xref: /openbmc/linux/drivers/base/power/main.c (revision 044ace5e)
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19 
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 /*
44  * The entries in the dpm_list list are in a depth first order, simply
45  * because children are guaranteed to be discovered after parents, and
46  * are inserted at the back of the list on discovery.
47  *
48  * Since device_pm_add() may be called with a device lock held,
49  * we must never try to acquire a device lock while holding
50  * dpm_list_mutex.
51  */
52 
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58 
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62 
63 static int async_error;
64 
65 static const char *pm_verb(int event)
66 {
67 	switch (event) {
68 	case PM_EVENT_SUSPEND:
69 		return "suspend";
70 	case PM_EVENT_RESUME:
71 		return "resume";
72 	case PM_EVENT_FREEZE:
73 		return "freeze";
74 	case PM_EVENT_QUIESCE:
75 		return "quiesce";
76 	case PM_EVENT_HIBERNATE:
77 		return "hibernate";
78 	case PM_EVENT_THAW:
79 		return "thaw";
80 	case PM_EVENT_RESTORE:
81 		return "restore";
82 	case PM_EVENT_RECOVER:
83 		return "recover";
84 	default:
85 		return "(unknown PM event)";
86 	}
87 }
88 
89 /**
90  * device_pm_sleep_init - Initialize system suspend-related device fields.
91  * @dev: Device object being initialized.
92  */
93 void device_pm_sleep_init(struct device *dev)
94 {
95 	dev->power.is_prepared = false;
96 	dev->power.is_suspended = false;
97 	dev->power.is_noirq_suspended = false;
98 	dev->power.is_late_suspended = false;
99 	init_completion(&dev->power.completion);
100 	complete_all(&dev->power.completion);
101 	dev->power.wakeup = NULL;
102 	INIT_LIST_HEAD(&dev->power.entry);
103 }
104 
105 /**
106  * device_pm_lock - Lock the list of active devices used by the PM core.
107  */
108 void device_pm_lock(void)
109 {
110 	mutex_lock(&dpm_list_mtx);
111 }
112 
113 /**
114  * device_pm_unlock - Unlock the list of active devices used by the PM core.
115  */
116 void device_pm_unlock(void)
117 {
118 	mutex_unlock(&dpm_list_mtx);
119 }
120 
121 /**
122  * device_pm_add - Add a device to the PM core's list of active devices.
123  * @dev: Device to add to the list.
124  */
125 void device_pm_add(struct device *dev)
126 {
127 	pr_debug("PM: Adding info for %s:%s\n",
128 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129 	device_pm_check_callbacks(dev);
130 	mutex_lock(&dpm_list_mtx);
131 	if (dev->parent && dev->parent->power.is_prepared)
132 		dev_warn(dev, "parent %s should not be sleeping\n",
133 			dev_name(dev->parent));
134 	list_add_tail(&dev->power.entry, &dpm_list);
135 	dev->power.in_dpm_list = true;
136 	mutex_unlock(&dpm_list_mtx);
137 }
138 
139 /**
140  * device_pm_remove - Remove a device from the PM core's list of active devices.
141  * @dev: Device to be removed from the list.
142  */
143 void device_pm_remove(struct device *dev)
144 {
145 	pr_debug("PM: Removing info for %s:%s\n",
146 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 	complete_all(&dev->power.completion);
148 	mutex_lock(&dpm_list_mtx);
149 	list_del_init(&dev->power.entry);
150 	dev->power.in_dpm_list = false;
151 	mutex_unlock(&dpm_list_mtx);
152 	device_wakeup_disable(dev);
153 	pm_runtime_remove(dev);
154 	device_pm_check_callbacks(dev);
155 }
156 
157 /**
158  * device_pm_move_before - Move device in the PM core's list of active devices.
159  * @deva: Device to move in dpm_list.
160  * @devb: Device @deva should come before.
161  */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164 	pr_debug("PM: Moving %s:%s before %s:%s\n",
165 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167 	/* Delete deva from dpm_list and reinsert before devb. */
168 	list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170 
171 /**
172  * device_pm_move_after - Move device in the PM core's list of active devices.
173  * @deva: Device to move in dpm_list.
174  * @devb: Device @deva should come after.
175  */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178 	pr_debug("PM: Moving %s:%s after %s:%s\n",
179 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 	/* Delete deva from dpm_list and reinsert after devb. */
182 	list_move(&deva->power.entry, &devb->power.entry);
183 }
184 
185 /**
186  * device_pm_move_last - Move device to end of the PM core's list of devices.
187  * @dev: Device to move in dpm_list.
188  */
189 void device_pm_move_last(struct device *dev)
190 {
191 	pr_debug("PM: Moving %s:%s to end of list\n",
192 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193 	list_move_tail(&dev->power.entry, &dpm_list);
194 }
195 
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198 	ktime_t calltime = 0;
199 
200 	if (pm_print_times_enabled) {
201 		pr_info("calling  %s+ @ %i, parent: %s\n",
202 			dev_name(dev), task_pid_nr(current),
203 			dev->parent ? dev_name(dev->parent) : "none");
204 		calltime = ktime_get();
205 	}
206 
207 	return calltime;
208 }
209 
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211 				  int error, pm_message_t state,
212 				  const char *info)
213 {
214 	ktime_t rettime;
215 	s64 nsecs;
216 
217 	rettime = ktime_get();
218 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
219 
220 	if (pm_print_times_enabled) {
221 		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
222 			error, (unsigned long long)nsecs >> 10);
223 	}
224 }
225 
226 /**
227  * dpm_wait - Wait for a PM operation to complete.
228  * @dev: Device to wait for.
229  * @async: If unset, wait only if the device's power.async_suspend flag is set.
230  */
231 static void dpm_wait(struct device *dev, bool async)
232 {
233 	if (!dev)
234 		return;
235 
236 	if (async || (pm_async_enabled && dev->power.async_suspend))
237 		wait_for_completion(&dev->power.completion);
238 }
239 
240 static int dpm_wait_fn(struct device *dev, void *async_ptr)
241 {
242 	dpm_wait(dev, *((bool *)async_ptr));
243 	return 0;
244 }
245 
246 static void dpm_wait_for_children(struct device *dev, bool async)
247 {
248        device_for_each_child(dev, &async, dpm_wait_fn);
249 }
250 
251 static void dpm_wait_for_suppliers(struct device *dev, bool async)
252 {
253 	struct device_link *link;
254 	int idx;
255 
256 	idx = device_links_read_lock();
257 
258 	/*
259 	 * If the supplier goes away right after we've checked the link to it,
260 	 * we'll wait for its completion to change the state, but that's fine,
261 	 * because the only things that will block as a result are the SRCU
262 	 * callbacks freeing the link objects for the links in the list we're
263 	 * walking.
