1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/power/main.c - Where the driver meets power management. 4 * 5 * Copyright (c) 2003 Patrick Mochel 6 * Copyright (c) 2003 Open Source Development Lab 7 * 8 * The driver model core calls device_pm_add() when a device is registered. 9 * This will initialize the embedded device_pm_info object in the device 10 * and add it to the list of power-controlled devices. sysfs entries for 11 * controlling device power management will also be added. 12 * 13 * A separate list is used for keeping track of power info, because the power 14 * domain dependencies may differ from the ancestral dependencies that the 15 * subsystem list maintains. 16 */ 17 18 #define pr_fmt(fmt) "PM: " fmt 19 #define dev_fmt pr_fmt 20 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/mutex.h> 24 #include <linux/pm.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm-trace.h> 27 #include <linux/pm_wakeirq.h> 28 #include <linux/interrupt.h> 29 #include <linux/sched.h> 30 #include <linux/sched/debug.h> 31 #include <linux/async.h> 32 #include <linux/suspend.h> 33 #include <trace/events/power.h> 34 #include <linux/cpufreq.h> 35 #include <linux/devfreq.h> 36 #include <linux/timer.h> 37 38 #include "../base.h" 39 #include "power.h" 40 41 typedef int (*pm_callback_t)(struct device *); 42 43 #define list_for_each_entry_rcu_locked(pos, head, member) \ 44 list_for_each_entry_rcu(pos, head, member, \ 45 device_links_read_lock_held()) 46 47 /* 48 * The entries in the dpm_list list are in a depth first order, simply 49 * because children are guaranteed to be discovered after parents, and 50 * are inserted at the back of the list on discovery. 51 * 52 * Since device_pm_add() may be called with a device lock held, 53 * we must never try to acquire a device lock while holding 54 * dpm_list_mutex. 55 */ 56 57 LIST_HEAD(dpm_list); 58 static LIST_HEAD(dpm_prepared_list); 59 static LIST_HEAD(dpm_suspended_list); 60 static LIST_HEAD(dpm_late_early_list); 61 static LIST_HEAD(dpm_noirq_list); 62 63 struct suspend_stats suspend_stats; 64 static DEFINE_MUTEX(dpm_list_mtx); 65 static pm_message_t pm_transition; 66 67 static int async_error; 68 69 static const char *pm_verb(int event) 70 { 71 switch (event) { 72 case PM_EVENT_SUSPEND: 73 return "suspend"; 74 case PM_EVENT_RESUME: 75 return "resume"; 76 case PM_EVENT_FREEZE: 77 return "freeze"; 78 case PM_EVENT_QUIESCE: 79 return "quiesce"; 80 case PM_EVENT_HIBERNATE: 81 return "hibernate"; 82 case PM_EVENT_THAW: 83 return "thaw"; 84 case PM_EVENT_RESTORE: 85 return "restore"; 86 case PM_EVENT_RECOVER: 87 return "recover"; 88 default: 89 return "(unknown PM event)"; 90 } 91 } 92 93 /** 94 * device_pm_sleep_init - Initialize system suspend-related device fields. 95 * @dev: Device object being initialized. 96 */ 97 void device_pm_sleep_init(struct device *dev) 98 { 99 dev->power.is_prepared = false; 100 dev->power.is_suspended = false; 101 dev->power.is_noirq_suspended = false; 102 dev->power.is_late_suspended = false; 103 init_completion(&dev->power.completion); 104 complete_all(&dev->power.completion); 105 dev->power.wakeup = NULL; 106 INIT_LIST_HEAD(&dev->power.entry); 107 } 108 109 /** 110 * device_pm_lock - Lock the list of active devices used by the PM core. 111 */ 112 void device_pm_lock(void) 113 { 114 mutex_lock(&dpm_list_mtx); 115 } 116 117 /** 118 * device_pm_unlock - Unlock the list of active devices used by the PM core. 119 */ 120 void device_pm_unlock(void) 121 { 122 mutex_unlock(&dpm_list_mtx); 123 } 124 125 /** 126 * device_pm_add - Add a device to the PM core's list of active devices. 127 * @dev: Device to add to the list. 128 */ 129 void device_pm_add(struct device *dev) 130 { 131 /* Skip PM setup/initialization. */ 132 if (device_pm_not_required(dev)) 133 return; 134 135 pr_debug("Adding info for %s:%s\n", 136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 137 device_pm_check_callbacks(dev); 138 mutex_lock(&dpm_list_mtx); 139 if (dev->parent && dev->parent->power.is_prepared) 140 dev_warn(dev, "parent %s should not be sleeping\n", 141 dev_name(dev->parent)); 142 list_add_tail(&dev->power.entry, &dpm_list); 143 dev->power.in_dpm_list = true; 144 mutex_unlock(&dpm_list_mtx); 145 } 146 147 /** 148 * device_pm_remove - Remove a device from the PM core's list of active devices. 149 * @dev: Device to be removed from the list. 150 */ 151 void device_pm_remove(struct device *dev) 152 { 153 if (device_pm_not_required(dev)) 154 return; 155 156 pr_debug("Removing info for %s:%s\n", 157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 158 complete_all(&dev->power.completion); 159 mutex_lock(&dpm_list_mtx); 160 list_del_init(&dev->power.entry); 161 dev->power.in_dpm_list = false; 162 mutex_unlock(&dpm_list_mtx); 163 device_wakeup_disable(dev); 164 pm_runtime_remove(dev); 165 device_pm_check_callbacks(dev); 166 } 167 168 /** 169 * device_pm_move_before - Move device in the PM core's list of active devices. 170 * @deva: Device to move in dpm_list. 171 * @devb: Device @deva should come before. 172 */ 173 void device_pm_move_before(struct device *deva, struct device *devb) 174 { 175 pr_debug("Moving %s:%s before %s:%s\n", 176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 178 /* Delete deva from dpm_list and reinsert before devb. */ 179 list_move_tail(&deva->power.entry, &devb->power.entry); 180 } 181 182 /** 183 * device_pm_move_after - Move device in the PM core's list of active devices. 184 * @deva: Device to move in dpm_list. 185 * @devb: Device @deva should come after. 186 */ 187 void device_pm_move_after(struct device *deva, struct device *devb) 188 { 189 pr_debug("Moving %s:%s after %s:%s\n", 190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva), 191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb)); 192 /* Delete deva from dpm_list and reinsert after devb. */ 193 list_move(&deva->power.entry, &devb->power.entry); 194 } 195 196 /** 197 * device_pm_move_last - Move device to end of the PM core's list of devices. 198 * @dev: Device to move in dpm_list. 199 */ 200 void device_pm_move_last(struct device *dev) 201 { 202 pr_debug("Moving %s:%s to end of list\n", 203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev)); 204 list_move_tail(&dev->power.entry, &dpm_list); 205 } 206 207 static ktime_t initcall_debug_start(struct device *dev, void *cb) 208 { 209 if (!pm_print_times_enabled) 210 return 0; 211 212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb, 213 task_pid_nr(current), 214 dev->parent ? dev_name(dev->parent) : "none"); 215 return ktime_get(); 216 } 217 218 static void initcall_debug_report(struct device *dev, ktime_t calltime, 219 void *cb, int error) 220 { 221 ktime_t rettime; 222 223 if (!pm_print_times_enabled) 224 return; 225 226 rettime = ktime_get(); 227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error, 228 (unsigned long long)ktime_us_delta(rettime, calltime)); 229 } 230 231 /** 232 * dpm_wait - Wait for a PM operation to complete. 