xref: /openbmc/linux/drivers/base/platform.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * platform.c - platform 'pseudo' bus for legacy devices
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  *
8  * Please see Documentation/driver-model/platform.txt for more
9  * information.
10  */
11 
12 #include <linux/string.h>
13 #include <linux/platform_device.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/bootmem.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/idr.h>
25 #include <linux/acpi.h>
26 #include <linux/clk/clk-conf.h>
27 #include <linux/limits.h>
28 #include <linux/property.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 /* For automatically allocated device IDs */
34 static DEFINE_IDA(platform_devid_ida);
35 
36 struct device platform_bus = {
37 	.init_name	= "platform",
38 };
39 EXPORT_SYMBOL_GPL(platform_bus);
40 
41 /**
42  * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
43  * @pdev: platform device
44  *
45  * This is called before platform_device_add() such that any pdev_archdata may
46  * be setup before the platform_notifier is called.  So if a user needs to
47  * manipulate any relevant information in the pdev_archdata they can do:
48  *
49  *	platform_device_alloc()
50  *	... manipulate ...
51  *	platform_device_add()
52  *
53  * And if they don't care they can just call platform_device_register() and
54  * everything will just work out.
55  */
56 void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
57 {
58 }
59 
60 /**
61  * platform_get_resource - get a resource for a device
62  * @dev: platform device
63  * @type: resource type
64  * @num: resource index
65  */
66 struct resource *platform_get_resource(struct platform_device *dev,
67 				       unsigned int type, unsigned int num)
68 {
69 	int i;
70 
71 	for (i = 0; i < dev->num_resources; i++) {
72 		struct resource *r = &dev->resource[i];
73 
74 		if (type == resource_type(r) && num-- == 0)
75 			return r;
76 	}
77 	return NULL;
78 }
79 EXPORT_SYMBOL_GPL(platform_get_resource);
80 
81 /**
82  * platform_get_irq - get an IRQ for a device
83  * @dev: platform device
84  * @num: IRQ number index
85  */
86 int platform_get_irq(struct platform_device *dev, unsigned int num)
87 {
88 #ifdef CONFIG_SPARC
89 	/* sparc does not have irqs represented as IORESOURCE_IRQ resources */
90 	if (!dev || num >= dev->archdata.num_irqs)
91 		return -ENXIO;
92 	return dev->archdata.irqs[num];
93 #else
94 	struct resource *r;
95 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
96 		int ret;
97 
98 		ret = of_irq_get(dev->dev.of_node, num);
99 		if (ret > 0 || ret == -EPROBE_DEFER)
100 			return ret;
101 	}
102 
103 	r = platform_get_resource(dev, IORESOURCE_IRQ, num);
104 	if (has_acpi_companion(&dev->dev)) {
105 		if (r && r->flags & IORESOURCE_DISABLED) {
106 			int ret;
107 
108 			ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r);
109 			if (ret)
110 				return ret;
111 		}
112 	}
113 
114 	/*
115 	 * The resources may pass trigger flags to the irqs that need
116 	 * to be set up. It so happens that the trigger flags for
117 	 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER*
118 	 * settings.
119 	 */
120 	if (r && r->flags & IORESOURCE_BITS) {
121 		struct irq_data *irqd;
122 
123 		irqd = irq_get_irq_data(r->start);
124 		if (!irqd)
125 			return -ENXIO;
126 		irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
127 	}
128 
129 	return r ? r->start : -ENXIO;
130 #endif
131 }
132 EXPORT_SYMBOL_GPL(platform_get_irq);
133 
134 /**
135  * platform_irq_count - Count the number of IRQs a platform device uses
136  * @dev: platform device
137  *
138  * Return: Number of IRQs a platform device uses or EPROBE_DEFER
139  */
140 int platform_irq_count(struct platform_device *dev)
141 {
142 	int ret, nr = 0;
143 
144 	while ((ret = platform_get_irq(dev, nr)) >= 0)
145 		nr++;
146 
147 	if (ret == -EPROBE_DEFER)
148 		return ret;
149 
150 	return nr;
151 }
152 EXPORT_SYMBOL_GPL(platform_irq_count);
153 
154 /**
155  * platform_get_resource_byname - get a resource for a device by name
156  * @dev: platform device
157  * @type: resource type
158  * @name: resource name
159  */
160 struct resource *platform_get_resource_byname(struct platform_device *dev,
161 					      unsigned int type,
162 					      const char *name)
163 {
164 	int i;
165 
166 	for (i = 0; i < dev->num_resources; i++) {
167 		struct resource *r = &dev->resource[i];
168 
169 		if (unlikely(!r->name))
170 			continue;
171 
172 		if (type == resource_type(r) && !strcmp(r->name, name))
173 			return r;
174 	}
175 	return NULL;
176 }
177 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
178 
179 /**
180  * platform_get_irq_byname - get an IRQ for a device by name
181  * @dev: platform device
182  * @name: IRQ name
183  */
184 int platform_get_irq_byname(struct platform_device *dev, const char *name)
185 {
186 	struct resource *r;
187 
188 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
189 		int ret;
190 
191 		ret = of_irq_get_byname(dev->dev.of_node, name);
192 		if (ret > 0 || ret == -EPROBE_DEFER)
193 			return ret;
194 	}
195 
196 	r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name);
197 	return r ? r->start : -ENXIO;
198 }
199 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
200 
201 /**
202  * platform_add_devices - add a numbers of platform devices
203  * @devs: array of platform devices to add
204  * @num: number of platform devices in array
205  */
206 int platform_add_devices(struct platform_device **devs, int num)
207 {
208 	int i, ret = 0;
209 
210 	for (i = 0; i < num; i++) {
211 		ret = platform_device_register(devs[i]);
212 		if (ret) {
213 			while (--i >= 0)
214 				platform_device_unregister(devs[i]);
215 			break;
216 		}
217 	}
218 
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(platform_add_devices);
222 
223 struct platform_object {
224 	struct platform_device pdev;
225 	char name[];
226 };
227 
228 /**
229  * platform_device_put - destroy a platform device
230  * @pdev: platform device to free
231  *
232  * Free all memory associated with a platform device.  This function must
233  * _only_ be externally called in error cases.  All other usage is a bug.