264 	 */
265 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
266 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
267 			dpm_wait(link->supplier, async);
268 
269 	device_links_read_unlock(idx);
270 }
271 
272 static void dpm_wait_for_superior(struct device *dev, bool async)
273 {
274 	dpm_wait(dev->parent, async);
275 	dpm_wait_for_suppliers(dev, async);
276 }
277 
278 static void dpm_wait_for_consumers(struct device *dev, bool async)
279 {
280 	struct device_link *link;
281 	int idx;
282 
283 	idx = device_links_read_lock();
284 
285 	/*
286 	 * The status of a device link can only be changed from "dormant" by a
287 	 * probe, but that cannot happen during system suspend/resume.  In
288 	 * theory it can change to "dormant" at that time, but then it is
289 	 * reasonable to wait for the target device anyway (eg. if it goes
290 	 * away, it's better to wait for it to go away completely and then
291 	 * continue instead of trying to continue in parallel with its
292 	 * unregistration).
293 	 */
294 	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
295 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
296 			dpm_wait(link->consumer, async);
297 
298 	device_links_read_unlock(idx);
299 }
300 
301 static void dpm_wait_for_subordinate(struct device *dev, bool async)
302 {
303 	dpm_wait_for_children(dev, async);
304 	dpm_wait_for_consumers(dev, async);
305 }
306 
307 /**
308  * pm_op - Return the PM operation appropriate for given PM event.
309  * @ops: PM operations to choose from.
310  * @state: PM transition of the system being carried out.
311  */
312 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
313 {
314 	switch (state.event) {
315 #ifdef CONFIG_SUSPEND
316 	case PM_EVENT_SUSPEND:
317 		return ops->suspend;
318 	case PM_EVENT_RESUME:
319 		return ops->resume;
320 #endif /* CONFIG_SUSPEND */
321 #ifdef CONFIG_HIBERNATE_CALLBACKS
322 	case PM_EVENT_FREEZE:
323 	case PM_EVENT_QUIESCE:
324 		return ops->freeze;
325 	case PM_EVENT_HIBERNATE:
326 		return ops->poweroff;
327 	case PM_EVENT_THAW:
328 	case PM_EVENT_RECOVER:
329 		return ops->thaw;
330 		break;
331 	case PM_EVENT_RESTORE:
332 		return ops->restore;
333 #endif /* CONFIG_HIBERNATE_CALLBACKS */
334 	}
335 
336 	return NULL;
337 }
338 
339 /**
340  * pm_late_early_op - Return the PM operation appropriate for given PM event.
341  * @ops: PM operations to choose from.
342  * @state: PM transition of the system being carried out.
343  *
344  * Runtime PM is disabled for @dev while this function is being executed.
345  */
346 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
347 				      pm_message_t state)
348 {
349 	switch (state.event) {
350 #ifdef CONFIG_SUSPEND
351 	case PM_EVENT_SUSPEND:
352 		return ops->suspend_late;
353 	case PM_EVENT_RESUME:
354 		return ops->resume_early;
355 #endif /* CONFIG_SUSPEND */
356 #ifdef CONFIG_HIBERNATE_CALLBACKS
357 	case PM_EVENT_FREEZE:
358 	case PM_EVENT_QUIESCE:
359 		return ops->freeze_late;
360 	case PM_EVENT_HIBERNATE:
361 		return ops->poweroff_late;
362 	case PM_EVENT_THAW:
363 	case PM_EVENT_RECOVER:
364 		return ops->thaw_early;
365 	case PM_EVENT_RESTORE:
366 		return ops->restore_early;
367 #endif /* CONFIG_HIBERNATE_CALLBACKS */
368 	}
369 
370 	return NULL;
371 }
372 
373 /**
374  * pm_noirq_op - Return the PM operation appropriate for given PM event.
375  * @ops: PM operations to choose from.
376  * @state: PM transition of the system being carried out.
377  *
378  * The driver of @dev will not receive interrupts while this function is being
379  * executed.
380  */
381 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
382 {
383 	switch (state.event) {
384 #ifdef CONFIG_SUSPEND
385 	case PM_EVENT_SUSPEND:
386 		return ops->suspend_noirq;
387 	case PM_EVENT_RESUME:
388 		return ops->resume_noirq;
389 #endif /* CONFIG_SUSPEND */
390 #ifdef CONFIG_HIBERNATE_CALLBACKS
391 	case PM_EVENT_FREEZE:
392 	case PM_EVENT_QUIESCE:
393 		return ops->freeze_noirq;
394 	case PM_EVENT_HIBERNATE:
395 		return ops->poweroff_noirq;
396 	case PM_EVENT_THAW:
397 	case PM_EVENT_RECOVER:
398 		return ops->thaw_noirq;
399 	case PM_EVENT_RESTORE:
400 		return ops->restore_noirq;
401 #endif /* CONFIG_HIBERNATE_CALLBACKS */
402 	}
403 
404 	return NULL;
405 }
406 
407 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
408 {
409 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
410 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
411 		", may wakeup" : "");
412 }
413 
414 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
415 			int error)
416 {
417 	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
418 		dev_name(dev), pm_verb(state.event), info, error);
419 }
420 
421 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
422 			  const char *info)
423 {
424 	ktime_t calltime;
425 	u64 usecs64;
426 	int usecs;
427 
428 	calltime = ktime_get();
429 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
430 	do_div(usecs64, NSEC_PER_USEC);
431 	usecs = usecs64;
432 	if (usecs == 0)
433 		usecs = 1;
434 
435 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
436 		  info ?: "", info ? " " : "", pm_verb(state.event),
437 		  error ? "aborted" : "complete",
438 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
439 }
440 
441 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
442 			    pm_message_t state, const char *info)
443 {
444 	ktime_t calltime;
445 	int error;
446 
447 	if (!cb)
448 		return 0;
449 
450 	calltime = initcall_debug_start(dev);
451 
452 	pm_dev_dbg(dev, state, info);
453 	trace_device_pm_callback_start(dev, info, state.event);
454 	error = cb(dev);
455 	trace_device_pm_callback_end(dev, error);
456 	suspend_report_result(cb, error);
457 
458 	initcall_debug_report(dev, calltime, error, state, info);
459 
460 	return error;
461 }
462 
463 #ifdef CONFIG_DPM_WATCHDOG
464 struct dpm_watchdog {
465 	struct device		*dev;
466 	struct task_struct	*tsk;
467 	struct timer_list	timer;
468 };
469 
470 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
471 	struct dpm_watchdog wd
472 
473 /**
474  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
475  * @data: Watchdog object address.
476  *
477  * Called when a driver has timed out suspending or resuming.
478  * There's not much we can do here to recover so panic() to
479  * capture a crash-dump in pstore.
480  */
481 static void dpm_watchdog_handler(struct timer_list *t)
482 {
483 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
484 
485 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
486 	show_stack(wd->tsk, NULL);
487 	panic("%s %s: unrecoverable failure\n",
488 		dev_driver_string(wd->dev), dev_name(wd->dev));
489 }
490 
491 /**
492  * dpm_watchdog_set - Enable pm watchdog for given device.
493  * @wd: Watchdog. Must be allocated on the stack.
494  * @dev: Device to handle.
495  */
496 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
497 {
498 	struct timer_list *timer = &wd->timer;
499 
500 	wd->dev = dev;
501 	wd->tsk = current;
502 
503 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
504 	/* use same timeout value for both suspend and resume */
505 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
506 	add_timer(timer);
507 }
508 
509 /**
510  * dpm_watchdog_clear - Disable suspend/resume watchdog.
