xref: /openbmc/linux/drivers/base/platform.c (revision a9c01cd6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * platform.c - platform 'pseudo' bus for legacy devices
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  *
8  * Please see Documentation/driver-api/driver-model/platform.rst for more
9  * information.
10  */
11 
12 #include <linux/string.h>
13 #include <linux/platform_device.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/idr.h>
25 #include <linux/acpi.h>
26 #include <linux/clk/clk-conf.h>
27 #include <linux/limits.h>
28 #include <linux/property.h>
29 #include <linux/kmemleak.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 /* For automatically allocated device IDs */
35 static DEFINE_IDA(platform_devid_ida);
36 
37 struct device platform_bus = {
38 	.init_name	= "platform",
39 };
40 EXPORT_SYMBOL_GPL(platform_bus);
41 
42 /**
43  * platform_get_resource - get a resource for a device
44  * @dev: platform device
45  * @type: resource type
46  * @num: resource index
47  */
48 struct resource *platform_get_resource(struct platform_device *dev,
49 				       unsigned int type, unsigned int num)
50 {
51 	int i;
52 
53 	for (i = 0; i < dev->num_resources; i++) {
54 		struct resource *r = &dev->resource[i];
55 
56 		if (type == resource_type(r) && num-- == 0)
57 			return r;
58 	}
59 	return NULL;
60 }
61 EXPORT_SYMBOL_GPL(platform_get_resource);
62 
63 /**
64  * devm_platform_ioremap_resource - call devm_ioremap_resource() for a platform
65  *				    device
66  *
67  * @pdev: platform device to use both for memory resource lookup as well as
68  *        resource management
69  * @index: resource index
70  */
71 #ifdef CONFIG_HAS_IOMEM
72 void __iomem *devm_platform_ioremap_resource(struct platform_device *pdev,
73 					     unsigned int index)
74 {
75 	struct resource *res;
76 
77 	res = platform_get_resource(pdev, IORESOURCE_MEM, index);
78 	return devm_ioremap_resource(&pdev->dev, res);
79 }
80 EXPORT_SYMBOL_GPL(devm_platform_ioremap_resource);
81 #endif /* CONFIG_HAS_IOMEM */
82 
83 static int __platform_get_irq(struct platform_device *dev, unsigned int num)
84 {
85 #ifdef CONFIG_SPARC
86 	/* sparc does not have irqs represented as IORESOURCE_IRQ resources */
87 	if (!dev || num >= dev->archdata.num_irqs)
88 		return -ENXIO;
89 	return dev->archdata.irqs[num];
90 #else
91 	struct resource *r;
92 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
93 		int ret;
94 
95 		ret = of_irq_get(dev->dev.of_node, num);
96 		if (ret > 0 || ret == -EPROBE_DEFER)
97 			return ret;
98 	}
99 
100 	r = platform_get_resource(dev, IORESOURCE_IRQ, num);
101 	if (has_acpi_companion(&dev->dev)) {
102 		if (r && r->flags & IORESOURCE_DISABLED) {
103 			int ret;
104 
105 			ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r);
106 			if (ret)
107 				return ret;
108 		}
109 	}
110 
111 	/*
112 	 * The resources may pass trigger flags to the irqs that need
113 	 * to be set up. It so happens that the trigger flags for
114 	 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER*
115 	 * settings.
116 	 */
117 	if (r && r->flags & IORESOURCE_BITS) {
118 		struct irq_data *irqd;
119 
120 		irqd = irq_get_irq_data(r->start);
121 		if (!irqd)
122 			return -ENXIO;
123 		irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
124 	}
125 
126 	if (r)
127 		return r->start;
128 
129 	/*
130 	 * For the index 0 interrupt, allow falling back to GpioInt
131 	 * resources. While a device could have both Interrupt and GpioInt
132 	 * resources, making this fallback ambiguous, in many common cases
133 	 * the device will only expose one IRQ, and this fallback
134 	 * allows a common code path across either kind of resource.
135 	 */
136 	if (num == 0 && has_acpi_companion(&dev->dev)) {
137 		int ret = acpi_dev_gpio_irq_get(ACPI_COMPANION(&dev->dev), num);
138 
139 		/* Our callers expect -ENXIO for missing IRQs. */
140 		if (ret >= 0 || ret == -EPROBE_DEFER)
141 			return ret;
142 	}
143 
144 	return -ENXIO;
145 #endif
146 }
147 
148 /**
149  * platform_get_irq - get an IRQ for a device
150  * @dev: platform device
151  * @num: IRQ number index
152  *
153  * Gets an IRQ for a platform device and prints an error message if finding the
154  * IRQ fails. Device drivers should check the return value for errors so as to
155  * not pass a negative integer value to the request_irq() APIs.