234  */
235 void platform_device_put(struct platform_device *pdev)
236 {
237 	if (pdev)
238 		put_device(&pdev->dev);
239 }
240 EXPORT_SYMBOL_GPL(platform_device_put);
241 
242 static void platform_device_release(struct device *dev)
243 {
244 	struct platform_object *pa = container_of(dev, struct platform_object,
245 						  pdev.dev);
246 
247 	of_device_node_put(&pa->pdev.dev);
248 	kfree(pa->pdev.dev.platform_data);
249 	kfree(pa->pdev.mfd_cell);
250 	kfree(pa->pdev.resource);
251 	kfree(pa->pdev.driver_override);
252 	kfree(pa);
253 }
254 
255 /**
256  * platform_device_alloc - create a platform device
257  * @name: base name of the device we're adding
258  * @id: instance id
259  *
260  * Create a platform device object which can have other objects attached
261  * to it, and which will have attached objects freed when it is released.
262  */
263 struct platform_device *platform_device_alloc(const char *name, int id)
264 {
265 	struct platform_object *pa;
266 
267 	pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL);
268 	if (pa) {
269 		strcpy(pa->name, name);
270 		pa->pdev.name = pa->name;
271 		pa->pdev.id = id;
272 		device_initialize(&pa->pdev.dev);
273 		pa->pdev.dev.release = platform_device_release;
274 		arch_setup_pdev_archdata(&pa->pdev);
275 	}
276 
277 	return pa ? &pa->pdev : NULL;
278 }
279 EXPORT_SYMBOL_GPL(platform_device_alloc);
280 
281 /**
282  * platform_device_add_resources - add resources to a platform device
283  * @pdev: platform device allocated by platform_device_alloc to add resources to
284  * @res: set of resources that needs to be allocated for the device
285  * @num: number of resources
286  *
287  * Add a copy of the resources to the platform device.  The memory
288  * associated with the resources will be freed when the platform device is
289  * released.
290  */
291 int platform_device_add_resources(struct platform_device *pdev,
292 				  const struct resource *res, unsigned int num)
293 {
294 	struct resource *r = NULL;
295 
296 	if (res) {
297 		r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
298 		if (!r)
299 			return -ENOMEM;
300 	}
301 
302 	kfree(pdev->resource);
303 	pdev->resource = r;
304 	pdev->num_resources = num;
305 	return 0;
306 }
307 EXPORT_SYMBOL_GPL(platform_device_add_resources);
308 
309 /**
310  * platform_device_add_data - add platform-specific data to a platform device
311  * @pdev: platform device allocated by platform_device_alloc to add resources to
312  * @data: platform specific data for this platform device
313  * @size: size of platform specific data
314  *
315  * Add a copy of platform specific data to the platform device's
316  * platform_data pointer.  The memory associated with the platform data
317  * will be freed when the platform device is released.
318  */
319 int platform_device_add_data(struct platform_device *pdev, const void *data,
320 			     size_t size)
321 {
322 	void *d = NULL;
323 
324 	if (data) {
325 		d = kmemdup(data, size, GFP_KERNEL);
326 		if (!d)
327 			return -ENOMEM;
328 	}
329 
330 	kfree(pdev->dev.platform_data);
331 	pdev->dev.platform_data = d;
332 	return 0;
333 }
334 EXPORT_SYMBOL_GPL(platform_device_add_data);
335 
336 /**
337  * platform_device_add_properties - add built-in properties to a platform device
338  * @pdev: platform device to add properties to
339  * @properties: null terminated array of properties to add
340  *
341  * The function will take deep copy of @properties and attach the copy to the
342  * platform device. The memory associated with properties will be freed when the
343  * platform device is released.
344  */
345 int platform_device_add_properties(struct platform_device *pdev,
346 				   const struct property_entry *properties)
347 {
348 	return device_add_properties(&pdev->dev, properties);
349 }
350 EXPORT_SYMBOL_GPL(platform_device_add_properties);
351 
352 /**
353  * platform_device_add - add a platform device to device hierarchy
354  * @pdev: platform device we're adding
355  *
356  * This is part 2 of platform_device_register(), though may be called
357  * separately _iff_ pdev was allocated by platform_device_alloc().
358  */
359 int platform_device_add(struct platform_device *pdev)
360 {
361 	int i, ret;
362 
363 	if (!pdev)
364 		return -EINVAL;
365 
366 	if (!pdev->dev.parent)
367 		pdev->dev.parent = &platform_bus;
368 
369 	pdev->dev.bus = &platform_bus_type;
370 
371 	switch (pdev->id) {
372 	default:
373 		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
374 		break;
375 	case PLATFORM_DEVID_NONE:
376 		dev_set_name(&pdev->dev, "%s", pdev->name);
377 		break;
378 	case PLATFORM_DEVID_AUTO:
379 		/*
380 		 * Automatically allocated device ID. We mark it as such so
381 		 * that we remember it must be freed, and we append a suffix
382 		 * to avoid namespace collision with explicit IDs.