511  * @wd: Watchdog to disable.
512  */
513 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
514 {
515 	struct timer_list *timer = &wd->timer;
516 
517 	del_timer_sync(timer);
518 	destroy_timer_on_stack(timer);
519 }
520 #else
521 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
522 #define dpm_watchdog_set(x, y)
523 #define dpm_watchdog_clear(x)
524 #endif
525 
526 /*------------------------- Resume routines -------------------------*/
527 
528 /**
529  * device_resume_noirq - Execute a "noirq resume" callback for given device.
530  * @dev: Device to handle.
531  * @state: PM transition of the system being carried out.
532  * @async: If true, the device is being resumed asynchronously.
533  *
534  * The driver of @dev will not receive interrupts while this function is being
535  * executed.
536  */
537 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
538 {
539 	pm_callback_t callback = NULL;
540 	const char *info = NULL;
541 	int error = 0;
542 
543 	TRACE_DEVICE(dev);
544 	TRACE_RESUME(0);
545 
546 	if (dev->power.syscore || dev->power.direct_complete)
547 		goto Out;
548 
549 	if (!dev->power.is_noirq_suspended)
550 		goto Out;
551 
552 	dpm_wait_for_superior(dev, async);
553 
554 	if (dev->pm_domain) {
555 		info = "noirq power domain ";
556 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
557 	} else if (dev->type && dev->type->pm) {
558 		info = "noirq type ";
559 		callback = pm_noirq_op(dev->type->pm, state);
560 	} else if (dev->class && dev->class->pm) {
561 		info = "noirq class ";
562 		callback = pm_noirq_op(dev->class->pm, state);
563 	} else if (dev->bus && dev->bus->pm) {
564 		info = "noirq bus ";
565 		callback = pm_noirq_op(dev->bus->pm, state);
566 	}
567 
568 	if (!callback && dev->driver && dev->driver->pm) {
569 		info = "noirq driver ";
570 		callback = pm_noirq_op(dev->driver->pm, state);
571 	}
572 
573 	error = dpm_run_callback(callback, dev, state, info);
574 	dev->power.is_noirq_suspended = false;
575 
576  Out:
577 	complete_all(&dev->power.completion);
578 	TRACE_RESUME(error);
579 	return error;
580 }
581 
582 static bool is_async(struct device *dev)
583 {
584 	return dev->power.async_suspend && pm_async_enabled
585 		&& !pm_trace_is_enabled();
586 }
587 
588 static void async_resume_noirq(void *data, async_cookie_t cookie)
589 {
590 	struct device *dev = (struct device *)data;
591 	int error;
592 
593 	error = device_resume_noirq(dev, pm_transition, true);
594 	if (error)
595 		pm_dev_err(dev, pm_transition, " async", error);
596 
597 	put_device(dev);
598 }
599 
600 void dpm_noirq_resume_devices(pm_message_t state)
601 {
602 	struct device *dev;
603 	ktime_t starttime = ktime_get();
604 
605 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
606 	mutex_lock(&dpm_list_mtx);
607 	pm_transition = state;
608 
609 	/*
610 	 * Advanced the async threads upfront,
611 	 * in case the starting of async threads is
612 	 * delayed by non-async resuming devices.
613 	 */
614 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
615 		reinit_completion(&dev->power.completion);
616 		if (is_async(dev)) {
617 			get_device(dev);
618 			async_schedule(async_resume_noirq, dev);
619 		}
620 	}
621 
622 	while (!list_empty(&dpm_noirq_list)) {
623 		dev = to_device(dpm_noirq_list.next);
624 		get_device(dev);
625 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
626 		mutex_unlock(&dpm_list_mtx);
627 
628 		if (!is_async(dev)) {
629 			int error;
630 
631 			error = device_resume_noirq(dev, state, false);
632 			if (error) {
633 				suspend_stats.failed_resume_noirq++;
634 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
635 				dpm_save_failed_dev(dev_name(dev));
636 				pm_dev_err(dev, state, " noirq", error);
637 			}
638 		}
639 
640 		mutex_lock(&dpm_list_mtx);
641 		put_device(dev);
642 	}
643 	mutex_unlock(&dpm_list_mtx);
644 	async_synchronize_full();
645 	dpm_show_time(starttime, state, 0, "noirq");
646 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
647 }
648 
649 void dpm_noirq_end(void)
650 {
651 	resume_device_irqs();
652 	device_wakeup_disarm_wake_irqs();
653 	cpuidle_resume();
654 }
655 
656 /**
657  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
658  * @state: PM transition of the system being carried out.
659  *
660  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
661  * allow device drivers' interrupt handlers to be called.
662  */
663 void dpm_resume_noirq(pm_message_t state)
664 {
665 	dpm_noirq_resume_devices(state);
666 	dpm_noirq_end();
667 }
668 
669 /**
670  * device_resume_early - Execute an "early resume" callback for given device.
671  * @dev: Device to handle.
672  * @state: PM transition of the system being carried out.
673  * @async: If true, the device is being resumed asynchronously.
674  *
675  * Runtime PM is disabled for @dev while this function is being executed.
676  */
677 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
678 {
679 	pm_callback_t callback = NULL;
680 	const char *info = NULL;
681 	int error = 0;
682 
683 	TRACE_DEVICE(dev);
684 	TRACE_RESUME(0);
685 
686 	if (dev->power.syscore || dev->power.direct_complete)
687 		goto Out;
688 
689 	if (!dev->power.is_late_suspended)
690 		goto Out;
691 
692 	dpm_wait_for_superior(dev, async);
693 
694 	if (dev->pm_domain) {
695 		info = "early power domain ";
696 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
697 	} else if (dev->type && dev->type->pm) {
698 		info = "early type ";
699 		callback = pm_late_early_op(dev->type->pm, state);
700 	} else if (dev->class && dev->class->pm) {
701 		info = "early class ";
702 		callback = pm_late_early_op(dev->class->pm, state);
703 	} else if (dev->bus && dev->bus->pm) {
704 		info = "early bus ";
705 		callback = pm_late_early_op(dev->bus->pm, state);
706 	}
707 
708 	if (!callback && dev->driver && dev->driver->pm) {
709 		info = "early driver ";
710 		callback = pm_late_early_op(dev->driver->pm, state);
711 	}
712 
713 	error = dpm_run_callback(callback, dev, state, info);
714 	dev->power.is_late_suspended = false;
715 
716  Out:
717 	TRACE_RESUME(error);
718 
719 	pm_runtime_enable(dev);
720 	complete_all(&dev->power.completion);
721 	return error;
722 }
723 
724 static void async_resume_early(void *data, async_cookie_t cookie)
725 {
726 	struct device *dev = (struct device *)data;
727 	int error;
728 
729 	error = device_resume_early(dev, pm_transition, true);
730 	if (error)
731 		pm_dev_err(dev, pm_transition, " async", error);
732 
733 	put_device(dev);
734 }
735 
736 /**
737  * dpm_resume_early - Execute "early resume" callbacks for all devices.
738  * @state: PM transition of the system being carried out.