156  *
157  * Example:
158  *		int irq = platform_get_irq(pdev, 0);
159  *		if (irq < 0)
160  *			return irq;
161  *
162  * Return: IRQ number on success, negative error number on failure.
163  */
164 int platform_get_irq(struct platform_device *dev, unsigned int num)
165 {
166 	int ret;
167 
168 	ret = __platform_get_irq(dev, num);
169 	if (ret < 0 && ret != -EPROBE_DEFER)
170 		dev_err(&dev->dev, "IRQ index %u not found\n", num);
171 
172 	return ret;
173 }
174 EXPORT_SYMBOL_GPL(platform_get_irq);
175 
176 /**
177  * platform_get_irq_optional - get an optional IRQ for a device
178  * @dev: platform device
179  * @num: IRQ number index
180  *
181  * Gets an IRQ for a platform device. Device drivers should check the return
182  * value for errors so as to not pass a negative integer value to the
183  * request_irq() APIs. This is the same as platform_get_irq(), except that it
184  * does not print an error message if an IRQ can not be obtained.
185  *
186  * Example:
187  *		int irq = platform_get_irq_optional(pdev, 0);
188  *		if (irq < 0)
189  *			return irq;
190  *
191  * Return: IRQ number on success, negative error number on failure.
192  */
193 int platform_get_irq_optional(struct platform_device *dev, unsigned int num)
194 {
195 	return __platform_get_irq(dev, num);
196 }
197 EXPORT_SYMBOL_GPL(platform_get_irq_optional);
198 
199 /**
200  * platform_irq_count - Count the number of IRQs a platform device uses
201  * @dev: platform device
202  *
203  * Return: Number of IRQs a platform device uses or EPROBE_DEFER
204  */
205 int platform_irq_count(struct platform_device *dev)
206 {
207 	int ret, nr = 0;
208 
209 	while ((ret = __platform_get_irq(dev, nr)) >= 0)
210 		nr++;
211 
212 	if (ret == -EPROBE_DEFER)
213 		return ret;
214 
215 	return nr;
216 }
217 EXPORT_SYMBOL_GPL(platform_irq_count);
218 
219 /**
220  * platform_get_resource_byname - get a resource for a device by name
221  * @dev: platform device
222  * @type: resource type
223  * @name: resource name
224  */
225 struct resource *platform_get_resource_byname(struct platform_device *dev,
226 					      unsigned int type,
227 					      const char *name)
228 {
229 	int i;
230 
231 	for (i = 0; i < dev->num_resources; i++) {
232 		struct resource *r = &dev->resource[i];
233 
234 		if (unlikely(!r->name))
235 			continue;
236 
237 		if (type == resource_type(r) && !strcmp(r->name, name))
238 			return r;
239 	}
240 	return NULL;
241 }
242 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
243 
244 /**
245  * platform_get_irq_byname - get an IRQ for a device by name
246  * @dev: platform device
247  * @name: IRQ name
248  */
249 int platform_get_irq_byname(struct platform_device *dev, const char *name)
250 {
251 	struct resource *r;
252 
253 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
254 		int ret;
255 
256 		ret = of_irq_get_byname(dev->dev.of_node, name);
257 		if (ret > 0 || ret == -EPROBE_DEFER)
258 			return ret;
259 	}
260 
261 	r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name);
262 	if (r)
263 		return r->start;
264 
265 	dev_err(&dev->dev, "IRQ %s not found\n", name);
266 	return -ENXIO;
267 }
268 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
269 
270 /**
271  * platform_add_devices - add a numbers of platform devices
272  * @devs: array of platform devices to add
273  * @num: number of platform devices in array
274  */
275 int platform_add_devices(struct platform_device **devs, int num)
276 {
277 	int i, ret = 0;
278 
279 	for (i = 0; i < num; i++) {
280 		ret = platform_device_register(devs[i]);
281 		if (ret) {
282 			while (--i >= 0)
283 				platform_device_unregister(devs[i]);
284 			break;
285 		}
286 	}
287 
288 	return ret;
289 }
290 EXPORT_SYMBOL_GPL(platform_add_devices);
291 
292 struct platform_object {
293 	struct platform_device pdev;
294 	char name[];
295 };
296 
297 /*
298  * Set up default DMA mask for platform devices if the they weren't
299  * previously set by the architecture / DT.
300  */
301 static void setup_pdev_dma_masks(struct platform_device *pdev)
302 {
303 	if (!pdev->dev.coherent_dma_mask)
304 		pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
305 	if (!pdev->dma_mask)
306 		pdev->dma_mask = DMA_BIT_MASK(32);
307 	if (!pdev->dev.dma_mask)
308 		pdev->dev.dma_mask = &pdev->dma_mask;
309 };
310 
311 /**
312  * platform_device_put - destroy a platform device
313  * @pdev: platform device to free
314  *
315  * Free all memory associated with a platform device.  This function must
316  * _only_ be externally called in error cases.  All other usage is a bug.
