_empty(&dev->power.entry)) 1909 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1910 } else if (error == -EAGAIN) { 1911 error = 0; 1912 } else { 1913 dev_info(dev, "not prepared for power transition: code %d\n", 1914 error); 1915 } 1916 1917 mutex_unlock(&dpm_list_mtx); 1918 1919 put_device(dev); 1920 1921 mutex_lock(&dpm_list_mtx); 1922 } 1923 mutex_unlock(&dpm_list_mtx); 1924 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1925 return error; 1926 } 1927 1928 /** 1929 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1930 * @state: PM transition of the system being carried out. 1931 * 1932 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1933 * callbacks for them. 1934 */ 1935 int dpm_suspend_start(pm_message_t state) 1936 { 1937 ktime_t starttime = ktime_get(); 1938 int error; 1939 1940 error = dpm_prepare(state); 1941 if (error) { 1942 suspend_stats.failed_prepare++; 1943 dpm_save_failed_step(SUSPEND_PREPARE); 1944 } else 1945 error = dpm_suspend(state); 1946 dpm_show_time(starttime, state, error, "start"); 1947 return error; 1948 } 1949 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1950 1951 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret) 1952 { 1953 if (ret) 1954 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret); 1955 } 1956 EXPORT_SYMBOL_GPL(__suspend_report_result); 1957 1958 /** 1959 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1960 * @subordinate: Device that needs to wait for @dev. 1961 * @dev: Device to wait for. 1962 */ 1963 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1964 { 1965 dpm_wait(dev, subordinate->power.async_suspend); 1966 return async_error; 1967 } 1968 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1969 1970 /** 1971 * dpm_for_each_dev - device iterator. 1972 * @data: data for the callback. 1973 * @fn: function to be called for each device. 1974 * 1975 * Iterate over devices in dpm_list, and call @fn for each device, 1976 * passing it @data. 1977 */ 1978 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1979 { 1980 struct device *dev; 1981 1982 if (!fn) 1983 return; 1984 1985 device_pm_lock(); 1986 list_for_each_entry(dev, &dpm_list, power.entry) 1987 fn(dev, data); 1988 device_pm_unlock(); 1989 } 1990 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1991 1992 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 1993 { 1994 if (!ops) 1995 return true; 1996 1997 return !ops->prepare && 1998 !ops->suspend && 1999 !ops->suspend_late && 2000 !ops->suspend_noirq && 2001 !ops->resume_noirq && 2002 !ops->resume_early && 2003 !ops->resume && 2004 !ops->complete; 2005 } 2006 2007 void device_pm_check_callbacks(struct device *dev) 2008 { 2009 unsigned long flags; 2010 2011 spin_lock_irqsave(&dev->power.lock, flags); 2012 dev->power.no_pm_callbacks = 2013 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2014 !dev->bus->suspend && !dev->bus->resume)) && 2015 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2016 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2017 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2018 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2019 !dev->driver->suspend && !dev->driver->resume)); 2020 spin_unlock_irqrestore(&dev->power.lock, flags); 2021 } 2022 2023 bool dev_pm_skip_suspend(struct device *dev) 2024 { 2025 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2026 pm_runtime_status_suspended(dev); 2027 } 2028