739  */
740 void dpm_resume_early(pm_message_t state)
741 {
742 	struct device *dev;
743 	ktime_t starttime = ktime_get();
744 
745 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
746 	mutex_lock(&dpm_list_mtx);
747 	pm_transition = state;
748 
749 	/*
750 	 * Advanced the async threads upfront,
751 	 * in case the starting of async threads is
752 	 * delayed by non-async resuming devices.
753 	 */
754 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
755 		reinit_completion(&dev->power.completion);
756 		if (is_async(dev)) {
757 			get_device(dev);
758 			async_schedule(async_resume_early, dev);
759 		}
760 	}
761 
762 	while (!list_empty(&dpm_late_early_list)) {
763 		dev = to_device(dpm_late_early_list.next);
764 		get_device(dev);
765 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
766 		mutex_unlock(&dpm_list_mtx);
767 
768 		if (!is_async(dev)) {
769 			int error;
770 
771 			error = device_resume_early(dev, state, false);
772 			if (error) {
773 				suspend_stats.failed_resume_early++;
774 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
775 				dpm_save_failed_dev(dev_name(dev));
776 				pm_dev_err(dev, state, " early", error);
777 			}
778 		}
779 		mutex_lock(&dpm_list_mtx);
780 		put_device(dev);
781 	}
782 	mutex_unlock(&dpm_list_mtx);
783 	async_synchronize_full();
784 	dpm_show_time(starttime, state, 0, "early");
785 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
786 }
787 
788 /**
789  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
790  * @state: PM transition of the system being carried out.
791  */
792 void dpm_resume_start(pm_message_t state)
793 {
794 	dpm_resume_noirq(state);
795 	dpm_resume_early(state);
796 }
797 EXPORT_SYMBOL_GPL(dpm_resume_start);
798 
799 /**
800  * device_resume - Execute "resume" callbacks for given device.
801  * @dev: Device to handle.
802  * @state: PM transition of the system being carried out.
803  * @async: If true, the device is being resumed asynchronously.
804  */
805 static int device_resume(struct device *dev, pm_message_t state, bool async)
806 {
807 	pm_callback_t callback = NULL;
808 	const char *info = NULL;
809 	int error = 0;
810 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
811 
812 	TRACE_DEVICE(dev);
813 	TRACE_RESUME(0);
814 
815 	if (dev->power.syscore)
816 		goto Complete;
817 
818 	if (dev->power.direct_complete) {
819 		/* Match the pm_runtime_disable() in __device_suspend(). */
820 		pm_runtime_enable(dev);
821 		goto Complete;
822 	}
823 
824 	dpm_wait_for_superior(dev, async);
825 	dpm_watchdog_set(&wd, dev);
826 	device_lock(dev);
827 
828 	/*
829 	 * This is a fib.  But we'll allow new children to be added below
830 	 * a resumed device, even if the device hasn't been completed yet.
831 	 */
832 	dev->power.is_prepared = false;
833 
834 	if (!dev->power.is_suspended)
835 		goto Unlock;
836 
837 	if (dev->pm_domain) {
838 		info = "power domain ";
839 		callback = pm_op(&dev->pm_domain->ops, state);
840 		goto Driver;
841 	}
842 
843 	if (dev->type && dev->type->pm) {
844 		info = "type ";
845 		callback = pm_op(dev->type->pm, state);
846 		goto Driver;
847 	}
848 
849 	if (dev->class && dev->class->pm) {
850 		info = "class ";
851 		callback = pm_op(dev->class->pm, state);
852 		goto Driver;
853 	}
854 
855 	if (dev->bus) {
856 		if (dev->bus->pm) {
857 			info = "bus ";
858 			callback = pm_op(dev->bus->pm, state);
859 		} else if (dev->bus->resume) {
860 			info = "legacy bus ";
861 			callback = dev->bus->resume;
862 			goto End;
863 		}
864 	}
865 
866  Driver:
867 	if (!callback && dev->driver && dev->driver->pm) {
868 		info = "driver ";
869 		callback = pm_op(dev->driver->pm, state);
870 	}
871 
872  End:
873 	error = dpm_run_callback(callback, dev, state, info);
874 	dev->power.is_suspended = false;
875 
876  Unlock:
877 	device_unlock(dev);
878 	dpm_watchdog_clear(&wd);
879 
880  Complete:
881 	complete_all(&dev->power.completion);
882 
883 	TRACE_RESUME(error);
884 
885 	return error;
886 }
887 
888 static void async_resume(void *data, async_cookie_t cookie)
889 {
890 	struct device *dev = (struct device *)data;
891 	int error;
892 
893 	error = device_resume(dev, pm_transition, true);
894 	if (error)
895 		pm_dev_err(dev, pm_transition, " async", error);
896 	put_device(dev);
897 }
898 
899 /**
900  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
901  * @state: PM transition of the system being carried out.
902  *
903  * Execute the appropriate "resume" callback for all devices whose status
904  * indicates that they are suspended.
905  */
906 void dpm_resume(pm_message_t state)
907 {
908 	struct device *dev;
909 	ktime_t starttime = ktime_get();
910 
911 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
912 	might_sleep();
913 
914 	mutex_lock(&dpm_list_mtx);
915 	pm_transition = state;
916 	async_error = 0;
917 
918 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
919 		reinit_completion(&dev->power.completion);
920 		if (is_async(dev)) {
921 			get_device(dev);
922 			async_schedule(async_resume, dev);
923 		}
924 	}
925 
926 	while (!list_empty(&dpm_suspended_list)) {
927 		dev = to_device(dpm_suspended_list.next);
928 		get_device(dev);
929 		if (!is_async(dev)) {
930 			int error;
931 
932 			mutex_unlock(&dpm_list_mtx);
933 
934 			error = device_resume(dev, state, false);
935 			if (error) {
936 				suspend_stats.failed_resume++;
937 				dpm_save_failed_step(SUSPEND_RESUME);
938 				dpm_save_failed_dev(dev_name(dev));
939 				pm_dev_err(dev, state, "", error);
940 			}
941 
942 			mutex_lock(&dpm_list_mtx);
943 		}
944 		if (!list_empty(&dev->power.entry))
945 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
946 		put_device(dev);
947 	}
948 	mutex_unlock(&dpm_list_mtx);
949 	async_synchronize_full();
950 	dpm_show_time(starttime, state, 0, NULL);
951 
952 	cpufreq_resume();
953 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
954 }
955 
956 /**
957  * device_complete - Complete a PM transition for given device.
958  * @dev: Device to handle.
959  * @state: PM transition of the system being carried out.