233 * @dev: Device to wait for. 234 * @async: If unset, wait only if the device's power.async_suspend flag is set. 235 */ 236 static void dpm_wait(struct device *dev, bool async) 237 { 238 if (!dev) 239 return; 240 241 if (async || (pm_async_enabled && dev->power.async_suspend)) 242 wait_for_completion(&dev->power.completion); 243 } 244 245 static int dpm_wait_fn(struct device *dev, void *async_ptr) 246 { 247 dpm_wait(dev, *((bool *)async_ptr)); 248 return 0; 249 } 250 251 static void dpm_wait_for_children(struct device *dev, bool async) 252 { 253 device_for_each_child(dev, &async, dpm_wait_fn); 254 } 255 256 static void dpm_wait_for_suppliers(struct device *dev, bool async) 257 { 258 struct device_link *link; 259 int idx; 260 261 idx = device_links_read_lock(); 262 263 /* 264 * If the supplier goes away right after we've checked the link to it, 265 * we'll wait for its completion to change the state, but that's fine, 266 * because the only things that will block as a result are the SRCU 267 * callbacks freeing the link objects for the links in the list we're 268 * walking. 269 */ 270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 271 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 272 dpm_wait(link->supplier, async); 273 274 device_links_read_unlock(idx); 275 } 276 277 static bool dpm_wait_for_superior(struct device *dev, bool async) 278 { 279 struct device *parent; 280 281 /* 282 * If the device is resumed asynchronously and the parent's callback 283 * deletes both the device and the parent itself, the parent object may 284 * be freed while this function is running, so avoid that by reference 285 * counting the parent once more unless the device has been deleted 286 * already (in which case return right away). 287 */ 288 mutex_lock(&dpm_list_mtx); 289 290 if (!device_pm_initialized(dev)) { 291 mutex_unlock(&dpm_list_mtx); 292 return false; 293 } 294 295 parent = get_device(dev->parent); 296 297 mutex_unlock(&dpm_list_mtx); 298 299 dpm_wait(parent, async); 300 put_device(parent); 301 302 dpm_wait_for_suppliers(dev, async); 303 304 /* 305 * If the parent's callback has deleted the device, attempting to resume 306 * it would be invalid, so avoid doing that then. 307 */ 308 return device_pm_initialized(dev); 309 } 310 311 static void dpm_wait_for_consumers(struct device *dev, bool async) 312 { 313 struct device_link *link; 314 int idx; 315 316 idx = device_links_read_lock(); 317 318 /* 319 * The status of a device link can only be changed from "dormant" by a 320 * probe, but that cannot happen during system suspend/resume. In 321 * theory it can change to "dormant" at that time, but then it is 322 * reasonable to wait for the target device anyway (eg. if it goes 323 * away, it's better to wait for it to go away completely and then 324 * continue instead of trying to continue in parallel with its 325 * unregistration). 326 */ 327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node) 328 if (READ_ONCE(link->status) != DL_STATE_DORMANT) 329 dpm_wait(link->consumer, async); 330 331 device_links_read_unlock(idx); 332 } 333 334 static void dpm_wait_for_subordinate(struct device *dev, bool async) 335 { 336 dpm_wait_for_children(dev, async); 337 dpm_wait_for_consumers(dev, async); 338 } 339 340 /** 341 * pm_op - Return the PM operation appropriate for given PM event. 342 * @ops: PM operations to choose from. 343 * @state: PM transition of the system being carried out. 344 */ 345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state) 346 { 347 switch (state.event) { 348 #ifdef CONFIG_SUSPEND 349 case PM_EVENT_SUSPEND: 350 return ops->suspend; 351 case PM_EVENT_RESUME: 352 return ops->resume; 353 #endif /* CONFIG_SUSPEND */ 354 #ifdef CONFIG_HIBERNATE_CALLBACKS 355 case PM_EVENT_FREEZE: 356 case PM_EVENT_QUIESCE: 357 return ops->freeze; 358 case PM_EVENT_HIBERNATE: 359 return ops->poweroff; 360 case PM_EVENT_THAW: 361 case PM_EVENT_RECOVER: 362 return ops->thaw; 363 case PM_EVENT_RESTORE: 364 return ops->restore; 365 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 366 } 367 368 return NULL; 369 } 370 371 /** 372 * pm_late_early_op - Return the PM operation appropriate for given PM event. 373 * @ops: PM operations to choose from. 374 * @state: PM transition of the system being carried out. 375 * 376 * Runtime PM is disabled for @dev while this function is being executed. 377 */ 378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops, 379 pm_message_t state) 380 { 381 switch (state.event) { 382 #ifdef CONFIG_SUSPEND 383 case PM_EVENT_SUSPEND: 384 return ops->suspend_late; 385 case PM_EVENT_RESUME: 386 return ops->resume_early; 387 #endif /* CONFIG_SUSPEND */ 388 #ifdef CONFIG_HIBERNATE_CALLBACKS 389 case PM_EVENT_FREEZE: 390 case PM_EVENT_QUIESCE: 391 return ops->freeze_late; 392 case PM_EVENT_HIBERNATE: 393 return ops->poweroff_late; 394 case PM_EVENT_THAW: 395 case PM_EVENT_RECOVER: 396 return ops->thaw_early; 397 case PM_EVENT_RESTORE: 398 return ops->restore_early; 399 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 400 } 401 402 return NULL; 403 } 404 405 /** 406 * pm_noirq_op - Return the PM operation appropriate for given PM event. 407 * @ops: PM operations to choose from. 408 * @state: PM transition of the system being carried out. 409 * 410 * The driver of @dev will not receive interrupts while this function is being 411 * executed. 412 */ 413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state) 414 { 415 switch (state.event) { 416 #ifdef CONFIG_SUSPEND 417 case PM_EVENT_SUSPEND: 418 return ops->suspend_noirq; 419 case PM_EVENT_RESUME: 420 return ops->resume_noirq; 421 #endif /* CONFIG_SUSPEND */ 422 #ifdef CONFIG_HIBERNATE_CALLBACKS 423 case PM_EVENT_FREEZE: 424 case PM_EVENT_QUIESCE: 425 return ops->freeze_noirq; 426 case PM_EVENT_HIBERNATE: 427 return ops->poweroff_noirq; 428 case PM_EVENT_THAW: 429 case PM_EVENT_RECOVER: 430 return ops->thaw_noirq; 431 case PM_EVENT_RESTORE: 432 return ops->restore_noirq; 433 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 434 } 435 436 return NULL; 437 } 438 439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info) 440 { 441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event), 442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ? 443 ", may wakeup" : "", dev->power.driver_flags); 444 } 445 446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info, 447 int error) 448 { 449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info, 450 error); 451 } 452 453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error, 454 const char *info) 455 { 456 ktime_t calltime; 457 u64 usecs64; 458 int usecs; 459 460 calltime = ktime_get(); 461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime)); 462 do_div(usecs64, NSEC_PER_USEC); 463 usecs = usecs64; 464 if (usecs == 0) 465 usecs = 1; 466 467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n", 468 info ?: "", info ? " " : "", pm_verb(state.event), 469 error ? "aborted" : "complete", 470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC); 471 } 472 473 static int dpm_run_callback(pm_callback_t cb, struct device *dev, 474 pm_message_t state, const char *info) 475 { 476 ktime_t calltime; 477 int error; 478 479 if (!cb) 480 return 0; 481 482 calltime = initcall_debug_start(dev, cb); 483 484 pm_dev_dbg(dev, state, info); 485 trace_device_pm_callback_start(dev, info, state.event); 486 error = cb(dev); 487 trace_device_pm_callback_end(dev, error); 488 suspend_report_result(dev, cb, error); 489 490 initcall_debug_report(dev, calltime, cb, error); 491 492 return error; 493 } 494 495 #ifdef CONFIG_DPM_WATCHDOG 496 struct dpm_watchdog { 497 struct device *dev; 498 struct task_struct *tsk; 499 struct timer_list timer; 500 }; 501 502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \ 503 struct dpm_watchdog wd 504 505 /** 506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler. 507 * @t: The timer that PM watchdog depends on. 508 * 509 * Called when a driver has timed out suspending or resuming. 