xref: /openbmc/linux/drivers/base/power/domain_governor.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/domain_governor.c - Governors for device PM domains.
4  *
5  * Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
6  */
7 #include <linux/kernel.h>
8 #include <linux/pm_domain.h>
9 #include <linux/pm_qos.h>
10 #include <linux/hrtimer.h>
11 #include <linux/cpuidle.h>
12 #include <linux/cpumask.h>
13 #include <linux/ktime.h>
14 
15 static int dev_update_qos_constraint(struct device *dev, void *data)
16 {
17 	s64 *constraint_ns_p = data;
18 	s64 constraint_ns;
19 
20 	if (dev->power.subsys_data && dev->power.subsys_data->domain_data) {
21 		/*
22 		 * Only take suspend-time QoS constraints of devices into
23 		 * account, because constraints updated after the device has
24 		 * been suspended are not guaranteed to be taken into account
25 		 * anyway.  In order for them to take effect, the device has to
26 		 * be resumed and suspended again.
27 		 */
28 		constraint_ns = dev_gpd_data(dev)->td.effective_constraint_ns;
29 	} else {
30 		/*
31 		 * The child is not in a domain and there's no info on its
32 		 * suspend/resume latencies, so assume them to be negligible and
33 		 * take its current PM QoS constraint (that's the only thing
34 		 * known at this point anyway).
35 		 */
36 		constraint_ns = dev_pm_qos_read_value(dev, DEV_PM_QOS_RESUME_LATENCY);
37 		constraint_ns *= NSEC_PER_USEC;
38 	}
39 
40 	if (constraint_ns < *constraint_ns_p)
41 		*constraint_ns_p = constraint_ns;
42 
43 	return 0;
44 }
45 
46 /**
47  * default_suspend_ok - Default PM domain governor routine to suspend devices.
48  * @dev: Device to check.
49  */
50 static bool default_suspend_ok(struct device *dev)
51 {
52 	struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
53 	unsigned long flags;
54 	s64 constraint_ns;
55 
56 	dev_dbg(dev, "%s()\n", __func__);
57 
58 	spin_lock_irqsave(&dev->power.lock, flags);
59 
60 	if (!td->constraint_changed) {
61 		bool ret = td->cached_suspend_ok;
62 
63 		spin_unlock_irqrestore(&dev->power.lock, flags);
64 		return ret;
65 	}
66 	td->constraint_changed = false;
67 	td->cached_suspend_ok = false;
68 	td->effective_constraint_ns = 0;
69 	constraint_ns = __dev_pm_qos_resume_latency(dev);
70 
71 	spin_unlock_irqrestore(&dev->power.lock, flags);
72 
73 	if (constraint_ns == 0)
74 		return false;
75 
76 	constraint_ns *= NSEC_PER_USEC;
77 	/*
78 	 * We can walk the children without any additional locking, because
79 	 * they all have been suspended at this point and their
80 	 * effective_constraint_ns fields won't be modified in parallel with us.
81 	 */
82 	if (!dev->power.ignore_children)
83 		device_for_each_child(dev, &constraint_ns,
84 				      dev_update_qos_constraint);
85 
86 	if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) {
87 		/* "No restriction", so the device is allowed to suspend. */
88 		td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS;
89 		td->cached_suspend_ok = true;
90 	} else if (constraint_ns == 0) {
91 		/*
92 		 * This triggers if one of the children that don't belong to a
93 		 * domain has a zero PM QoS constraint and it's better not to
94 		 * suspend then.  effective_constraint_ns is zero already and
95 		 * cached_suspend_ok is false, so bail out.
96 		 */
97 		return false;
98 	} else {
99 		constraint_ns -= td->suspend_latency_ns +
100 				td->resume_latency_ns;
101 		/*
102 		 * effective_constraint_ns is zero already and cached_suspend_ok
103 		 * is false, so if the computed value is not positive, return
104 		 * right away.
105 		 */
106 		if (constraint_ns <= 0)
107 			return false;
108 
109 		td->effective_constraint_ns = constraint_ns;
110 		td->cached_suspend_ok = true;
111 	}
112 
113 	/*
114 	 * The children have been suspended already, so we don't need to take
115 	 * their suspend latencies into account here.
116 	 */
117 	return td->cached_suspend_ok;
118 }
119 
120 static void update_domain_next_wakeup(struct generic_pm_domain *genpd, ktime_t now)
121 {
122 	ktime_t domain_wakeup = KTIME_MAX;
123 	ktime_t next_wakeup;
124 	struct pm_domain_data *pdd;
125 	struct gpd_link *link;
126 
127 	if (!(genpd->flags & GENPD_FLAG_MIN_RESIDENCY))
128 		return;
129 
130 	/*
131 	 * Devices that have a predictable wakeup pattern, may specify
132 	 * their next wakeup. Let's find the next wakeup from all the
133 	 * devices attached to this domain and from all the sub-domains.
134 	 * It is possible that component's a next wakeup may have become
135 	 * stale when we read that here. We will ignore to ensure the domain
136 	 * is able to enter its optimal idle state.