960  */
961 static void device_complete(struct device *dev, pm_message_t state)
962 {
963 	void (*callback)(struct device *) = NULL;
964 	const char *info = NULL;
965 
966 	if (dev->power.syscore)
967 		return;
968 
969 	device_lock(dev);
970 
971 	if (dev->pm_domain) {
972 		info = "completing power domain ";
973 		callback = dev->pm_domain->ops.complete;
974 	} else if (dev->type && dev->type->pm) {
975 		info = "completing type ";
976 		callback = dev->type->pm->complete;
977 	} else if (dev->class && dev->class->pm) {
978 		info = "completing class ";
979 		callback = dev->class->pm->complete;
980 	} else if (dev->bus && dev->bus->pm) {
981 		info = "completing bus ";
982 		callback = dev->bus->pm->complete;
983 	}
984 
985 	if (!callback && dev->driver && dev->driver->pm) {
986 		info = "completing driver ";
987 		callback = dev->driver->pm->complete;
988 	}
989 
990 	if (callback) {
991 		pm_dev_dbg(dev, state, info);
992 		callback(dev);
993 	}
994 
995 	device_unlock(dev);
996 
997 	pm_runtime_put(dev);
998 }
999 
1000 /**
1001  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1002  * @state: PM transition of the system being carried out.
1003  *
1004  * Execute the ->complete() callbacks for all devices whose PM status is not
1005  * DPM_ON (this allows new devices to be registered).
1006  */
1007 void dpm_complete(pm_message_t state)
1008 {
1009 	struct list_head list;
1010 
1011 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1012 	might_sleep();
1013 
1014 	INIT_LIST_HEAD(&list);
1015 	mutex_lock(&dpm_list_mtx);
1016 	while (!list_empty(&dpm_prepared_list)) {
1017 		struct device *dev = to_device(dpm_prepared_list.prev);
1018 
1019 		get_device(dev);
1020 		dev->power.is_prepared = false;
1021 		list_move(&dev->power.entry, &list);
1022 		mutex_unlock(&dpm_list_mtx);
1023 
1024 		trace_device_pm_callback_start(dev, "", state.event);
1025 		device_complete(dev, state);
1026 		trace_device_pm_callback_end(dev, 0);
1027 
1028 		mutex_lock(&dpm_list_mtx);
1029 		put_device(dev);
1030 	}
1031 	list_splice(&list, &dpm_list);
1032 	mutex_unlock(&dpm_list_mtx);
1033 
1034 	/* Allow device probing and trigger re-probing of deferred devices */
1035 	device_unblock_probing();
1036 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1037 }
1038 
1039 /**
1040  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1041  * @state: PM transition of the system being carried out.
1042  *
1043  * Execute "resume" callbacks for all devices and complete the PM transition of
1044  * the system.
1045  */
1046 void dpm_resume_end(pm_message_t state)
1047 {
1048 	dpm_resume(state);
1049 	dpm_complete(state);
1050 }
1051 EXPORT_SYMBOL_GPL(dpm_resume_end);
1052 
1053 
1054 /*------------------------- Suspend routines -------------------------*/
1055 
1056 /**
1057  * resume_event - Return a "resume" message for given "suspend" sleep state.
1058  * @sleep_state: PM message representing a sleep state.
1059  *
1060  * Return a PM message representing the resume event corresponding to given
1061  * sleep state.
1062  */
1063 static pm_message_t resume_event(pm_message_t sleep_state)
1064 {
1065 	switch (sleep_state.event) {
1066 	case PM_EVENT_SUSPEND:
1067 		return PMSG_RESUME;
1068 	case PM_EVENT_FREEZE:
1069 	case PM_EVENT_QUIESCE:
1070 		return PMSG_RECOVER;
1071 	case PM_EVENT_HIBERNATE:
1072 		return PMSG_RESTORE;
1073 	}
1074 	return PMSG_ON;
1075 }
1076 
1077 /**
1078  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1079  * @dev: Device to handle.
1080  * @state: PM transition of the system being carried out.
1081  * @async: If true, the device is being suspended asynchronously.
1082  *
1083  * The driver of @dev will not receive interrupts while this function is being
1084  * executed.
1085  */
1086 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1087 {
1088 	pm_callback_t callback = NULL;
1089 	const char *info = NULL;
1090 	int error = 0;
1091 
1092 	TRACE_DEVICE(dev);
1093 	TRACE_SUSPEND(0);
1094 
1095 	dpm_wait_for_subordinate(dev, async);
1096 
1097 	if (async_error)
1098 		goto Complete;
1099 
1100 	if (pm_wakeup_pending()) {
1101 		async_error = -EBUSY;
1102 		goto Complete;
1103 	}
1104 
1105 	if (dev->power.syscore || dev->power.direct_complete)
1106 		goto Complete;
1107 
1108 	if (dev->pm_domain) {
1109 		info = "noirq power domain ";
1110 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1111 	} else if (dev->type && dev->type->pm) {
1112 		info = "noirq type ";
1113 		callback = pm_noirq_op(dev->type->pm, state);
1114 	} else if (dev->class && dev->class->pm) {
1115 		info = "noirq class ";
1116 		callback = pm_noirq_op(dev->class->pm, state);
1117 	} else if (dev->bus && dev->bus->pm) {
1118 		info = "noirq bus ";
1119 		callback = pm_noirq_op(dev->bus->pm, state);
1120 	}
1121 
1122 	if (!callback && dev->driver && dev->driver->pm) {
1123 		info = "noirq driver ";
1124 		callback = pm_noirq_op(dev->driver->pm, state);
1125 	}
1126 
1127 	error = dpm_run_callback(callback, dev, state, info);
1128 	if (!error)
1129 		dev->power.is_noirq_suspended = true;
1130 	else
1131 		async_error = error;
1132 
1133 Complete:
1134 	complete_all(&dev->power.completion);
1135 	TRACE_SUSPEND(error);
1136 	return error;
1137 }
1138 
1139 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1140 {
1141 	struct device *dev = (struct device *)data;
1142 	int error;
1143 
1144 	error = __device_suspend_noirq(dev, pm_transition, true);
1145 	if (error) {
1146 		dpm_save_failed_dev(dev_name(dev));
1147 		pm_dev_err(dev, pm_transition, " async", error);
1148 	}
1149 
1150 	put_device(dev);
1151 }
1152 
1153 static int device_suspend_noirq(struct device *dev)
1154 {
1155 	reinit_completion(&dev->power.completion);
1156 
1157 	if (is_async(dev)) {
1158 		get_device(dev);
1159 		async_schedule(async_suspend_noirq, dev);
1160 		return 0;
1161 	}
1162 	return __device_suspend_noirq(dev, pm_transition, false);
1163 }
1164 
1165 void dpm_noirq_begin(void)
1166 {
1167 	cpuidle_pause();
1168 	device_wakeup_arm_wake_irqs();
1169 	suspend_device_irqs();
1170 }
1171 
1172 int dpm_noirq_suspend_devices(pm_message_t state)
1173 {
1174 	ktime_t starttime = ktime_get();
1175 	int error = 0;
1176 
1177 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1178 	mutex_lock(&dpm_list_mtx);
1179 	pm_transition = state;
1180 	async_error = 0;
1181 
1182 	while (!list_empty(&dpm_late_early_list)) {
1183 		struct device *dev = to_device(dpm_late_early_list.prev);
1184 
1185 		get_device(dev);
1186 		mutex_unlock(&dpm_list_mtx);
1187 
1188 		error = device_suspend_noirq(dev);
1189 
1190 		mutex_lock(&dpm_list_mtx);
1191 		if (error) {
1192 			pm_dev_err(dev, state, " noirq", error);
1193 			dpm_save_failed_dev(dev_name(dev));
1194 			put_device(dev);
1195 			break;
1196 		}
1197 		if (!list_empty(&dev->power.entry))
1198 			list_move(&dev->power.entry, &dpm_noirq_list);
1199 		put_device(dev);
1200 
1201 		if (async_error)
1202 			break;
1203 	}
1204 	mutex_unlock(&dpm_list_mtx);
1205 	async_synchronize_full();
1206 	if (!error)
1207 		error = async_error;
1208 
1209 	if (error) {
1210 		suspend_stats.failed_suspend_noirq++;
1211 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1212 	}
1213 	dpm_show_time(starttime, state, error, "noirq");
1214 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1215 	return error;
1216 }
1217 
1218 /**
1219  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1220  * @state: PM transition of the system being carried out.