510 * There's not much we can do here to recover so panic() to 511 * capture a crash-dump in pstore. 512 */ 513 static void dpm_watchdog_handler(struct timer_list *t) 514 { 515 struct dpm_watchdog *wd = from_timer(wd, t, timer); 516 517 dev_emerg(wd->dev, "**** DPM device timeout ****\n"); 518 show_stack(wd->tsk, NULL, KERN_EMERG); 519 panic("%s %s: unrecoverable failure\n", 520 dev_driver_string(wd->dev), dev_name(wd->dev)); 521 } 522 523 /** 524 * dpm_watchdog_set - Enable pm watchdog for given device. 525 * @wd: Watchdog. Must be allocated on the stack. 526 * @dev: Device to handle. 527 */ 528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev) 529 { 530 struct timer_list *timer = &wd->timer; 531 532 wd->dev = dev; 533 wd->tsk = current; 534 535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0); 536 /* use same timeout value for both suspend and resume */ 537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT; 538 add_timer(timer); 539 } 540 541 /** 542 * dpm_watchdog_clear - Disable suspend/resume watchdog. 543 * @wd: Watchdog to disable. 544 */ 545 static void dpm_watchdog_clear(struct dpm_watchdog *wd) 546 { 547 struct timer_list *timer = &wd->timer; 548 549 del_timer_sync(timer); 550 destroy_timer_on_stack(timer); 551 } 552 #else 553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) 554 #define dpm_watchdog_set(x, y) 555 #define dpm_watchdog_clear(x) 556 #endif 557 558 /*------------------------- Resume routines -------------------------*/ 559 560 /** 561 * dev_pm_skip_resume - System-wide device resume optimization check. 562 * @dev: Target device. 563 * 564 * Return: 565 * - %false if the transition under way is RESTORE. 566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW. 567 * - The logical negation of %power.must_resume otherwise (that is, when the 568 * transition under way is RESUME). 569 */ 570 bool dev_pm_skip_resume(struct device *dev) 571 { 572 if (pm_transition.event == PM_EVENT_RESTORE) 573 return false; 574 575 if (pm_transition.event == PM_EVENT_THAW) 576 return dev_pm_skip_suspend(dev); 577 578 return !dev->power.must_resume; 579 } 580 581 /** 582 * __device_resume_noirq - Execute a "noirq resume" callback for given device. 583 * @dev: Device to handle. 584 * @state: PM transition of the system being carried out. 585 * @async: If true, the device is being resumed asynchronously. 586 * 587 * The driver of @dev will not receive interrupts while this function is being 588 * executed. 589 */ 590 static void __device_resume_noirq(struct device *dev, pm_message_t state, bool async) 591 { 592 pm_callback_t callback = NULL; 593 const char *info = NULL; 594 bool skip_resume; 595 int error = 0; 596 597 TRACE_DEVICE(dev); 598 TRACE_RESUME(0); 599 600 if (dev->power.syscore || dev->power.direct_complete) 601 goto Out; 602 603 if (!dev->power.is_noirq_suspended) 604 goto Out; 605 606 if (!dpm_wait_for_superior(dev, async)) 607 goto Out; 608 609 skip_resume = dev_pm_skip_resume(dev); 610 /* 611 * If the driver callback is skipped below or by the middle layer 612 * callback and device_resume_early() also skips the driver callback for 613 * this device later, it needs to appear as "suspended" to PM-runtime, 614 * so change its status accordingly. 615 * 616 * Otherwise, the device is going to be resumed, so set its PM-runtime 617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set 618 * to avoid confusing drivers that don't use it. 619 */ 620 if (skip_resume) 621 pm_runtime_set_suspended(dev); 622 else if (dev_pm_skip_suspend(dev)) 623 pm_runtime_set_active(dev); 624 625 if (dev->pm_domain) { 626 info = "noirq power domain "; 627 callback = pm_noirq_op(&dev->pm_domain->ops, state); 628 } else if (dev->type && dev->type->pm) { 629 info = "noirq type "; 630 callback = pm_noirq_op(dev->type->pm, state); 631 } else if (dev->class && dev->class->pm) { 632 info = "noirq class "; 633 callback = pm_noirq_op(dev->class->pm, state); 634 } else if (dev->bus && dev->bus->pm) { 635 info = "noirq bus "; 636 callback = pm_noirq_op(dev->bus->pm, state); 637 } 638 if (callback) 639 goto Run; 640 641 if (skip_resume) 642 goto Skip; 643 644 if (dev->driver && dev->driver->pm) { 645 info = "noirq driver "; 646 callback = pm_noirq_op(dev->driver->pm, state); 647 } 648 649 Run: 650 error = dpm_run_callback(callback, dev, state, info); 651 652 Skip: 653 dev->power.is_noirq_suspended = false; 654 655 Out: 656 complete_all(&dev->power.completion); 657 TRACE_RESUME(error); 658 659 if (error) { 660 suspend_stats.failed_resume_noirq++; 661 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ); 662 dpm_save_failed_dev(dev_name(dev)); 663 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error); 664 } 665 } 666 667 static bool is_async(struct device *dev) 668 { 669 return dev->power.async_suspend && pm_async_enabled 670 && !pm_trace_is_enabled(); 671 } 672 673 static bool dpm_async_fn(struct device *dev, async_func_t func) 674 { 675 reinit_completion(&dev->power.completion); 676 677 if (!is_async(dev)) 678 return false; 679 680 get_device(dev); 681 682 if (async_schedule_dev_nocall(func, dev)) 683 return true; 684 685 put_device(dev); 686 687 return false; 688 } 689 690 static void async_resume_noirq(void *data, async_cookie_t cookie) 691 { 692 struct device *dev = data; 693 694 __device_resume_noirq(dev, pm_transition, true); 695 put_device(dev); 696 } 697 698 static void device_resume_noirq(struct device *dev) 699 { 700 if (dpm_async_fn(dev, async_resume_noirq)) 701 return; 702 703 __device_resume_noirq(dev, pm_transition, false); 704 } 705 706 static void dpm_noirq_resume_devices(pm_message_t state) 707 { 708 struct device *dev; 709 ktime_t starttime = ktime_get(); 710 711 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true); 712 mutex_lock(&dpm_list_mtx); 713 pm_transition = state; 714 715 while (!list_empty(&dpm_noirq_list)) { 716 dev = to_device(dpm_noirq_list.next); 717 get_device(dev); 718 list_move_tail(&dev->power.entry, &dpm_late_early_list); 719 720 mutex_unlock(&dpm_list_mtx); 721 722 device_resume_noirq(dev); 723 724 put_device(dev); 725 726 mutex_lock(&dpm_list_mtx); 727 } 728 mutex_unlock(&dpm_list_mtx); 729 async_synchronize_full(); 730 dpm_show_time(starttime, state, 0, "noirq"); 731 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false); 732 } 733 734 /** 735 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices. 736 * @state: PM transition of the system being carried out. 737 * 738 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and 739 * allow device drivers' interrupt handlers to be called. 