383 		 */
384 		ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
385 		if (ret < 0)
386 			goto err_out;
387 		pdev->id = ret;
388 		pdev->id_auto = true;
389 		dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
390 		break;
391 	}
392 
393 	for (i = 0; i < pdev->num_resources; i++) {
394 		struct resource *p, *r = &pdev->resource[i];
395 
396 		if (r->name == NULL)
397 			r->name = dev_name(&pdev->dev);
398 
399 		p = r->parent;
400 		if (!p) {
401 			if (resource_type(r) == IORESOURCE_MEM)
402 				p = &iomem_resource;
403 			else if (resource_type(r) == IORESOURCE_IO)
404 				p = &ioport_resource;
405 		}
406 
407 		if (p && insert_resource(p, r)) {
408 			dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r);
409 			ret = -EBUSY;
410 			goto failed;
411 		}
412 	}
413 
414 	pr_debug("Registering platform device '%s'. Parent at %s\n",
415 		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
416 
417 	ret = device_add(&pdev->dev);
418 	if (ret == 0)
419 		return ret;
420 
421  failed:
422 	if (pdev->id_auto) {
423 		ida_simple_remove(&platform_devid_ida, pdev->id);
424 		pdev->id = PLATFORM_DEVID_AUTO;
425 	}
426 
427 	while (--i >= 0) {
428 		struct resource *r = &pdev->resource[i];
429 		if (r->parent)
430 			release_resource(r);
431 	}
432 
433  err_out:
434 	return ret;
435 }
436 EXPORT_SYMBOL_GPL(platform_device_add);
437 
438 /**
439  * platform_device_del - remove a platform-level device
440  * @pdev: platform device we're removing
441  *
442  * Note that this function will also release all memory- and port-based
443  * resources owned by the device (@dev->resource).  This function must
444  * _only_ be externally called in error cases.  All other usage is a bug.
445  */
446 void platform_device_del(struct platform_device *pdev)
447 {
448 	int i;
449 
450 	if (pdev) {
451 		device_remove_properties(&pdev->dev);
452 		device_del(&pdev->dev);
453 
454 		if (pdev->id_auto) {
455 			ida_simple_remove(&platform_devid_ida, pdev->id);
456 			pdev->id = PLATFORM_DEVID_AUTO;
457 		}
458 
459 		for (i = 0; i < pdev->num_resources; i++) {
460 			struct resource *r = &pdev->resource[i];
461 			if (r->parent)
462 				release_resource(r);
463 		}
464 	}
465 }
466 EXPORT_SYMBOL_GPL(platform_device_del);
467 
468 /**
469  * platform_device_register - add a platform-level device
470  * @pdev: platform device we're adding
471  */
472 int platform_device_register(struct platform_device *pdev)
473 {
474 	device_initialize(&pdev->dev);
475 	arch_setup_pdev_archdata(pdev);
476 	return platform_device_add(pdev);
477 }
478 EXPORT_SYMBOL_GPL(platform_device_register);
479 
480 /**
481  * platform_device_unregister - unregister a platform-level device
482  * @pdev: platform device we're unregistering
483  *
484  * Unregistration is done in 2 steps. First we release all resources
485  * and remove it from the subsystem, then we drop reference count by
486  * calling platform_device_put().
487  */
488 void platform_device_unregister(struct platform_device *pdev)
489 {
490 	platform_device_del(pdev);
491 	platform_device_put(pdev);
492 }
493 EXPORT_SYMBOL_GPL(platform_device_unregister);
494 
495 /**
496  * platform_device_register_full - add a platform-level device with
497  * resources and platform-specific data
498  *
499  * @pdevinfo: data used to create device
500  *
501  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
502  */
503 struct platform_device *platform_device_register_full(
504 		const struct platform_device_info *pdevinfo)
505 {
506 	int ret = -ENOMEM;
507 	struct platform_device *pdev;
508 
509 	pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
510 	if (!pdev)
511 		goto err_alloc;
512 
513 	pdev->dev.parent = pdevinfo->parent;
514 	pdev->dev.fwnode = pdevinfo->fwnode;
515 
516 	if (pdevinfo->dma_mask) {
517 		/*
518 		 * This memory isn't freed when the device is put,
519 		 * I don't have a nice idea for that though.  Conceptually
520 		 * dma_mask in struct device should not be a pointer.
521 		 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
522 		 */
523 		pdev->dev.dma_mask =
524 			kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
525 		if (!pdev->dev.dma_mask)
526 			goto err;
527 
528 		*pdev->dev.dma_mask = pdevinfo->dma_mask;
529 		pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
530 	}
531 
532 	ret = platform_device_add_resources(pdev,
533 			pdevinfo->res, pdevinfo->num_res);
534 	if (ret)
535 		goto err;
536 
537 	ret = platform_device_add_data(pdev,
538 			pdevinfo->data, pdevinfo->size_data);
539 	if (ret)
540 		goto err;
541 
542 	if (pdevinfo->properties) {
543 		ret = platform_device_add_properties(pdev,
544 						     pdevinfo->properties);
545 		if (ret)
546 			goto err;
547 	}
548 
549 	ret = platform_device_add(pdev);
550 	if (ret) {
551 err:
552 		ACPI_COMPANION_SET(&pdev->dev, NULL);
553 		kfree(pdev->dev.dma_mask);
554 
555 err_alloc:
556 		platform_device_put(pdev);
557 		return ERR_PTR(ret);
558 	}
559 
560 	return pdev;
561 }
562 EXPORT_SYMBOL_GPL(platform_device_register_full);
563 
564 static int platform_drv_probe(struct device *_dev)
565 {
566 	struct platform_driver *drv = to_platform_driver(_dev->driver);
567 	struct platform_device *dev = to_platform_device(_dev);
568 	int ret;
569 
570 	ret = of_clk_set_defaults(_dev->of_node, false);
571 	if (ret < 0)
572 		return ret;