1221  *
1222  * Prevent device drivers' interrupt handlers from being called and invoke
1223  * "noirq" suspend callbacks for all non-sysdev devices.
1224  */
1225 int dpm_suspend_noirq(pm_message_t state)
1226 {
1227 	int ret;
1228 
1229 	dpm_noirq_begin();
1230 	ret = dpm_noirq_suspend_devices(state);
1231 	if (ret)
1232 		dpm_resume_noirq(resume_event(state));
1233 
1234 	return ret;
1235 }
1236 
1237 /**
1238  * __device_suspend_late - Execute a "late suspend" callback for given device.
1239  * @dev: Device to handle.
1240  * @state: PM transition of the system being carried out.
1241  * @async: If true, the device is being suspended asynchronously.
1242  *
1243  * Runtime PM is disabled for @dev while this function is being executed.
1244  */
1245 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1246 {
1247 	pm_callback_t callback = NULL;
1248 	const char *info = NULL;
1249 	int error = 0;
1250 
1251 	TRACE_DEVICE(dev);
1252 	TRACE_SUSPEND(0);
1253 
1254 	__pm_runtime_disable(dev, false);
1255 
1256 	dpm_wait_for_subordinate(dev, async);
1257 
1258 	if (async_error)
1259 		goto Complete;
1260 
1261 	if (pm_wakeup_pending()) {
1262 		async_error = -EBUSY;
1263 		goto Complete;
1264 	}
1265 
1266 	if (dev->power.syscore || dev->power.direct_complete)
1267 		goto Complete;
1268 
1269 	if (dev->pm_domain) {
1270 		info = "late power domain ";
1271 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1272 	} else if (dev->type && dev->type->pm) {
1273 		info = "late type ";
1274 		callback = pm_late_early_op(dev->type->pm, state);
1275 	} else if (dev->class && dev->class->pm) {
1276 		info = "late class ";
1277 		callback = pm_late_early_op(dev->class->pm, state);
1278 	} else if (dev->bus && dev->bus->pm) {
1279 		info = "late bus ";
1280 		callback = pm_late_early_op(dev->bus->pm, state);
1281 	}
1282 
1283 	if (!callback && dev->driver && dev->driver->pm) {
1284 		info = "late driver ";
1285 		callback = pm_late_early_op(dev->driver->pm, state);
1286 	}
1287 
1288 	error = dpm_run_callback(callback, dev, state, info);
1289 	if (!error)
1290 		dev->power.is_late_suspended = true;
1291 	else
1292 		async_error = error;
1293 
1294 Complete:
1295 	TRACE_SUSPEND(error);
1296 	complete_all(&dev->power.completion);
1297 	return error;
1298 }
1299 
1300 static void async_suspend_late(void *data, async_cookie_t cookie)
1301 {
1302 	struct device *dev = (struct device *)data;
1303 	int error;
1304 
1305 	error = __device_suspend_late(dev, pm_transition, true);
1306 	if (error) {
1307 		dpm_save_failed_dev(dev_name(dev));
1308 		pm_dev_err(dev, pm_transition, " async", error);
1309 	}
1310 	put_device(dev);
1311 }
1312 
1313 static int device_suspend_late(struct device *dev)
1314 {
1315 	reinit_completion(&dev->power.completion);
1316 
1317 	if (is_async(dev)) {
1318 		get_device(dev);
1319 		async_schedule(async_suspend_late, dev);
1320 		return 0;
1321 	}
1322 
1323 	return __device_suspend_late(dev, pm_transition, false);
1324 }
1325 
1326 /**
1327  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1328  * @state: PM transition of the system being carried out.
1329  */
1330 int dpm_suspend_late(pm_message_t state)
1331 {
1332 	ktime_t starttime = ktime_get();
1333 	int error = 0;
1334 
1335 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1336 	mutex_lock(&dpm_list_mtx);
1337 	pm_transition = state;
1338 	async_error = 0;
1339 
1340 	while (!list_empty(&dpm_suspended_list)) {
1341 		struct device *dev = to_device(dpm_suspended_list.prev);
1342 
1343 		get_device(dev);
1344 		mutex_unlock(&dpm_list_mtx);
1345 
1346 		error = device_suspend_late(dev);
1347 
1348 		mutex_lock(&dpm_list_mtx);
1349 		if (!list_empty(&dev->power.entry))
1350 			list_move(&dev->power.entry, &dpm_late_early_list);
1351 
1352 		if (error) {
1353 			pm_dev_err(dev, state, " late", error);
1354 			dpm_save_failed_dev(dev_name(dev));
1355 			put_device(dev);
1356 			break;
1357 		}
1358 		put_device(dev);
1359 
1360 		if (async_error)
1361 			break;
1362 	}
1363 	mutex_unlock(&dpm_list_mtx);
1364 	async_synchronize_full();
1365 	if (!error)
1366 		error = async_error;
1367 	if (error) {
1368 		suspend_stats.failed_suspend_late++;
1369 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1370 		dpm_resume_early(resume_event(state));
1371 	}
1372 	dpm_show_time(starttime, state, error, "late");
1373 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1374 	return error;
1375 }
1376 
1377 /**
1378  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1379  * @state: PM transition of the system being carried out.
1380  */
1381 int dpm_suspend_end(pm_message_t state)
1382 {
1383 	int error = dpm_suspend_late(state);
1384 	if (error)
1385 		return error;
1386 
1387 	error = dpm_suspend_noirq(state);
1388 	if (error) {
1389 		dpm_resume_early(resume_event(state));
1390 		return error;
1391 	}
1392 
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1396 
1397 /**
1398  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1399  * @dev: Device to suspend.
1400  * @state: PM transition of the system being carried out.
1401  * @cb: Suspend callback to execute.
1402  * @info: string description of caller.
1403  */
1404 static int legacy_suspend(struct device *dev, pm_message_t state,
1405 			  int (*cb)(struct device *dev, pm_message_t state),
1406 			  const char *info)
1407 {
1408 	int error;
1409 	ktime_t calltime;
1410 
1411 	calltime = initcall_debug_start(dev);
1412 
1413 	trace_device_pm_callback_start(dev, info, state.event);
1414 	error = cb(dev, state);
1415 	trace_device_pm_callback_end(dev, error);
1416 	suspend_report_result(cb, error);
1417 
1418 	initcall_debug_report(dev, calltime, error, state, info);
1419 
1420 	return error;
1421 }
1422 
1423 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1424 {
1425 	struct device_link *link;
1426 	int idx;
1427 
1428 	idx = device_links_read_lock();
1429 
1430 	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1431 		spin_lock_irq(&link->supplier->power.lock);
1432 		link->supplier->power.direct_complete = false;
1433 		spin_unlock_irq(&link->supplier->power.lock);
1434 	}
1435 
1436 	device_links_read_unlock(idx);
1437 }
1438 
1439 /**
1440  * __device_suspend - Execute "suspend" callbacks for given device.