740 */ 741 void dpm_resume_noirq(pm_message_t state) 742 { 743 dpm_noirq_resume_devices(state); 744 745 resume_device_irqs(); 746 device_wakeup_disarm_wake_irqs(); 747 } 748 749 /** 750 * __device_resume_early - Execute an "early resume" callback for given device. 751 * @dev: Device to handle. 752 * @state: PM transition of the system being carried out. 753 * @async: If true, the device is being resumed asynchronously. 754 * 755 * Runtime PM is disabled for @dev while this function is being executed. 756 */ 757 static void __device_resume_early(struct device *dev, pm_message_t state, bool async) 758 { 759 pm_callback_t callback = NULL; 760 const char *info = NULL; 761 int error = 0; 762 763 TRACE_DEVICE(dev); 764 TRACE_RESUME(0); 765 766 if (dev->power.syscore || dev->power.direct_complete) 767 goto Out; 768 769 if (!dev->power.is_late_suspended) 770 goto Out; 771 772 if (!dpm_wait_for_superior(dev, async)) 773 goto Out; 774 775 if (dev->pm_domain) { 776 info = "early power domain "; 777 callback = pm_late_early_op(&dev->pm_domain->ops, state); 778 } else if (dev->type && dev->type->pm) { 779 info = "early type "; 780 callback = pm_late_early_op(dev->type->pm, state); 781 } else if (dev->class && dev->class->pm) { 782 info = "early class "; 783 callback = pm_late_early_op(dev->class->pm, state); 784 } else if (dev->bus && dev->bus->pm) { 785 info = "early bus "; 786 callback = pm_late_early_op(dev->bus->pm, state); 787 } 788 if (callback) 789 goto Run; 790 791 if (dev_pm_skip_resume(dev)) 792 goto Skip; 793 794 if (dev->driver && dev->driver->pm) { 795 info = "early driver "; 796 callback = pm_late_early_op(dev->driver->pm, state); 797 } 798 799 Run: 800 error = dpm_run_callback(callback, dev, state, info); 801 802 Skip: 803 dev->power.is_late_suspended = false; 804 805 Out: 806 TRACE_RESUME(error); 807 808 pm_runtime_enable(dev); 809 complete_all(&dev->power.completion); 810 811 if (error) { 812 suspend_stats.failed_resume_early++; 813 dpm_save_failed_step(SUSPEND_RESUME_EARLY); 814 dpm_save_failed_dev(dev_name(dev)); 815 pm_dev_err(dev, state, async ? " async early" : " early", error); 816 } 817 } 818 819 static void async_resume_early(void *data, async_cookie_t cookie) 820 { 821 struct device *dev = data; 822 823 __device_resume_early(dev, pm_transition, true); 824 put_device(dev); 825 } 826 827 static void device_resume_early(struct device *dev) 828 { 829 if (dpm_async_fn(dev, async_resume_early)) 830 return; 831 832 __device_resume_early(dev, pm_transition, false); 833 } 834 835 /** 836 * dpm_resume_early - Execute "early resume" callbacks for all devices. 837 * @state: PM transition of the system being carried out. 838 */ 839 void dpm_resume_early(pm_message_t state) 840 { 841 struct device *dev; 842 ktime_t starttime = ktime_get(); 843 844 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true); 845 mutex_lock(&dpm_list_mtx); 846 pm_transition = state; 847 848 while (!list_empty(&dpm_late_early_list)) { 849 dev = to_device(dpm_late_early_list.next); 850 get_device(dev); 851 list_move_tail(&dev->power.entry, &dpm_suspended_list); 852 853 mutex_unlock(&dpm_list_mtx); 854 855 device_resume_early(dev); 856 857 put_device(dev); 858 859 mutex_lock(&dpm_list_mtx); 860 } 861 mutex_unlock(&dpm_list_mtx); 862 async_synchronize_full(); 863 dpm_show_time(starttime, state, 0, "early"); 864 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false); 865 } 866 867 /** 868 * dpm_resume_start - Execute "noirq" and "early" device callbacks. 869 * @state: PM transition of the system being carried out. 870 */ 871 void dpm_resume_start(pm_message_t state) 872 { 873 dpm_resume_noirq(state); 874 dpm_resume_early(state); 875 } 876 EXPORT_SYMBOL_GPL(dpm_resume_start); 877 878 /** 879 * __device_resume - Execute "resume" callbacks for given device. 880 * @dev: Device to handle. 881 * @state: PM transition of the system being carried out. 882 * @async: If true, the device is being resumed asynchronously. 883 */ 884 static void __device_resume(struct device *dev, pm_message_t state, bool async) 885 { 886 pm_callback_t callback = NULL; 887 const char *info = NULL; 888 int error = 0; 889 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 890 891 TRACE_DEVICE(dev); 892 TRACE_RESUME(0); 893 894 if (dev->power.syscore) 895 goto Complete; 896 897 if (!dev->power.is_suspended) 898 goto Complete; 899 900 if (dev->power.direct_complete) { 901 /* Match the pm_runtime_disable() in __device_suspend(). */ 902 pm_runtime_enable(dev); 903 goto Complete; 904 } 905 906 if (!dpm_wait_for_superior(dev, async)) 907 goto Complete; 908 909 dpm_watchdog_set(&wd, dev); 910 device_lock(dev); 911 912 /* 913 * This is a fib. But we'll allow new children to be added below 914 * a resumed device, even if the device hasn't been completed yet. 915 */ 916 dev->power.is_prepared = false; 917 918 if (dev->pm_domain) { 919 info = "power domain "; 920 callback = pm_op(&dev->pm_domain->ops, state); 921 goto Driver; 922 } 923 924 if (dev->type && dev->type->pm) { 925 info = "type "; 926 callback = pm_op(dev->type->pm, state); 927 goto Driver; 928 } 929 930 if (dev->class && dev->class->pm) { 931 info = "class "; 932 callback = pm_op(dev->class->pm, state); 933 goto Driver; 934 } 935 936 if (dev->bus) { 937 if (dev->bus->pm) { 938 info = "bus "; 939 callback = pm_op(dev->bus->pm, state); 940 } else if (dev->bus->resume) { 941 info = "legacy bus "; 942 callback = dev->bus->resume; 943 goto End; 944 } 945 } 946 947 Driver: 948 if (!callback && dev->driver && dev->driver->pm) { 949 info = "driver "; 950 callback = pm_op(dev->driver->pm, state); 951 } 952 953 End: 954 error = dpm_run_callback(callback, dev, state, info); 955 dev->power.is_suspended = false; 956 957 device_unlock(dev); 958 dpm_watchdog_clear(&wd); 959 960 Complete: 961 complete_all(&dev->power.completion); 962 963 TRACE_RESUME(error); 964 965 if (error) { 966 suspend_stats.failed_resume++; 967 dpm_save_failed_step(SUSPEND_RESUME); 968 dpm_save_failed_dev(dev_name(dev)); 969 pm_dev_err(dev, state, async ? " async" : "", error); 970 } 971 } 972 973 static void async_resume(void *data, async_cookie_t cookie) 974 { 975 struct device *dev = data; 976 977 __device_resume(dev, pm_transition, true); 978 put_device(dev); 979 } 980 981 static void device_resume(struct device *dev) 982 { 983 if (dpm_async_fn(dev, async_resume)) 984 return; 985 986 __device_resume(dev, pm_transition, false); 987 } 988 989 /** 990 * dpm_resume - Execute "resume" callbacks for non-sysdev devices. 991 * @state: PM transition of the system being carried out. 992 * 993 * Execute the appropriate "resume" callback for all devices whose status 994 * indicates that they are suspended. 