573 
574 	ret = dev_pm_domain_attach(_dev, true);
575 	if (ret)
576 		goto out;
577 
578 	if (drv->probe) {
579 		ret = drv->probe(dev);
580 		if (ret)
581 			dev_pm_domain_detach(_dev, true);
582 	}
583 
584 out:
585 	if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {
586 		dev_warn(_dev, "probe deferral not supported\n");
587 		ret = -ENXIO;
588 	}
589 
590 	return ret;
591 }
592 
593 static int platform_drv_probe_fail(struct device *_dev)
594 {
595 	return -ENXIO;
596 }
597 
598 static int platform_drv_remove(struct device *_dev)
599 {
600 	struct platform_driver *drv = to_platform_driver(_dev->driver);
601 	struct platform_device *dev = to_platform_device(_dev);
602 	int ret = 0;
603 
604 	if (drv->remove)
605 		ret = drv->remove(dev);
606 	dev_pm_domain_detach(_dev, true);
607 
608 	return ret;
609 }
610 
611 static void platform_drv_shutdown(struct device *_dev)
612 {
613 	struct platform_driver *drv = to_platform_driver(_dev->driver);
614 	struct platform_device *dev = to_platform_device(_dev);
615 
616 	if (drv->shutdown)
617 		drv->shutdown(dev);
618 }
619 
620 /**
621  * __platform_driver_register - register a driver for platform-level devices
622  * @drv: platform driver structure
623  * @owner: owning module/driver
624  */
625 int __platform_driver_register(struct platform_driver *drv,
626 				struct module *owner)
627 {
628 	drv->driver.owner = owner;
629 	drv->driver.bus = &platform_bus_type;
630 	drv->driver.probe = platform_drv_probe;
631 	drv->driver.remove = platform_drv_remove;
632 	drv->driver.shutdown = platform_drv_shutdown;
633 
634 	return driver_register(&drv->driver);
635 }
636 EXPORT_SYMBOL_GPL(__platform_driver_register);
637 
638 /**
639  * platform_driver_unregister - unregister a driver for platform-level devices
640  * @drv: platform driver structure
641  */
642 void platform_driver_unregister(struct platform_driver *drv)
643 {
644 	driver_unregister(&drv->driver);
645 }
646 EXPORT_SYMBOL_GPL(platform_driver_unregister);
647 
648 /**
649  * __platform_driver_probe - register driver for non-hotpluggable device
650  * @drv: platform driver structure
651  * @probe: the driver probe routine, probably from an __init section
652  * @module: module which will be the owner of the driver
653  *
654  * Use this instead of platform_driver_register() when you know the device
655  * is not hotpluggable and has already been registered, and you want to
656  * remove its run-once probe() infrastructure from memory after the driver
657  * has bound to the device.
658  *
659  * One typical use for this would be with drivers for controllers integrated
660  * into system-on-chip processors, where the controller devices have been
661  * configured as part of board setup.
662  *
663  * Note that this is incompatible with deferred probing.
664  *
665  * Returns zero if the driver registered and bound to a device, else returns
666  * a negative error code and with the driver not registered.
667  */
668 int __init_or_module __platform_driver_probe(struct platform_driver *drv,
669 		int (*probe)(struct platform_device *), struct module *module)
670 {
671 	int retval, code;
672 
673 	if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) {
674 		pr_err("%s: drivers registered with %s can not be probed asynchronously\n",
675 			 drv->driver.name, __func__);
676 		return -EINVAL;
677 	}
678 
679 	/*
680 	 * We have to run our probes synchronously because we check if
681 	 * we find any devices to bind to and exit with error if there
682 	 * are any.
683 	 */
684 	drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
685 
686 	/*
687 	 * Prevent driver from requesting probe deferral to avoid further
688 	 * futile probe attempts.
689 	 */
690 	drv->prevent_deferred_probe = true;
691 
692 	/* make sure driver won't have bind/unbind attributes */
693 	drv->driver.suppress_bind_attrs = true;
694 
695 	/* temporary section violation during probe() */
696 	drv->probe = probe;
697 	retval = code = __platform_driver_register(drv, module);
698 
699 	/*
700 	 * Fixup that section violation, being paranoid about code scanning
701 	 * the list of drivers in order to probe new devices.  Check to see
702 	 * if the probe was successful, and make sure any forced probes of
703 	 * new devices fail.
704 	 */
705 	spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
706 	drv->probe = NULL;
707 	if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
708 		retval = -ENODEV;
709 	drv->driver.probe = platform_drv_probe_fail;
710 	spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
711 
712 	if (code != retval)
713 		platform_driver_unregister(drv);
714 	return retval;
715 }
716 EXPORT_SYMBOL_GPL(__platform_driver_probe);
717 
718 /**
719  * __platform_create_bundle - register driver and create corresponding device
720  * @driver: platform driver structure
721  * @probe: the driver probe routine, probably from an __init section
722  * @res: set of resources that needs to be allocated for the device
723  * @n_res: number of resources
724  * @data: platform specific data for this platform device
725  * @size: size of platform specific data
726  * @module: module which will be the owner of the driver
727  *
728  * Use this in legacy-style modules that probe hardware directly and
729  * register a single platform device and corresponding platform driver.