1441  * @dev: Device to handle.
1442  * @state: PM transition of the system being carried out.
1443  * @async: If true, the device is being suspended asynchronously.
1444  */
1445 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1446 {
1447 	pm_callback_t callback = NULL;
1448 	const char *info = NULL;
1449 	int error = 0;
1450 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1451 
1452 	TRACE_DEVICE(dev);
1453 	TRACE_SUSPEND(0);
1454 
1455 	dpm_wait_for_subordinate(dev, async);
1456 
1457 	if (async_error)
1458 		goto Complete;
1459 
1460 	/*
1461 	 * If a device configured to wake up the system from sleep states
1462 	 * has been suspended at run time and there's a resume request pending
1463 	 * for it, this is equivalent to the device signaling wakeup, so the
1464 	 * system suspend operation should be aborted.
1465 	 */
1466 	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1467 		pm_wakeup_event(dev, 0);
1468 
1469 	if (pm_wakeup_pending()) {
1470 		async_error = -EBUSY;
1471 		goto Complete;
1472 	}
1473 
1474 	if (dev->power.syscore)
1475 		goto Complete;
1476 
1477 	if (dev->power.direct_complete) {
1478 		if (pm_runtime_status_suspended(dev)) {
1479 			pm_runtime_disable(dev);
1480 			if (pm_runtime_status_suspended(dev))
1481 				goto Complete;
1482 
1483 			pm_runtime_enable(dev);
1484 		}
1485 		dev->power.direct_complete = false;
1486 	}
1487 
1488 	dpm_watchdog_set(&wd, dev);
1489 	device_lock(dev);
1490 
1491 	if (dev->pm_domain) {
1492 		info = "power domain ";
1493 		callback = pm_op(&dev->pm_domain->ops, state);
1494 		goto Run;
1495 	}
1496 
1497 	if (dev->type && dev->type->pm) {
1498 		info = "type ";
1499 		callback = pm_op(dev->type->pm, state);
1500 		goto Run;
1501 	}
1502 
1503 	if (dev->class && dev->class->pm) {
1504 		info = "class ";
1505 		callback = pm_op(dev->class->pm, state);
1506 		goto Run;
1507 	}
1508 
1509 	if (dev->bus) {
1510 		if (dev->bus->pm) {
1511 			info = "bus ";
1512 			callback = pm_op(dev->bus->pm, state);
1513 		} else if (dev->bus->suspend) {
1514 			pm_dev_dbg(dev, state, "legacy bus ");
1515 			error = legacy_suspend(dev, state, dev->bus->suspend,
1516 						"legacy bus ");
1517 			goto End;
1518 		}
1519 	}
1520 
1521  Run:
1522 	if (!callback && dev->driver && dev->driver->pm) {
1523 		info = "driver ";
1524 		callback = pm_op(dev->driver->pm, state);
1525 	}
1526 
1527 	error = dpm_run_callback(callback, dev, state, info);
1528 
1529  End:
1530 	if (!error) {
1531 		struct device *parent = dev->parent;
1532 
1533 		dev->power.is_suspended = true;
1534 		if (parent) {
1535 			spin_lock_irq(&parent->power.lock);
1536 
1537 			dev->parent->power.direct_complete = false;
1538 			if (dev->power.wakeup_path
1539 			    && !dev->parent->power.ignore_children)
1540 				dev->parent->power.wakeup_path = true;
1541 
1542 			spin_unlock_irq(&parent->power.lock);
1543 		}
1544 		dpm_clear_suppliers_direct_complete(dev);
1545 	}
1546 
1547 	device_unlock(dev);
1548 	dpm_watchdog_clear(&wd);
1549 
1550  Complete:
1551 	if (error)
1552 		async_error = error;
1553 
1554 	complete_all(&dev->power.completion);
1555 	TRACE_SUSPEND(error);
1556 	return error;
1557 }
1558 
1559 static void async_suspend(void *data, async_cookie_t cookie)
1560 {
1561 	struct device *dev = (struct device *)data;
1562 	int error;
1563 
1564 	error = __device_suspend(dev, pm_transition, true);
1565 	if (error) {
1566 		dpm_save_failed_dev(dev_name(dev));
1567 		pm_dev_err(dev, pm_transition, " async", error);
1568 	}
1569 
1570 	put_device(dev);
1571 }
1572 
1573 static int device_suspend(struct device *dev)
1574 {
1575 	reinit_completion(&dev->power.completion);
1576 
1577 	if (is_async(dev)) {
1578 		get_device(dev);
1579 		async_schedule(async_suspend, dev);
1580 		return 0;
1581 	}
1582 
1583 	return __device_suspend(dev, pm_transition, false);
1584 }
1585 
1586 /**
1587  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1588  * @state: PM transition of the system being carried out.
1589  */
1590 int dpm_suspend(pm_message_t state)
1591 {
1592 	ktime_t starttime = ktime_get();
1593 	int error = 0;
1594 
1595 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1596 	might_sleep();
1597 
1598 	cpufreq_suspend();
1599 
1600 	mutex_lock(&dpm_list_mtx);
1601 	pm_transition = state;
1602 	async_error = 0;
1603 	while (!list_empty(&dpm_prepared_list)) {
1604 		struct device *dev = to_device(dpm_prepared_list.prev);
1605 
1606 		get_device(dev);
1607 		mutex_unlock(&dpm_list_mtx);
1608 
1609 		error = device_suspend(dev);
1610 
1611 		mutex_lock(&dpm_list_mtx);
1612 		if (error) {
1613 			pm_dev_err(dev, state, "", error);
1614 			dpm_save_failed_dev(dev_name(dev));
1615 			put_device(dev);
1616 			break;
1617 		}
1618 		if (!list_empty(&dev->power.entry))
1619 			list_move(&dev->power.entry, &dpm_suspended_list);
1620 		put_device(dev);
1621 		if (async_error)
1622 			break;
1623 	}
1624 	mutex_unlock(&dpm_list_mtx);
1625 	async_synchronize_full();
1626 	if (!error)
1627 		error = async_error;
1628 	if (error) {
1629 		suspend_stats.failed_suspend++;
1630 		dpm_save_failed_step(SUSPEND_SUSPEND);
1631 	}
1632 	dpm_show_time(starttime, state, error, NULL);
1633 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1634 	return error;
1635 }
1636 
1637 /**
1638  * device_prepare - Prepare a device for system power transition.
1639  * @dev: Device to handle.
1640  * @state: PM transition of the system being carried out.
1641  *
1642  * Execute the ->prepare() callback(s) for given device.  No new children of the
1643  * device may be registered after this function has returned.