995 */ 996 void dpm_resume(pm_message_t state) 997 { 998 struct device *dev; 999 ktime_t starttime = ktime_get(); 1000 1001 trace_suspend_resume(TPS("dpm_resume"), state.event, true); 1002 might_sleep(); 1003 1004 mutex_lock(&dpm_list_mtx); 1005 pm_transition = state; 1006 async_error = 0; 1007 1008 while (!list_empty(&dpm_suspended_list)) { 1009 dev = to_device(dpm_suspended_list.next); 1010 1011 get_device(dev); 1012 1013 mutex_unlock(&dpm_list_mtx); 1014 1015 device_resume(dev); 1016 1017 mutex_lock(&dpm_list_mtx); 1018 1019 if (!list_empty(&dev->power.entry)) 1020 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1021 1022 mutex_unlock(&dpm_list_mtx); 1023 1024 put_device(dev); 1025 1026 mutex_lock(&dpm_list_mtx); 1027 } 1028 mutex_unlock(&dpm_list_mtx); 1029 async_synchronize_full(); 1030 dpm_show_time(starttime, state, 0, NULL); 1031 1032 cpufreq_resume(); 1033 devfreq_resume(); 1034 trace_suspend_resume(TPS("dpm_resume"), state.event, false); 1035 } 1036 1037 /** 1038 * device_complete - Complete a PM transition for given device. 1039 * @dev: Device to handle. 1040 * @state: PM transition of the system being carried out. 1041 */ 1042 static void device_complete(struct device *dev, pm_message_t state) 1043 { 1044 void (*callback)(struct device *) = NULL; 1045 const char *info = NULL; 1046 1047 if (dev->power.syscore) 1048 goto out; 1049 1050 device_lock(dev); 1051 1052 if (dev->pm_domain) { 1053 info = "completing power domain "; 1054 callback = dev->pm_domain->ops.complete; 1055 } else if (dev->type && dev->type->pm) { 1056 info = "completing type "; 1057 callback = dev->type->pm->complete; 1058 } else if (dev->class && dev->class->pm) { 1059 info = "completing class "; 1060 callback = dev->class->pm->complete; 1061 } else if (dev->bus && dev->bus->pm) { 1062 info = "completing bus "; 1063 callback = dev->bus->pm->complete; 1064 } 1065 1066 if (!callback && dev->driver && dev->driver->pm) { 1067 info = "completing driver "; 1068 callback = dev->driver->pm->complete; 1069 } 1070 1071 if (callback) { 1072 pm_dev_dbg(dev, state, info); 1073 callback(dev); 1074 } 1075 1076 device_unlock(dev); 1077 1078 out: 1079 pm_runtime_put(dev); 1080 } 1081 1082 /** 1083 * dpm_complete - Complete a PM transition for all non-sysdev devices. 1084 * @state: PM transition of the system being carried out. 1085 * 1086 * Execute the ->complete() callbacks for all devices whose PM status is not 1087 * DPM_ON (this allows new devices to be registered). 1088 */ 1089 void dpm_complete(pm_message_t state) 1090 { 1091 struct list_head list; 1092 1093 trace_suspend_resume(TPS("dpm_complete"), state.event, true); 1094 might_sleep(); 1095 1096 INIT_LIST_HEAD(&list); 1097 mutex_lock(&dpm_list_mtx); 1098 while (!list_empty(&dpm_prepared_list)) { 1099 struct device *dev = to_device(dpm_prepared_list.prev); 1100 1101 get_device(dev); 1102 dev->power.is_prepared = false; 1103 list_move(&dev->power.entry, &list); 1104 1105 mutex_unlock(&dpm_list_mtx); 1106 1107 trace_device_pm_callback_start(dev, "", state.event); 1108 device_complete(dev, state); 1109 trace_device_pm_callback_end(dev, 0); 1110 1111 put_device(dev); 1112 1113 mutex_lock(&dpm_list_mtx); 1114 } 1115 list_splice(&list, &dpm_list); 1116 mutex_unlock(&dpm_list_mtx); 1117 1118 /* Allow device probing and trigger re-probing of deferred devices */ 1119 device_unblock_probing(); 1120 trace_suspend_resume(TPS("dpm_complete"), state.event, false); 1121 } 1122 1123 /** 1124 * dpm_resume_end - Execute "resume" callbacks and complete system transition. 1125 * @state: PM transition of the system being carried out. 1126 * 1127 * Execute "resume" callbacks for all devices and complete the PM transition of 1128 * the system. 1129 */ 1130 void dpm_resume_end(pm_message_t state) 1131 { 1132 dpm_resume(state); 1133 dpm_complete(state); 1134 } 1135 EXPORT_SYMBOL_GPL(dpm_resume_end); 1136 1137 1138 /*------------------------- Suspend routines -------------------------*/ 1139 1140 /** 1141 * resume_event - Return a "resume" message for given "suspend" sleep state. 1142 * @sleep_state: PM message representing a sleep state. 1143 * 1144 * Return a PM message representing the resume event corresponding to given 1145 * sleep state. 1146 */ 1147 static pm_message_t resume_event(pm_message_t sleep_state) 1148 { 1149 switch (sleep_state.event) { 1150 case PM_EVENT_SUSPEND: 1151 return PMSG_RESUME; 1152 case PM_EVENT_FREEZE: 1153 case PM_EVENT_QUIESCE: 1154 return PMSG_RECOVER; 1155 case PM_EVENT_HIBERNATE: 1156 return PMSG_RESTORE; 1157 } 1158 return PMSG_ON; 1159 } 1160 1161 static void dpm_superior_set_must_resume(struct device *dev) 1162 { 1163 struct device_link *link; 1164 int idx; 1165 1166 if (dev->parent) 1167 dev->parent->power.must_resume = true; 1168 1169 idx = device_links_read_lock(); 1170 1171 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) 1172 link->supplier->power.must_resume = true; 1173 1174 device_links_read_unlock(idx); 1175 } 1176 1177 /** 1178 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device. 1179 * @dev: Device to handle. 1180 * @state: PM transition of the system being carried out. 1181 * @async: If true, the device is being suspended asynchronously. 1182 * 1183 * The driver of @dev will not receive interrupts while this function is being 1184 * executed. 1185 */ 1186 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async) 1187 { 1188 pm_callback_t callback = NULL; 1189 const char *info = NULL; 1190 int error = 0; 1191 1192 TRACE_DEVICE(dev); 1193 TRACE_SUSPEND(0); 1194 1195 dpm_wait_for_subordinate(dev, async); 1196 1197 if (async_error) 1198 goto Complete; 1199 1200 if (dev->power.syscore || dev->power.direct_complete) 1201 goto Complete; 1202 1203 if (dev->pm_domain) { 1204 info = "noirq power domain "; 1205 callback = pm_noirq_op(&dev->pm_domain->ops, state); 1206 } else if (dev->type && dev->type->pm) { 1207 info = "noirq type "; 1208 callback = pm_noirq_op(dev->type->pm, state); 1209 } else if (dev->class && dev->class->pm) { 1210 info = "noirq class "; 1211 callback = pm_noirq_op(dev->class->pm, state); 1212 } else if (dev->bus && dev->bus->pm) { 1213 info = "noirq bus "; 1214 callback = pm_noirq_op(dev->bus->pm, state); 1215 } 1216 if (callback) 1217 goto Run; 1218 1219 if (dev_pm_skip_suspend(dev)) 1220 goto Skip; 1221 1222 if (dev->driver && dev->driver->pm) { 1223 info = "noirq driver "; 1224 callback = pm_noirq_op(dev->driver->pm, state); 1225 } 1226 1227 Run: 1228 error = dpm_run_callback(callback, dev, state, info); 1229 if (error) { 1230 async_error = error; 1231 goto Complete; 1232 } 1233 1234 Skip: 1235 dev->power.is_noirq_suspended = true; 1236 1237 /* 1238 * Devices must be resumed unless they are explicitly allowed to be left 1239 * in suspend, but even in that case skipping the resume of devices that 1240 * were in use right before the system suspend (as indicated by their 1241 * runtime PM usage counters and child counters) would be suboptimal. 