730  *
731  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
732  */
733 struct platform_device * __init_or_module __platform_create_bundle(
734 			struct platform_driver *driver,
735 			int (*probe)(struct platform_device *),
736 			struct resource *res, unsigned int n_res,
737 			const void *data, size_t size, struct module *module)
738 {
739 	struct platform_device *pdev;
740 	int error;
741 
742 	pdev = platform_device_alloc(driver->driver.name, -1);
743 	if (!pdev) {
744 		error = -ENOMEM;
745 		goto err_out;
746 	}
747 
748 	error = platform_device_add_resources(pdev, res, n_res);
749 	if (error)
750 		goto err_pdev_put;
751 
752 	error = platform_device_add_data(pdev, data, size);
753 	if (error)
754 		goto err_pdev_put;
755 
756 	error = platform_device_add(pdev);
757 	if (error)
758 		goto err_pdev_put;
759 
760 	error = __platform_driver_probe(driver, probe, module);
761 	if (error)
762 		goto err_pdev_del;
763 
764 	return pdev;
765 
766 err_pdev_del:
767 	platform_device_del(pdev);
768 err_pdev_put:
769 	platform_device_put(pdev);
770 err_out:
771 	return ERR_PTR(error);
772 }
773 EXPORT_SYMBOL_GPL(__platform_create_bundle);
774 
775 /**
776  * __platform_register_drivers - register an array of platform drivers
777  * @drivers: an array of drivers to register
778  * @count: the number of drivers to register
779  * @owner: module owning the drivers
780  *
781  * Registers platform drivers specified by an array. On failure to register a
782  * driver, all previously registered drivers will be unregistered. Callers of
783  * this API should use platform_unregister_drivers() to unregister drivers in
784  * the reverse order.
785  *
786  * Returns: 0 on success or a negative error code on failure.
787  */
788 int __platform_register_drivers(struct platform_driver * const *drivers,
789 				unsigned int count, struct module *owner)
790 {
791 	unsigned int i;
792 	int err;
793 
794 	for (i = 0; i < count; i++) {
795 		pr_debug("registering platform driver %ps\n", drivers[i]);
796 
797 		err = __platform_driver_register(drivers[i], owner);
798 		if (err < 0) {
799 			pr_err("failed to register platform driver %ps: %d\n",
800 			       drivers[i], err);
801 			goto error;
802 		}
803 	}
804 
805 	return 0;
806 
807 error:
808 	while (i--) {
809 		pr_debug("unregistering platform driver %ps\n", drivers[i]);
810 		platform_driver_unregister(drivers[i]);
811 	}
812 
813 	return err;
814 }
815 EXPORT_SYMBOL_GPL(__platform_register_drivers);
816 
817 /**
818  * platform_unregister_drivers - unregister an array of platform drivers
819  * @drivers: an array of drivers to unregister
820  * @count: the number of drivers to unregister
821  *
822  * Unegisters platform drivers specified by an array. This is typically used
823  * to complement an earlier call to platform_register_drivers(). Drivers are
824  * unregistered in the reverse order in which they were registered.
825  */
826 void platform_unregister_drivers(struct platform_driver * const *drivers,
827 				 unsigned int count)
828 {
829 	while (count--) {
830 		pr_debug("unregistering platform driver %ps\n", drivers[count]);
831 		platform_driver_unregister(drivers[count]);
832 	}
833 }
834 EXPORT_SYMBOL_GPL(platform_unregister_drivers);
835 
836 /* modalias support enables more hands-off userspace setup:
837  * (a) environment variable lets new-style hotplug events work once system is
838  *     fully running:  "modprobe $MODALIAS"
839  * (b) sysfs attribute lets new-style coldplug recover from hotplug events
840  *     mishandled before system is fully running:  "modprobe $(cat modalias)"
841  */
842 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
843 			     char *buf)
844 {
845 	struct platform_device	*pdev = to_platform_device(dev);
846 	int len;
847 
848 	len = of_device_modalias(dev, buf, PAGE_SIZE);
849 	if (len != -ENODEV)
850 		return len;
851 
852 	len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
853 	if (len != -ENODEV)
854 		return len;
855 
856 	len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
857 
858 	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
859 }
860 static DEVICE_ATTR_RO(modalias);
861 
862 static ssize_t driver_override_store(struct device *dev,
863 				     struct device_attribute *attr,
864 				     const char *buf, size_t count)
865 {
866 	struct platform_device *pdev = to_platform_device(dev);
867 	char *driver_override, *old, *cp;
868 
869 	/* We need to keep extra room for a newline */
870 	if (count >= (PAGE_SIZE - 1))
871 		return -EINVAL;
872 
873 	driver_override = kstrndup(buf, count, GFP_KERNEL);
874 	if (!driver_override)
875 		return -ENOMEM;
876 
877 	cp = strchr(driver_override, '\n');
878 	if (cp)
879 		*cp = '\0';
880 
881 	device_lock(dev);
882 	old = pdev->driver_override;
883 	if (strlen(driver_override)) {
884 		pdev->driver_override = driver_override;
885 	} else {
886 		kfree(driver_override);
887 		pdev->driver_override = NULL;
888 	}
889 	device_unlock(dev);
890 
891 	kfree(old);
892 
893 	return count;
894 }
895 
896 static ssize_t driver_override_show(struct device *dev,
897 				    struct device_attribute *attr, char *buf)
898 {
899 	struct platform_device *pdev = to_platform_device(dev);
900 	ssize_t len;
901 
902 	device_lock(dev);
903 	len = sprintf(buf, "%s\n", pdev->driver_override);
904 	device_unlock(dev);
905 	return len;
906 }
907 static DEVICE_ATTR_RW(driver_override);
908 
909 
910 static struct attribute *platform_dev_attrs[] = {
911 	&dev_attr_modalias.attr,
912 	&dev_attr_driver_override.attr,
913 	NULL,
914 };
915 ATTRIBUTE_GROUPS(platform_dev);
916 
917 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
918 {
919 	struct platform_device	*pdev = to_platform_device(dev);
920 	int rc;
921 
922 	/* Some devices have extra OF data and an OF-style MODALIAS */
923 	rc = of_device_uevent_modalias(dev, env);
924 	if (rc != -ENODEV)
925 		return rc;
926 
927 	rc = acpi_device_uevent_modalias(dev, env);
928 	if (rc != -ENODEV)
929 		return rc;
930 
931 	add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
932 			pdev->name);
933 	return 0;
934 }
935 
936 static const struct platform_device_id *platform_match_id(
937 			const struct platform_device_id *id,
938 			struct platform_device *pdev)
939 {
940 	while (id->name[0]) {
941 		if (strcmp(pdev->name, id->name) == 0) {
942 			pdev->id_entry = id;
943 			return id;
944 		}
945 		id++;
946 	}
947 	return NULL;
948 }
949 
950 /**
951  * platform_match - bind platform device to platform driver.