137 	 */
138 	list_for_each_entry(pdd, &genpd->dev_list, list_node) {
139 		next_wakeup = to_gpd_data(pdd)->next_wakeup;
140 		if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now))
141 			if (ktime_before(next_wakeup, domain_wakeup))
142 				domain_wakeup = next_wakeup;
143 	}
144 
145 	list_for_each_entry(link, &genpd->parent_links, parent_node) {
146 		next_wakeup = link->child->next_wakeup;
147 		if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now))
148 			if (ktime_before(next_wakeup, domain_wakeup))
149 				domain_wakeup = next_wakeup;
150 	}
151 
152 	genpd->next_wakeup = domain_wakeup;
153 }
154 
155 static bool next_wakeup_allows_state(struct generic_pm_domain *genpd,
156 				     unsigned int state, ktime_t now)
157 {
158 	ktime_t domain_wakeup = genpd->next_wakeup;
159 	s64 idle_time_ns, min_sleep_ns;
160 
161 	min_sleep_ns = genpd->states[state].power_off_latency_ns +
162 		       genpd->states[state].residency_ns;
163 
164 	idle_time_ns = ktime_to_ns(ktime_sub(domain_wakeup, now));
165 
166 	return idle_time_ns >= min_sleep_ns;
167 }
168 
169 static bool __default_power_down_ok(struct dev_pm_domain *pd,
170 				     unsigned int state)
171 {
172 	struct generic_pm_domain *genpd = pd_to_genpd(pd);
173 	struct gpd_link *link;
174 	struct pm_domain_data *pdd;
175 	s64 min_off_time_ns;
176 	s64 off_on_time_ns;
177 
178 	off_on_time_ns = genpd->states[state].power_off_latency_ns +
179 		genpd->states[state].power_on_latency_ns;
180 
181 	min_off_time_ns = -1;
182 	/*
183 	 * Check if subdomains can be off for enough time.
184 	 *
185 	 * All subdomains have been powered off already at this point.
186 	 */
187 	list_for_each_entry(link, &genpd->parent_links, parent_node) {
188 		struct generic_pm_domain *sd = link->child;
189 		s64 sd_max_off_ns = sd->max_off_time_ns;
190 
191 		if (sd_max_off_ns < 0)
192 			continue;
193 
194 		/*
195 		 * Check if the subdomain is allowed to be off long enough for
196 		 * the current domain to turn off and on (that's how much time
197 		 * it will have to wait worst case).
198 		 */
199 		if (sd_max_off_ns <= off_on_time_ns)
200 			return false;
201 
202 		if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0)
203 			min_off_time_ns = sd_max_off_ns;
204 	}
205 
206 	/*
207 	 * Check if the devices in the domain can be off enough time.
208 	 */
209 	list_for_each_entry(pdd, &genpd->dev_list, list_node) {
210 		struct gpd_timing_data *td;
211 		s64 constraint_ns;
212 
213 		/*
214 		 * Check if the device is allowed to be off long enough for the
215 		 * domain to turn off and on (that's how much time it will
216 		 * have to wait worst case).
217 		 */
218 		td = &to_gpd_data(pdd)->td;
219 		constraint_ns = td->effective_constraint_ns;
220 		/*
221 		 * Zero means "no suspend at all" and this runs only when all
222 		 * devices in the domain are suspended, so it must be positive.
223 		 */
224 		if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS)
225 			continue;
226 
227 		if (constraint_ns <= off_on_time_ns)
228 			return false;
229 
230 		if (min_off_time_ns > constraint_ns || min_off_time_ns < 0)
231 			min_off_time_ns = constraint_ns;
232 	}
233 
234 	/*
235 	 * If the computed minimum device off time is negative, there are no
236 	 * latency constraints, so the domain can spend arbitrary time in the
237 	 * "off" state.
238 	 */
239 	if (min_off_time_ns < 0)
240 		return true;
241 
242 	/*
243 	 * The difference between the computed minimum subdomain or device off
244 	 * time and the time needed to turn the domain on is the maximum
245 	 * theoretical time this domain can spend in the "off" state.
246 	 */
247 	genpd->max_off_time_ns = min_off_time_ns -
248 		genpd->states[state].power_on_latency_ns;
249 	return true;
250 }
251 
252 /**
253  * _default_power_down_ok - Default generic PM domain power off governor routine.
254  * @pd: PM domain to check.
255  * @now: current ktime.
256  *
257  * This routine must be executed under the PM domain's lock.
258  */
259 static bool _default_power_down_ok(struct dev_pm_domain *pd, ktime_t now)
260 {
261 	struct generic_pm_domain *genpd = pd_to_genpd(pd);
262 	int state_idx = genpd->state_count - 1;
263 	struct gpd_link *link;
264 
265 	/*
266 	 * Find the next wakeup from devices that can determine their own wakeup
267 	 * to find when the domain would wakeup and do it for every device down
268 	 * the hierarchy. It is not worth while to sleep if the state's residency
269 	 * cannot be met.