1242 */ 1243 if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) && 1244 dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev)) 1245 dev->power.must_resume = true; 1246 1247 if (dev->power.must_resume) 1248 dpm_superior_set_must_resume(dev); 1249 1250 Complete: 1251 complete_all(&dev->power.completion); 1252 TRACE_SUSPEND(error); 1253 return error; 1254 } 1255 1256 static void async_suspend_noirq(void *data, async_cookie_t cookie) 1257 { 1258 struct device *dev = data; 1259 int error; 1260 1261 error = __device_suspend_noirq(dev, pm_transition, true); 1262 if (error) { 1263 dpm_save_failed_dev(dev_name(dev)); 1264 pm_dev_err(dev, pm_transition, " async", error); 1265 } 1266 1267 put_device(dev); 1268 } 1269 1270 static int device_suspend_noirq(struct device *dev) 1271 { 1272 if (dpm_async_fn(dev, async_suspend_noirq)) 1273 return 0; 1274 1275 return __device_suspend_noirq(dev, pm_transition, false); 1276 } 1277 1278 static int dpm_noirq_suspend_devices(pm_message_t state) 1279 { 1280 ktime_t starttime = ktime_get(); 1281 int error = 0; 1282 1283 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true); 1284 mutex_lock(&dpm_list_mtx); 1285 pm_transition = state; 1286 async_error = 0; 1287 1288 while (!list_empty(&dpm_late_early_list)) { 1289 struct device *dev = to_device(dpm_late_early_list.prev); 1290 1291 get_device(dev); 1292 mutex_unlock(&dpm_list_mtx); 1293 1294 error = device_suspend_noirq(dev); 1295 1296 mutex_lock(&dpm_list_mtx); 1297 1298 if (error) { 1299 pm_dev_err(dev, state, " noirq", error); 1300 dpm_save_failed_dev(dev_name(dev)); 1301 } else if (!list_empty(&dev->power.entry)) { 1302 list_move(&dev->power.entry, &dpm_noirq_list); 1303 } 1304 1305 mutex_unlock(&dpm_list_mtx); 1306 1307 put_device(dev); 1308 1309 mutex_lock(&dpm_list_mtx); 1310 1311 if (error || async_error) 1312 break; 1313 } 1314 mutex_unlock(&dpm_list_mtx); 1315 async_synchronize_full(); 1316 if (!error) 1317 error = async_error; 1318 1319 if (error) { 1320 suspend_stats.failed_suspend_noirq++; 1321 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ); 1322 } 1323 dpm_show_time(starttime, state, error, "noirq"); 1324 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false); 1325 return error; 1326 } 1327 1328 /** 1329 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices. 1330 * @state: PM transition of the system being carried out. 1331 * 1332 * Prevent device drivers' interrupt handlers from being called and invoke 1333 * "noirq" suspend callbacks for all non-sysdev devices. 1334 */ 1335 int dpm_suspend_noirq(pm_message_t state) 1336 { 1337 int ret; 1338 1339 device_wakeup_arm_wake_irqs(); 1340 suspend_device_irqs(); 1341 1342 ret = dpm_noirq_suspend_devices(state); 1343 if (ret) 1344 dpm_resume_noirq(resume_event(state)); 1345 1346 return ret; 1347 } 1348 1349 static void dpm_propagate_wakeup_to_parent(struct device *dev) 1350 { 1351 struct device *parent = dev->parent; 1352 1353 if (!parent) 1354 return; 1355 1356 spin_lock_irq(&parent->power.lock); 1357 1358 if (device_wakeup_path(dev) && !parent->power.ignore_children) 1359 parent->power.wakeup_path = true; 1360 1361 spin_unlock_irq(&parent->power.lock); 1362 } 1363 1364 /** 1365 * __device_suspend_late - Execute a "late suspend" callback for given device. 1366 * @dev: Device to handle. 1367 * @state: PM transition of the system being carried out. 1368 * @async: If true, the device is being suspended asynchronously. 1369 * 1370 * Runtime PM is disabled for @dev while this function is being executed. 1371 */ 1372 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async) 1373 { 1374 pm_callback_t callback = NULL; 1375 const char *info = NULL; 1376 int error = 0; 1377 1378 TRACE_DEVICE(dev); 1379 TRACE_SUSPEND(0); 1380 1381 __pm_runtime_disable(dev, false); 1382 1383 dpm_wait_for_subordinate(dev, async); 1384 1385 if (async_error) 1386 goto Complete; 1387 1388 if (pm_wakeup_pending()) { 1389 async_error = -EBUSY; 1390 goto Complete; 1391 } 1392 1393 if (dev->power.syscore || dev->power.direct_complete) 1394 goto Complete; 1395 1396 if (dev->pm_domain) { 1397 info = "late power domain "; 1398 callback = pm_late_early_op(&dev->pm_domain->ops, state); 1399 } else if (dev->type && dev->type->pm) { 1400 info = "late type "; 1401 callback = pm_late_early_op(dev->type->pm, state); 1402 } else if (dev->class && dev->class->pm) { 1403 info = "late class "; 1404 callback = pm_late_early_op(dev->class->pm, state); 1405 } else if (dev->bus && dev->bus->pm) { 1406 info = "late bus "; 1407 callback = pm_late_early_op(dev->bus->pm, state); 1408 } 1409 if (callback) 1410 goto Run; 1411 1412 if (dev_pm_skip_suspend(dev)) 1413 goto Skip; 1414 1415 if (dev->driver && dev->driver->pm) { 1416 info = "late driver "; 1417 callback = pm_late_early_op(dev->driver->pm, state); 1418 } 1419 1420 Run: 1421 error = dpm_run_callback(callback, dev, state, info); 1422 if (error) { 1423 async_error = error; 1424 goto Complete; 1425 } 1426 dpm_propagate_wakeup_to_parent(dev); 1427 1428 Skip: 1429 dev->power.is_late_suspended = true; 1430 1431 Complete: 1432 TRACE_SUSPEND(error); 1433 complete_all(&dev->power.completion); 1434 return error; 1435 } 1436 1437 static void async_suspend_late(void *data, async_cookie_t cookie) 1438 { 1439 struct device *dev = data; 1440 int error; 1441 1442 error = __device_suspend_late(dev, pm_transition, true); 1443 if (error) { 1444 dpm_save_failed_dev(dev_name(dev)); 1445 pm_dev_err(dev, pm_transition, " async", error); 1446 } 1447 put_device(dev); 1448 } 1449 1450 static int device_suspend_late(struct device *dev) 1451 { 1452 if (dpm_async_fn(dev, async_suspend_late)) 1453 return 0; 1454 1455 return __device_suspend_late(dev, pm_transition, false); 1456 } 1457 1458 /** 1459 * dpm_suspend_late - Execute "late suspend" callbacks for all devices. 1460 * @state: PM transition of the system being carried out. 1461 */ 1462 int dpm_suspend_late(pm_message_t state) 1463 { 1464 ktime_t starttime = ktime_get(); 1465 int error = 0; 1466 1467 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true); 1468 wake_up_all_idle_cpus(); 1469 mutex_lock(&dpm_list_mtx); 1470 pm_transition = state; 1471 async_error = 0; 1472 1473 while (!list_empty(&dpm_suspended_list)) { 1474 struct device *dev = to_device(dpm_suspended_list.prev); 1475 1476 get_device(dev); 1477 1478 mutex_unlock(&dpm_list_mtx); 1479 1480 error = device_suspend_late(dev); 1481 1482 mutex_lock(&dpm_list_mtx); 1483 1484 if (!list_empty(&dev->power.entry)) 1485 list_move(&dev->power.entry, &dpm_late_early_list); 1486 1487 if (error) { 1488 pm_dev_err(dev, state, " late", error); 1489 dpm_save_failed_dev(dev_name(dev)); 1490 } 1491 1492 mutex_unlock(&dpm_list_mtx); 1493 1494 put_device(dev); 1495 1496 mutex_lock(&dpm_list_mtx); 1497 1498 if (error || async_error) 1499 break; 1500 } 1501 mutex_unlock(&dpm_list_mtx); 1502 async_synchronize_full(); 1503 if (!error) 1504 error = async_error; 1505 if (error) { 1506 suspend_stats.failed_suspend_late++; 1507 dpm_save_failed_step(SUSPEND_SUSPEND_LATE); 1508 dpm_resume_early(resume_event(state)); 1509 } 1510 dpm_show_time(starttime, state, error, "late"); 1511 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false); 1512 return error; 1513 } 1514 1515 /** 1516 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks. 1517 * @state: PM transition of the system being carried out. 1518 */ 1519 int dpm_suspend_end(pm_message_t state) 1520 { 1521 ktime_t starttime = ktime_get(); 1522 int error; 1523 1524 error = dpm_suspend_late(state); 1525 if (error) 1526 goto out; 1527 1528 error = dpm_suspend_noirq(state); 1529 if (error) 1530 dpm_resume_early(resume_event(state)); 1531 1532 out: 1533 dpm_show_time(starttime, state, error, "end"); 1534 return error; 1535 } 1536 EXPORT_SYMBOL_GPL(dpm_suspend_end); 1537 1538 /** 1539 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device. 