1644  */
1645 static int device_prepare(struct device *dev, pm_message_t state)
1646 {
1647 	int (*callback)(struct device *) = NULL;
1648 	int ret = 0;
1649 
1650 	if (dev->power.syscore)
1651 		return 0;
1652 
1653 	WARN_ON(dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
1654 		!pm_runtime_enabled(dev));
1655 
1656 	/*
1657 	 * If a device's parent goes into runtime suspend at the wrong time,
1658 	 * it won't be possible to resume the device.  To prevent this we
1659 	 * block runtime suspend here, during the prepare phase, and allow
1660 	 * it again during the complete phase.
1661 	 */
1662 	pm_runtime_get_noresume(dev);
1663 
1664 	device_lock(dev);
1665 
1666 	dev->power.wakeup_path = device_may_wakeup(dev);
1667 
1668 	if (dev->power.no_pm_callbacks) {
1669 		ret = 1;	/* Let device go direct_complete */
1670 		goto unlock;
1671 	}
1672 
1673 	if (dev->pm_domain)
1674 		callback = dev->pm_domain->ops.prepare;
1675 	else if (dev->type && dev->type->pm)
1676 		callback = dev->type->pm->prepare;
1677 	else if (dev->class && dev->class->pm)
1678 		callback = dev->class->pm->prepare;
1679 	else if (dev->bus && dev->bus->pm)
1680 		callback = dev->bus->pm->prepare;
1681 
1682 	if (!callback && dev->driver && dev->driver->pm)
1683 		callback = dev->driver->pm->prepare;
1684 
1685 	if (callback)
1686 		ret = callback(dev);
1687 
1688 unlock:
1689 	device_unlock(dev);
1690 
1691 	if (ret < 0) {
1692 		suspend_report_result(callback, ret);
1693 		pm_runtime_put(dev);
1694 		return ret;
1695 	}
1696 	/*
1697 	 * A positive return value from ->prepare() means "this device appears
1698 	 * to be runtime-suspended and its state is fine, so if it really is
1699 	 * runtime-suspended, you can leave it in that state provided that you
1700 	 * will do the same thing with all of its descendants".  This only
1701 	 * applies to suspend transitions, however.
1702 	 */
1703 	spin_lock_irq(&dev->power.lock);
1704 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1705 		pm_runtime_suspended(dev) && ret > 0 &&
1706 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1707 	spin_unlock_irq(&dev->power.lock);
1708 	return 0;
1709 }
1710 
1711 /**
1712  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1713  * @state: PM transition of the system being carried out.
1714  *
1715  * Execute the ->prepare() callback(s) for all devices.
1716  */
1717 int dpm_prepare(pm_message_t state)
1718 {
1719 	int error = 0;
1720 
1721 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1722 	might_sleep();
1723 
1724 	/*
1725 	 * Give a chance for the known devices to complete their probes, before
1726 	 * disable probing of devices. This sync point is important at least
1727 	 * at boot time + hibernation restore.
1728 	 */
1729 	wait_for_device_probe();
1730 	/*
1731 	 * It is unsafe if probing of devices will happen during suspend or
1732 	 * hibernation and system behavior will be unpredictable in this case.
1733 	 * So, let's prohibit device's probing here and defer their probes
1734 	 * instead. The normal behavior will be restored in dpm_complete().
1735 	 */
1736 	device_block_probing();
1737 
1738 	mutex_lock(&dpm_list_mtx);
1739 	while (!list_empty(&dpm_list)) {
1740 		struct device *dev = to_device(dpm_list.next);
1741 
1742 		get_device(dev);
1743 		mutex_unlock(&dpm_list_mtx);
1744 
1745 		trace_device_pm_callback_start(dev, "", state.event);
1746 		error = device_prepare(dev, state);
1747 		trace_device_pm_callback_end(dev, error);
1748 
1749 		mutex_lock(&dpm_list_mtx);
1750 		if (error) {
1751 			if (error == -EAGAIN) {
1752 				put_device(dev);
1753 				error = 0;
1754 				continue;
1755 			}
1756 			printk(KERN_INFO "PM: Device %s not prepared "
1757 				"for power transition: code %d\n",
1758 				dev_name(dev), error);
1759 			put_device(dev);
1760 			break;
1761 		}
1762 		dev->power.is_prepared = true;
1763 		if (!list_empty(&dev->power.entry))
1764 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1765 		put_device(dev);
1766 	}
1767 	mutex_unlock(&dpm_list_mtx);
1768 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1769 	return error;
1770 }
1771 
1772 /**
1773  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1774  * @state: PM transition of the system being carried out.
1775  *
1776  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1777  * callbacks for them.
1778  */
1779 int dpm_suspend_start(pm_message_t state)
1780 {
1781 	int error;
1782 
1783 	error = dpm_prepare(state);
1784 	if (error) {
1785 		suspend_stats.failed_prepare++;
1786 		dpm_save_failed_step(SUSPEND_PREPARE);
1787 	} else
1788 		error = dpm_suspend(state);
1789 	return error;
1790 }
1791 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1792 
1793 void __suspend_report_result(const char *function, void *fn, int ret)
1794 {
1795 	if (ret)
1796 		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1797 }
1798 EXPORT_SYMBOL_GPL(__suspend_report_result);
1799 
1800 /**
1801  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1802  * @dev: Device to wait for.
1803  * @subordinate: Device that needs to wait for @dev.
1804  */
1805 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1806 {
1807 	dpm_wait(dev, subordinate->power.async_suspend);
1808 	return async_error;
1809 }
1810 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1811 
1812 /**
1813  * dpm_for_each_dev - device iterator.
1814  * @data: data for the callback.
1815  * @fn: function to be called for each device.
1816  *
1817  * Iterate over devices in dpm_list, and call @fn for each device,
1818  * passing it @data.
1819  */
1820 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1821 {
1822 	struct device *dev;
1823 
1824 	if (!fn)
1825 		return;
1826 
1827 	device_pm_lock();
1828 	list_for_each_entry(dev, &dpm_list, power.entry)
1829 		fn(dev, data);
1830 	device_pm_unlock();
1831 }
1832 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1833 
1834 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1835 {
1836 	if (!ops)
1837 		return true;
1838 
1839 	return !ops->prepare &&
1840 	       !ops->suspend &&
1841 	       !ops->suspend_late &&
1842 	       !ops->suspend_noirq &&
1843 	       !ops->resume_noirq &&
1844 	       !ops->resume_early &&
1845 	       !ops->resume &&
1846 	       !ops->complete;
1847 }
1848 
1849 void device_pm_check_callbacks(struct device *dev)
1850 {
1851 	spin_lock_irq(&dev->power.lock);
1852 	dev->power.no_pm_callbacks =
1853 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1854 		 !dev->bus->suspend && !dev->bus->resume)) &&
1855 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1856 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1857 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1858 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1859 		 !dev->driver->suspend && !dev->driver->resume));
1860 	spin_unlock_irq(&dev->power.lock);
1861 }
1862 
1863 bool dev_pm_smart_suspend_and_suspended(struct device *dev)
1864 {
1865 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
1866 		pm_runtime_status_suspended(dev);
1867 }
1868