952  * @dev: device.
953  * @drv: driver.
954  *
955  * Platform device IDs are assumed to be encoded like this:
956  * "<name><instance>", where <name> is a short description of the type of
957  * device, like "pci" or "floppy", and <instance> is the enumerated
958  * instance of the device, like '0' or '42'.  Driver IDs are simply
959  * "<name>".  So, extract the <name> from the platform_device structure,
960  * and compare it against the name of the driver. Return whether they match
961  * or not.
962  */
963 static int platform_match(struct device *dev, struct device_driver *drv)
964 {
965 	struct platform_device *pdev = to_platform_device(dev);
966 	struct platform_driver *pdrv = to_platform_driver(drv);
967 
968 	/* When driver_override is set, only bind to the matching driver */
969 	if (pdev->driver_override)
970 		return !strcmp(pdev->driver_override, drv->name);
971 
972 	/* Attempt an OF style match first */
973 	if (of_driver_match_device(dev, drv))
974 		return 1;
975 
976 	/* Then try ACPI style match */
977 	if (acpi_driver_match_device(dev, drv))
978 		return 1;
979 
980 	/* Then try to match against the id table */
981 	if (pdrv->id_table)
982 		return platform_match_id(pdrv->id_table, pdev) != NULL;
983 
984 	/* fall-back to driver name match */
985 	return (strcmp(pdev->name, drv->name) == 0);
986 }
987 
988 #ifdef CONFIG_PM_SLEEP
989 
990 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
991 {
992 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
993 	struct platform_device *pdev = to_platform_device(dev);
994 	int ret = 0;
995 
996 	if (dev->driver && pdrv->suspend)
997 		ret = pdrv->suspend(pdev, mesg);
998 
999 	return ret;
1000 }
1001 
1002 static int platform_legacy_resume(struct device *dev)
1003 {
1004 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1005 	struct platform_device *pdev = to_platform_device(dev);
1006 	int ret = 0;
1007 
1008 	if (dev->driver && pdrv->resume)
1009 		ret = pdrv->resume(pdev);
1010 
1011 	return ret;
1012 }
1013 
1014 #endif /* CONFIG_PM_SLEEP */
1015 
1016 #ifdef CONFIG_SUSPEND
1017 
1018 int platform_pm_suspend(struct device *dev)
1019 {
1020 	struct device_driver *drv = dev->driver;
1021 	int ret = 0;
1022 
1023 	if (!drv)
1024 		return 0;
1025 
1026 	if (drv->pm) {
1027 		if (drv->pm->suspend)
1028 			ret = drv->pm->suspend(dev);
1029 	} else {
1030 		ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
1031 	}
1032 
1033 	return ret;
1034 }
1035 
1036 int platform_pm_resume(struct device *dev)
1037 {
1038 	struct device_driver *drv = dev->driver;
1039 	int ret = 0;
1040 
1041 	if (!drv)
1042 		return 0;
1043 
1044 	if (drv->pm) {
1045 		if (drv->pm->resume)
1046 			ret = drv->pm->resume(dev);
1047 	} else {
1048 		ret = platform_legacy_resume(dev);
1049 	}
1050 
1051 	return ret;
1052 }
1053 
1054 #endif /* CONFIG_SUSPEND */
1055 
1056 #ifdef CONFIG_HIBERNATE_CALLBACKS
1057 
1058 int platform_pm_freeze(struct device *dev)
1059 {
1060 	struct device_driver *drv = dev->driver;
1061 	int ret = 0;
1062 
1063 	if (!drv)
1064 		return 0;
1065 
1066 	if (drv->pm) {
1067 		if (drv->pm->freeze)
1068 			ret = drv->pm->freeze(dev);
1069 	} else {
1070 		ret = platform_legacy_suspend(dev, PMSG_FREEZE);
1071 	}
1072 
1073 	return ret;
1074 }
1075 
1076 int platform_pm_thaw(struct device *dev)
1077 {
1078 	struct device_driver *drv = dev->driver;
1079 	int ret = 0;
1080 
1081 	if (!drv)
1082 		return 0;
1083 
1084 	if (drv->pm) {
1085 		if (drv->pm->thaw)
1086 			ret = drv->pm->thaw(dev);
1087 	} else {
1088 		ret = platform_legacy_resume(dev);
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 int platform_pm_poweroff(struct device *dev)
1095 {
1096 	struct device_driver *drv = dev->driver;
1097 	int ret = 0;
1098 
1099 	if (!drv)
1100 		return 0;
1101 
1102 	if (drv->pm) {
1103 		if (drv->pm->poweroff)
1104 			ret = drv->pm->poweroff(dev);
1105 	} else {
1106 		ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 int platform_pm_restore(struct device *dev)
1113 {
1114 	struct device_driver *drv = dev->driver;
1115 	int ret = 0;
1116 
1117 	if (!drv)
1118 		return 0;
1119 
1120 	if (drv->pm) {
1121 		if (drv->pm->restore)
1122 			ret = drv->pm->restore(dev);
1123 	} else {
1124 		ret = platform_legacy_resume(dev);
1125 	}
1126 
1127 	return ret;
1128 }
1129 
1130 #endif /* CONFIG_HIBERNATE_CALLBACKS */
1131 
1132 int platform_dma_configure(struct device *dev)
1133 {
1134 	enum dev_dma_attr attr;
1135 	int ret = 0;
1136 
1137 	if (dev->of_node) {
1138 		ret = of_dma_configure(dev, dev->of_node, true);
1139 	} else if (has_acpi_companion(dev)) {
1140 		attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode));
1141 		if (attr != DEV_DMA_NOT_SUPPORTED)
1142 			ret = acpi_dma_configure(dev, attr);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
1148 static const struct dev_pm_ops platform_dev_pm_ops = {
1149 	.runtime_suspend = pm_generic_runtime_suspend,