1540 * @dev: Device to suspend. 1541 * @state: PM transition of the system being carried out. 1542 * @cb: Suspend callback to execute. 1543 * @info: string description of caller. 1544 */ 1545 static int legacy_suspend(struct device *dev, pm_message_t state, 1546 int (*cb)(struct device *dev, pm_message_t state), 1547 const char *info) 1548 { 1549 int error; 1550 ktime_t calltime; 1551 1552 calltime = initcall_debug_start(dev, cb); 1553 1554 trace_device_pm_callback_start(dev, info, state.event); 1555 error = cb(dev, state); 1556 trace_device_pm_callback_end(dev, error); 1557 suspend_report_result(dev, cb, error); 1558 1559 initcall_debug_report(dev, calltime, cb, error); 1560 1561 return error; 1562 } 1563 1564 static void dpm_clear_superiors_direct_complete(struct device *dev) 1565 { 1566 struct device_link *link; 1567 int idx; 1568 1569 if (dev->parent) { 1570 spin_lock_irq(&dev->parent->power.lock); 1571 dev->parent->power.direct_complete = false; 1572 spin_unlock_irq(&dev->parent->power.lock); 1573 } 1574 1575 idx = device_links_read_lock(); 1576 1577 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) { 1578 spin_lock_irq(&link->supplier->power.lock); 1579 link->supplier->power.direct_complete = false; 1580 spin_unlock_irq(&link->supplier->power.lock); 1581 } 1582 1583 device_links_read_unlock(idx); 1584 } 1585 1586 /** 1587 * __device_suspend - Execute "suspend" callbacks for given device. 1588 * @dev: Device to handle. 1589 * @state: PM transition of the system being carried out. 1590 * @async: If true, the device is being suspended asynchronously. 1591 */ 1592 static int __device_suspend(struct device *dev, pm_message_t state, bool async) 1593 { 1594 pm_callback_t callback = NULL; 1595 const char *info = NULL; 1596 int error = 0; 1597 DECLARE_DPM_WATCHDOG_ON_STACK(wd); 1598 1599 TRACE_DEVICE(dev); 1600 TRACE_SUSPEND(0); 1601 1602 dpm_wait_for_subordinate(dev, async); 1603 1604 if (async_error) { 1605 dev->power.direct_complete = false; 1606 goto Complete; 1607 } 1608 1609 /* 1610 * Wait for possible runtime PM transitions of the device in progress 1611 * to complete and if there's a runtime resume request pending for it, 1612 * resume it before proceeding with invoking the system-wide suspend 1613 * callbacks for it. 1614 * 1615 * If the system-wide suspend callbacks below change the configuration 1616 * of the device, they must disable runtime PM for it or otherwise 1617 * ensure that its runtime-resume callbacks will not be confused by that 1618 * change in case they are invoked going forward. 1619 */ 1620 pm_runtime_barrier(dev); 1621 1622 if (pm_wakeup_pending()) { 1623 dev->power.direct_complete = false; 1624 async_error = -EBUSY; 1625 goto Complete; 1626 } 1627 1628 if (dev->power.syscore) 1629 goto Complete; 1630 1631 /* Avoid direct_complete to let wakeup_path propagate. */ 1632 if (device_may_wakeup(dev) || device_wakeup_path(dev)) 1633 dev->power.direct_complete = false; 1634 1635 if (dev->power.direct_complete) { 1636 if (pm_runtime_status_suspended(dev)) { 1637 pm_runtime_disable(dev); 1638 if (pm_runtime_status_suspended(dev)) { 1639 pm_dev_dbg(dev, state, "direct-complete "); 1640 dev->power.is_suspended = true; 1641 goto Complete; 1642 } 1643 1644 pm_runtime_enable(dev); 1645 } 1646 dev->power.direct_complete = false; 1647 } 1648 1649 dev->power.may_skip_resume = true; 1650 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME); 1651 1652 dpm_watchdog_set(&wd, dev); 1653 device_lock(dev); 1654 1655 if (dev->pm_domain) { 1656 info = "power domain "; 1657 callback = pm_op(&dev->pm_domain->ops, state); 1658 goto Run; 1659 } 1660 1661 if (dev->type && dev->type->pm) { 1662 info = "type "; 1663 callback = pm_op(dev->type->pm, state); 1664 goto Run; 1665 } 1666 1667 if (dev->class && dev->class->pm) { 1668 info = "class "; 1669 callback = pm_op(dev->class->pm, state); 1670 goto Run; 1671 } 1672 1673 if (dev->bus) { 1674 if (dev->bus->pm) { 1675 info = "bus "; 1676 callback = pm_op(dev->bus->pm, state); 1677 } else if (dev->bus->suspend) { 1678 pm_dev_dbg(dev, state, "legacy bus "); 1679 error = legacy_suspend(dev, state, dev->bus->suspend, 1680 "legacy bus "); 1681 goto End; 1682 } 1683 } 1684 1685 Run: 1686 if (!callback && dev->driver && dev->driver->pm) { 1687 info = "driver "; 1688 callback = pm_op(dev->driver->pm, state); 1689 } 1690 1691 error = dpm_run_callback(callback, dev, state, info); 1692 1693 End: 1694 if (!error) { 1695 dev->power.is_suspended = true; 1696 if (device_may_wakeup(dev)) 1697 dev->power.wakeup_path = true; 1698 1699 dpm_propagate_wakeup_to_parent(dev); 1700 dpm_clear_superiors_direct_complete(dev); 1701 } 1702 1703 device_unlock(dev); 1704 dpm_watchdog_clear(&wd); 1705 1706 Complete: 1707 if (error) 1708 async_error = error; 1709 1710 complete_all(&dev->power.completion); 1711 TRACE_SUSPEND(error); 1712 return error; 1713 } 1714 1715 static void async_suspend(void *data, async_cookie_t cookie) 1716 { 1717 struct device *dev = data; 1718 int error; 1719 1720 error = __device_suspend(dev, pm_transition, true); 1721 if (error) { 1722 dpm_save_failed_dev(dev_name(dev)); 1723 pm_dev_err(dev, pm_transition, " async", error); 1724 } 1725 1726 put_device(dev); 1727 } 1728 1729 static int device_suspend(struct device *dev) 1730 { 1731 if (dpm_async_fn(dev, async_suspend)) 1732 return 0; 1733 1734 return __device_suspend(dev, pm_transition, false); 1735 } 1736 1737 /** 1738 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices. 1739 * @state: PM transition of the system being carried out. 1740 */ 1741 int dpm_suspend(pm_message_t state) 1742 { 1743 ktime_t starttime = ktime_get(); 1744 int error = 0; 1745 1746 trace_suspend_resume(TPS("dpm_suspend"), state.event, true); 1747 might_sleep(); 1748 1749 devfreq_suspend(); 1750 cpufreq_suspend(); 1751 1752 mutex_lock(&dpm_list_mtx); 1753 pm_transition = state; 1754 async_error = 0; 1755 while (!list_empty(&dpm_prepared_list)) { 1756 struct device *dev = to_device(dpm_prepared_list.prev); 1757 1758 get_device(dev); 1759 1760 mutex_unlock(&dpm_list_mtx); 1761 1762 error = device_suspend(dev); 1763 1764 mutex_lock(&dpm_list_mtx); 1765 1766 if (error) { 1767 pm_dev_err(dev, state, "", error); 1768 dpm_save_failed_dev(dev_name(dev)); 1769 } else if (!list_empty(&dev->power.entry)) { 1770 list_move(&dev->power.entry, &dpm_suspended_list); 1771 } 1772 1773 mutex_unlock(&dpm_list_mtx); 1774 1775 put_device(dev); 1776 1777 mutex_lock(&dpm_list_mtx); 1778 1779 if (error || async_error) 1780 break; 1781 } 1782 mutex_unlock(&dpm_list_mtx); 1783 async_synchronize_full(); 1784 if (!error) 1785 error = async_error; 1786 if (error) { 1787 suspend_stats.failed_suspend++; 1788 dpm_save_failed_step(SUSPEND_SUSPEND); 1789 } 1790 dpm_show_time(starttime, state, error, NULL); 1791 trace_suspend_resume(TPS("dpm_suspend"), state.event, false); 1792 return error; 1793 } 1794 1795 /** 1796 * device_prepare - Prepare a device for system power transition. 