270 	 */
271 	update_domain_next_wakeup(genpd, now);
272 	if ((genpd->flags & GENPD_FLAG_MIN_RESIDENCY) && (genpd->next_wakeup != KTIME_MAX)) {
273 		/* Let's find out the deepest domain idle state, the devices prefer */
274 		while (state_idx >= 0) {
275 			if (next_wakeup_allows_state(genpd, state_idx, now)) {
276 				genpd->max_off_time_changed = true;
277 				break;
278 			}
279 			state_idx--;
280 		}
281 
282 		if (state_idx < 0) {
283 			state_idx = 0;
284 			genpd->cached_power_down_ok = false;
285 			goto done;
286 		}
287 	}
288 
289 	if (!genpd->max_off_time_changed) {
290 		genpd->state_idx = genpd->cached_power_down_state_idx;
291 		return genpd->cached_power_down_ok;
292 	}
293 
294 	/*
295 	 * We have to invalidate the cached results for the parents, so
296 	 * use the observation that default_power_down_ok() is not
297 	 * going to be called for any parent until this instance
298 	 * returns.
299 	 */
300 	list_for_each_entry(link, &genpd->child_links, child_node)
301 		link->parent->max_off_time_changed = true;
302 
303 	genpd->max_off_time_ns = -1;
304 	genpd->max_off_time_changed = false;
305 	genpd->cached_power_down_ok = true;
306 
307 	/*
308 	 * Find a state to power down to, starting from the state
309 	 * determined by the next wakeup.
310 	 */
311 	while (!__default_power_down_ok(pd, state_idx)) {
312 		if (state_idx == 0) {
313 			genpd->cached_power_down_ok = false;
314 			break;
315 		}
316 		state_idx--;
317 	}
318 
319 done:
320 	genpd->state_idx = state_idx;
321 	genpd->cached_power_down_state_idx = genpd->state_idx;
322 	return genpd->cached_power_down_ok;
323 }
324 
325 static bool default_power_down_ok(struct dev_pm_domain *pd)
326 {
327 	return _default_power_down_ok(pd, ktime_get());
328 }
329 
330 static bool always_on_power_down_ok(struct dev_pm_domain *domain)
331 {
332 	return false;
333 }
334 
335 #ifdef CONFIG_CPU_IDLE
336 static bool cpu_power_down_ok(struct dev_pm_domain *pd)
337 {
338 	struct generic_pm_domain *genpd = pd_to_genpd(pd);
339 	struct cpuidle_device *dev;
340 	ktime_t domain_wakeup, next_hrtimer;
341 	ktime_t now = ktime_get();
342 	s64 idle_duration_ns;
343 	int cpu, i;
344 
345 	/* Validate dev PM QoS constraints. */
346 	if (!_default_power_down_ok(pd, now))
347 		return false;
348 
349 	if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN))
350 		return true;
351 
352 	/*
353 	 * Find the next wakeup for any of the online CPUs within the PM domain
354 	 * and its subdomains. Note, we only need the genpd->cpus, as it already
355 	 * contains a mask of all CPUs from subdomains.
356 	 */
357 	domain_wakeup = ktime_set(KTIME_SEC_MAX, 0);
358 	for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) {
359 		dev = per_cpu(cpuidle_devices, cpu);
360 		if (dev) {
361 			next_hrtimer = READ_ONCE(dev->next_hrtimer);
362 			if (ktime_before(next_hrtimer, domain_wakeup))
363 				domain_wakeup = next_hrtimer;
364 		}
365 	}
366 
367 	/* The minimum idle duration is from now - until the next wakeup. */
368 	idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, now));
369 	if (idle_duration_ns <= 0)
370 		return false;
371 
372 	/*
373 	 * Find the deepest idle state that has its residency value satisfied
374 	 * and by also taking into account the power off latency for the state.
375 	 * Start at the state picked by the dev PM QoS constraint validation.
376 	 */
377 	i = genpd->state_idx;
378 	do {
379 		if (idle_duration_ns >= (genpd->states[i].residency_ns +
380 		    genpd->states[i].power_off_latency_ns)) {
381 			genpd->state_idx = i;
382 			return true;
383 		}
384 	} while (--i >= 0);
385 
386 	return false;
387 }
388 
389 struct dev_power_governor pm_domain_cpu_gov = {
390 	.suspend_ok = default_suspend_ok,
391 	.power_down_ok = cpu_power_down_ok,
392 };
393 #endif
394 
395 struct dev_power_governor simple_qos_governor = {
396 	.suspend_ok = default_suspend_ok,
397 	.power_down_ok = default_power_down_ok,
398 };
399 
400 /**
401  * pm_genpd_gov_always_on - A governor implementing an always-on policy
402  */
403 struct dev_power_governor pm_domain_always_on_gov = {
404 	.power_down_ok = always_on_power_down_ok,
405 	.suspend_ok = default_suspend_ok,
406 };
407