1150 	.runtime_resume = pm_generic_runtime_resume,
1151 	USE_PLATFORM_PM_SLEEP_OPS
1152 };
1153 
1154 struct bus_type platform_bus_type = {
1155 	.name		= "platform",
1156 	.dev_groups	= platform_dev_groups,
1157 	.match		= platform_match,
1158 	.uevent		= platform_uevent,
1159 	.dma_configure	= platform_dma_configure,
1160 	.pm		= &platform_dev_pm_ops,
1161 };
1162 EXPORT_SYMBOL_GPL(platform_bus_type);
1163 
1164 int __init platform_bus_init(void)
1165 {
1166 	int error;
1167 
1168 	early_platform_cleanup();
1169 
1170 	error = device_register(&platform_bus);
1171 	if (error) {
1172 		put_device(&platform_bus);
1173 		return error;
1174 	}
1175 	error =  bus_register(&platform_bus_type);
1176 	if (error)
1177 		device_unregister(&platform_bus);
1178 	of_platform_register_reconfig_notifier();
1179 	return error;
1180 }
1181 
1182 #ifndef ARCH_HAS_DMA_GET_REQUIRED_MASK
1183 u64 dma_get_required_mask(struct device *dev)
1184 {
1185 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
1186 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
1187 	u64 mask;
1188 
1189 	if (!high_totalram) {
1190 		/* convert to mask just covering totalram */
1191 		low_totalram = (1 << (fls(low_totalram) - 1));
1192 		low_totalram += low_totalram - 1;
1193 		mask = low_totalram;
1194 	} else {
1195 		high_totalram = (1 << (fls(high_totalram) - 1));
1196 		high_totalram += high_totalram - 1;
1197 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
1198 	}
1199 	return mask;
1200 }
1201 EXPORT_SYMBOL_GPL(dma_get_required_mask);
1202 #endif
1203 
1204 static __initdata LIST_HEAD(early_platform_driver_list);
1205 static __initdata LIST_HEAD(early_platform_device_list);
1206 
1207 /**
1208  * early_platform_driver_register - register early platform driver
1209  * @epdrv: early_platform driver structure
1210  * @buf: string passed from early_param()
1211  *
1212  * Helper function for early_platform_init() / early_platform_init_buffer()
1213  */
1214 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
1215 					  char *buf)
1216 {
1217 	char *tmp;
1218 	int n;
1219 
1220 	/* Simply add the driver to the end of the global list.
1221 	 * Drivers will by default be put on the list in compiled-in order.
1222 	 */
1223 	if (!epdrv->list.next) {
1224 		INIT_LIST_HEAD(&epdrv->list);
1225 		list_add_tail(&epdrv->list, &early_platform_driver_list);
1226 	}
1227 
1228 	/* If the user has specified device then make sure the driver
1229 	 * gets prioritized. The driver of the last device specified on
1230 	 * command line will be put first on the list.
1231 	 */
1232 	n = strlen(epdrv->pdrv->driver.name);
1233 	if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
1234 		list_move(&epdrv->list, &early_platform_driver_list);
1235 
1236 		/* Allow passing parameters after device name */
1237 		if (buf[n] == '\0' || buf[n] == ',')
1238 			epdrv->requested_id = -1;
1239 		else {
1240 			epdrv->requested_id = simple_strtoul(&buf[n + 1],
1241 							     &tmp, 10);
1242 
1243 			if (buf[n] != '.' || (tmp == &buf[n + 1])) {
1244 				epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
1245 				n = 0;
1246 			} else
1247 				n += strcspn(&buf[n + 1], ",") + 1;
1248 		}
1249 
1250 		if (buf[n] == ',')
1251 			n++;
1252 
1253 		if (epdrv->bufsize) {
1254 			memcpy(epdrv->buffer, &buf[n],
1255 			       min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
1256 			epdrv->buffer[epdrv->bufsize - 1] = '\0';
1257 		}
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  * early_platform_add_devices - adds a number of early platform devices
1265  * @devs: array of early platform devices to add
1266  * @num: number of early platform devices in array
1267  *
1268  * Used by early architecture code to register early platform devices and
1269  * their platform data.
1270  */
1271 void __init early_platform_add_devices(struct platform_device **devs, int num)
1272 {
1273 	struct device *dev;
1274 	int i;
1275 
1276 	/* simply add the devices to list */
1277 	for (i = 0; i < num; i++) {
1278 		dev = &devs[i]->dev;
1279 
1280 		if (!dev->devres_head.next) {
1281 			pm_runtime_early_init(dev);
1282 			INIT_LIST_HEAD(&dev->devres_head);
1283 			list_add_tail(&dev->devres_head,
1284 				      &early_platform_device_list);
1285 		}
1286 	}
1287 }
1288 
1289 /**
1290  * early_platform_driver_register_all - register early platform drivers
1291  * @class_str: string to identify early platform driver class
1292  *
1293  * Used by architecture code to register all early platform drivers
1294  * for a certain class. If omitted then only early platform drivers
1295  * with matching kernel command line class parameters will be registered.
1296  */
1297 void __init early_platform_driver_register_all(char *class_str)
1298 {
1299 	/* The "class_str" parameter may or may not be present on the kernel
1300 	 * command line. If it is present then there may be more than one
1301 	 * matching parameter.