1797 * @dev: Device to handle. 1798 * @state: PM transition of the system being carried out. 1799 * 1800 * Execute the ->prepare() callback(s) for given device. No new children of the 1801 * device may be registered after this function has returned. 1802 */ 1803 static int device_prepare(struct device *dev, pm_message_t state) 1804 { 1805 int (*callback)(struct device *) = NULL; 1806 int ret = 0; 1807 1808 /* 1809 * If a device's parent goes into runtime suspend at the wrong time, 1810 * it won't be possible to resume the device. To prevent this we 1811 * block runtime suspend here, during the prepare phase, and allow 1812 * it again during the complete phase. 1813 */ 1814 pm_runtime_get_noresume(dev); 1815 1816 if (dev->power.syscore) 1817 return 0; 1818 1819 device_lock(dev); 1820 1821 dev->power.wakeup_path = false; 1822 1823 if (dev->power.no_pm_callbacks) 1824 goto unlock; 1825 1826 if (dev->pm_domain) 1827 callback = dev->pm_domain->ops.prepare; 1828 else if (dev->type && dev->type->pm) 1829 callback = dev->type->pm->prepare; 1830 else if (dev->class && dev->class->pm) 1831 callback = dev->class->pm->prepare; 1832 else if (dev->bus && dev->bus->pm) 1833 callback = dev->bus->pm->prepare; 1834 1835 if (!callback && dev->driver && dev->driver->pm) 1836 callback = dev->driver->pm->prepare; 1837 1838 if (callback) 1839 ret = callback(dev); 1840 1841 unlock: 1842 device_unlock(dev); 1843 1844 if (ret < 0) { 1845 suspend_report_result(dev, callback, ret); 1846 pm_runtime_put(dev); 1847 return ret; 1848 } 1849 /* 1850 * A positive return value from ->prepare() means "this device appears 1851 * to be runtime-suspended and its state is fine, so if it really is 1852 * runtime-suspended, you can leave it in that state provided that you 1853 * will do the same thing with all of its descendants". This only 1854 * applies to suspend transitions, however. 1855 */ 1856 spin_lock_irq(&dev->power.lock); 1857 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND && 1858 (ret > 0 || dev->power.no_pm_callbacks) && 1859 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE); 1860 spin_unlock_irq(&dev->power.lock); 1861 return 0; 1862 } 1863 1864 /** 1865 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition. 1866 * @state: PM transition of the system being carried out. 1867 * 1868 * Execute the ->prepare() callback(s) for all devices. 1869 */ 1870 int dpm_prepare(pm_message_t state) 1871 { 1872 int error = 0; 1873 1874 trace_suspend_resume(TPS("dpm_prepare"), state.event, true); 1875 might_sleep(); 1876 1877 /* 1878 * Give a chance for the known devices to complete their probes, before 1879 * disable probing of devices. This sync point is important at least 1880 * at boot time + hibernation restore. 1881 */ 1882 wait_for_device_probe(); 1883 /* 1884 * It is unsafe if probing of devices will happen during suspend or 1885 * hibernation and system behavior will be unpredictable in this case. 1886 * So, let's prohibit device's probing here and defer their probes 1887 * instead. The normal behavior will be restored in dpm_complete(). 1888 */ 1889 device_block_probing(); 1890 1891 mutex_lock(&dpm_list_mtx); 1892 while (!list_empty(&dpm_list) && !error) { 1893 struct device *dev = to_device(dpm_list.next); 1894 1895 get_device(dev); 1896 1897 mutex_unlock(&dpm_list_mtx); 1898 1899 trace_device_pm_callback_start(dev, "", state.event); 1900 error = device_prepare(dev, state); 1901 trace_device_pm_callback_end(dev, error); 1902 1903 mutex_lock(&dpm_list_mtx); 1904 1905 if (!error) { 1906 dev->power.is_prepared = true; 1907 if (!list_empty(&dev->power.entry)) 1908 list_move_tail(&dev->power.entry, &dpm_prepared_list); 1909 } else if (error == -EAGAIN) { 1910 error = 0; 1911 } else { 1912 dev_info(dev, "not prepared for power transition: code %d\n", 1913 error); 1914 } 1915 1916 mutex_unlock(&dpm_list_mtx); 1917 1918 put_device(dev); 1919 1920 mutex_lock(&dpm_list_mtx); 1921 } 1922 mutex_unlock(&dpm_list_mtx); 1923 trace_suspend_resume(TPS("dpm_prepare"), state.event, false); 1924 return error; 1925 } 1926 1927 /** 1928 * dpm_suspend_start - Prepare devices for PM transition and suspend them. 1929 * @state: PM transition of the system being carried out. 1930 * 1931 * Prepare all non-sysdev devices for system PM transition and execute "suspend" 1932 * callbacks for them. 1933 */ 1934 int dpm_suspend_start(pm_message_t state) 1935 { 1936 ktime_t starttime = ktime_get(); 1937 int error; 1938 1939 error = dpm_prepare(state); 1940 if (error) { 1941 suspend_stats.failed_prepare++; 1942 dpm_save_failed_step(SUSPEND_PREPARE); 1943 } else 1944 error = dpm_suspend(state); 1945 dpm_show_time(starttime, state, error, "start"); 1946 return error; 1947 } 1948 EXPORT_SYMBOL_GPL(dpm_suspend_start); 1949 1950 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret) 1951 { 1952 if (ret) 1953 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret); 1954 } 1955 EXPORT_SYMBOL_GPL(__suspend_report_result); 1956 1957 /** 1958 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete. 1959 * @subordinate: Device that needs to wait for @dev. 1960 * @dev: Device to wait for. 1961 */ 1962 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev) 1963 { 1964 dpm_wait(dev, subordinate->power.async_suspend); 1965 return async_error; 1966 } 1967 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev); 1968 1969 /** 1970 * dpm_for_each_dev - device iterator. 1971 * @data: data for the callback. 1972 * @fn: function to be called for each device. 1973 * 1974 * Iterate over devices in dpm_list, and call @fn for each device, 1975 * passing it @data. 1976 */ 1977 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *)) 1978 { 1979 struct device *dev; 1980 1981 if (!fn) 1982 return; 1983 1984 device_pm_lock(); 1985 list_for_each_entry(dev, &dpm_list, power.entry) 1986 fn(dev, data); 1987 device_pm_unlock(); 1988 } 1989 EXPORT_SYMBOL_GPL(dpm_for_each_dev); 1990 1991 static bool pm_ops_is_empty(const struct dev_pm_ops *ops) 1992 { 1993 if (!ops) 1994 return true; 1995 1996 return !ops->prepare && 1997 !ops->suspend && 1998 !ops->suspend_late && 1999 !ops->suspend_noirq && 2000 !ops->resume_noirq && 2001 !ops->resume_early && 2002 !ops->resume && 2003 !ops->complete; 2004 } 2005 2006 void device_pm_check_callbacks(struct device *dev) 2007 { 2008 unsigned long flags; 2009 2010 spin_lock_irqsave(&dev->power.lock, flags); 2011 dev->power.no_pm_callbacks = 2012 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) && 2013 !dev->bus->suspend && !dev->bus->resume)) && 2014 (!dev->class || pm_ops_is_empty(dev->class->pm)) && 2015 (!dev->type || pm_ops_is_empty(dev->type->pm)) && 2016 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) && 2017 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) && 2018 !dev->driver->suspend && !dev->driver->resume)); 2019 spin_unlock_irqrestore(&dev->power.lock, flags); 2020 } 2021 2022 bool dev_pm_skip_suspend(struct device *dev) 2023 { 2024 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) && 2025 pm_runtime_status_suspended(dev); 2026 } 2027