1302 	 *
1303 	 * Since we register our early platform drivers using early_param()
1304 	 * we need to make sure that they also get registered in the case
1305 	 * when the parameter is missing from the kernel command line.
1306 	 *
1307 	 * We use parse_early_options() to make sure the early_param() gets
1308 	 * called at least once. The early_param() may be called more than
1309 	 * once since the name of the preferred device may be specified on
1310 	 * the kernel command line. early_platform_driver_register() handles
1311 	 * this case for us.
1312 	 */
1313 	parse_early_options(class_str);
1314 }
1315 
1316 /**
1317  * early_platform_match - find early platform device matching driver
1318  * @epdrv: early platform driver structure
1319  * @id: id to match against
1320  */
1321 static struct platform_device * __init
1322 early_platform_match(struct early_platform_driver *epdrv, int id)
1323 {
1324 	struct platform_device *pd;
1325 
1326 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1327 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1328 			if (pd->id == id)
1329 				return pd;
1330 
1331 	return NULL;
1332 }
1333 
1334 /**
1335  * early_platform_left - check if early platform driver has matching devices
1336  * @epdrv: early platform driver structure
1337  * @id: return true if id or above exists
1338  */
1339 static int __init early_platform_left(struct early_platform_driver *epdrv,
1340 				       int id)
1341 {
1342 	struct platform_device *pd;
1343 
1344 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1345 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1346 			if (pd->id >= id)
1347 				return 1;
1348 
1349 	return 0;
1350 }
1351 
1352 /**
1353  * early_platform_driver_probe_id - probe drivers matching class_str and id
1354  * @class_str: string to identify early platform driver class
1355  * @id: id to match against
1356  * @nr_probe: number of platform devices to successfully probe before exiting
1357  */
1358 static int __init early_platform_driver_probe_id(char *class_str,
1359 						 int id,
1360 						 int nr_probe)
1361 {
1362 	struct early_platform_driver *epdrv;
1363 	struct platform_device *match;
1364 	int match_id;
1365 	int n = 0;
1366 	int left = 0;
1367 
1368 	list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1369 		/* only use drivers matching our class_str */
1370 		if (strcmp(class_str, epdrv->class_str))
1371 			continue;
1372 
1373 		if (id == -2) {
1374 			match_id = epdrv->requested_id;
1375 			left = 1;
1376 
1377 		} else {
1378 			match_id = id;
1379 			left += early_platform_left(epdrv, id);
1380 
1381 			/* skip requested id */
1382 			switch (epdrv->requested_id) {
1383 			case EARLY_PLATFORM_ID_ERROR:
1384 			case EARLY_PLATFORM_ID_UNSET:
1385 				break;
1386 			default:
1387 				if (epdrv->requested_id == id)
1388 					match_id = EARLY_PLATFORM_ID_UNSET;
1389 			}
1390 		}
1391 
1392 		switch (match_id) {
1393 		case EARLY_PLATFORM_ID_ERROR:
1394 			pr_warn("%s: unable to parse %s parameter\n",
1395 				class_str, epdrv->pdrv->driver.name);
1396 			/* fall-through */
1397 		case EARLY_PLATFORM_ID_UNSET:
1398 			match = NULL;
1399 			break;
1400 		default:
1401 			match = early_platform_match(epdrv, match_id);
1402 		}
1403 
1404 		if (match) {
1405 			/*
1406 			 * Set up a sensible init_name to enable
1407 			 * dev_name() and others to be used before the
1408 			 * rest of the driver core is initialized.
1409 			 */
1410 			if (!match->dev.init_name && slab_is_available()) {
1411 				if (match->id != -1)
1412 					match->dev.init_name =
1413 						kasprintf(GFP_KERNEL, "%s.%d",
1414 							  match->name,
1415 							  match->id);
1416 				else
1417 					match->dev.init_name =
1418 						kasprintf(GFP_KERNEL, "%s",
1419 							  match->name);
1420 
1421 				if (!match->dev.init_name)
1422 					return -ENOMEM;
1423 			}
1424 
1425 			if (epdrv->pdrv->probe(match))
1426 				pr_warn("%s: unable to probe %s early.\n",
1427 					class_str, match->name);
1428 			else
1429 				n++;
1430 		}
1431 
1432 		if (n >= nr_probe)
1433 			break;
1434 	}
1435 
1436 	if (left)
1437 		return n;
1438 	else
1439 		return -ENODEV;
1440 }
1441 
1442 /**
1443  * early_platform_driver_probe - probe a class of registered drivers
1444  * @class_str: string to identify early platform driver class
1445  * @nr_probe: number of platform devices to successfully probe before exiting
1446  * @user_only: only probe user specified early platform devices
1447  *
1448  * Used by architecture code to probe registered early platform drivers
1449  * within a certain class. For probe to happen a registered early platform
1450  * device matching a registered early platform driver is needed.
1451  */
1452 int __init early_platform_driver_probe(char *class_str,
1453 				       int nr_probe,
1454 				       int user_only)
1455 {
1456 	int k, n, i;
1457 
1458 	n = 0;
1459 	for (i = -2; n < nr_probe; i++) {
1460 		k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1461 
1462 		if (k < 0)
1463 			break;
1464 
1465 		n += k;
1466 
1467 		if (user_only)
1468 			break;
1469 	}
1470 
1471 	return n;
1472 }
1473 
1474 /**
1475  * early_platform_cleanup - clean up early platform code
1476  */
1477 void __init early_platform_cleanup(void)
1478 {
1479 	struct platform_device *pd, *pd2;
1480 
1481 	/* clean up the devres list used to chain devices */
1482 	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1483 				 dev.devres_head) {
1484 		list_del(&pd->dev.devres_head);
1485 		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1486 	}
1487 }
1488 
1489