317  */
318 void platform_device_put(struct platform_device *pdev)
319 {
320 	if (!IS_ERR_OR_NULL(pdev))
321 		put_device(&pdev->dev);
322 }
323 EXPORT_SYMBOL_GPL(platform_device_put);
324 
325 static void platform_device_release(struct device *dev)
326 {
327 	struct platform_object *pa = container_of(dev, struct platform_object,
328 						  pdev.dev);
329 
330 	of_device_node_put(&pa->pdev.dev);
331 	kfree(pa->pdev.dev.platform_data);
332 	kfree(pa->pdev.mfd_cell);
333 	kfree(pa->pdev.resource);
334 	kfree(pa->pdev.driver_override);
335 	kfree(pa);
336 }
337 
338 /**
339  * platform_device_alloc - create a platform device
340  * @name: base name of the device we're adding
341  * @id: instance id
342  *
343  * Create a platform device object which can have other objects attached
344  * to it, and which will have attached objects freed when it is released.
345  */
346 struct platform_device *platform_device_alloc(const char *name, int id)
347 {
348 	struct platform_object *pa;
349 
350 	pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL);
351 	if (pa) {
352 		strcpy(pa->name, name);
353 		pa->pdev.name = pa->name;
354 		pa->pdev.id = id;
355 		device_initialize(&pa->pdev.dev);
356 		pa->pdev.dev.release = platform_device_release;
357 		setup_pdev_dma_masks(&pa->pdev);
358 	}
359 
360 	return pa ? &pa->pdev : NULL;
361 }
362 EXPORT_SYMBOL_GPL(platform_device_alloc);
363 
364 /**
365  * platform_device_add_resources - add resources to a platform device
366  * @pdev: platform device allocated by platform_device_alloc to add resources to
367  * @res: set of resources that needs to be allocated for the device
368  * @num: number of resources
369  *
370  * Add a copy of the resources to the platform device.  The memory
371  * associated with the resources will be freed when the platform device is
372  * released.
373  */
374 int platform_device_add_resources(struct platform_device *pdev,
375 				  const struct resource *res, unsigned int num)
376 {
377 	struct resource *r = NULL;
378 
379 	if (res) {
380 		r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
381 		if (!r)
382 			return -ENOMEM;
383 	}
384 
385 	kfree(pdev->resource);
386 	pdev->resource = r;
387 	pdev->num_resources = num;
388 	return 0;
389 }
390 EXPORT_SYMBOL_GPL(platform_device_add_resources);
391 
392 /**
393  * platform_device_add_data - add platform-specific data to a platform device
394  * @pdev: platform device allocated by platform_device_alloc to add resources to
395  * @data: platform specific data for this platform device
396  * @size: size of platform specific data
397  *
398  * Add a copy of platform specific data to the platform device's
399  * platform_data pointer.  The memory associated with the platform data
400  * will be freed when the platform device is released.
401  */
402 int platform_device_add_data(struct platform_device *pdev, const void *data,
403 			     size_t size)
404 {
405 	void *d = NULL;
406 
407 	if (data) {
408 		d = kmemdup(data, size, GFP_KERNEL);
409 		if (!d)
410 			return -ENOMEM;
411 	}
412 
413 	kfree(pdev->dev.platform_data);
414 	pdev->dev.platform_data = d;
415 	return 0;
416 }
417 EXPORT_SYMBOL_GPL(platform_device_add_data);
418 
419 /**
420  * platform_device_add_properties - add built-in properties to a platform device
421  * @pdev: platform device to add properties to
422  * @properties: null terminated array of properties to add
423  *
424  * The function will take deep copy of @properties and attach the copy to the
425  * platform device. The memory associated with properties will be freed when the
426  * platform device is released.
427  */
428 int platform_device_add_properties(struct platform_device *pdev,
429 				   const struct property_entry *properties)
430 {
431 	return device_add_properties(&pdev->dev, properties);
432 }
433 EXPORT_SYMBOL_GPL(platform_device_add_properties);
434 
435 /**
436  * platform_device_add - add a platform device to device hierarchy
437  * @pdev: platform device we're adding
438  *
439  * This is part 2 of platform_device_register(), though may be called
440  * separately _iff_ pdev was allocated by platform_device_alloc().
441  */
442 int platform_device_add(struct platform_device *pdev)
443 {
444 	int i, ret;
445 
446 	if (!pdev)
447 		return -EINVAL;
448 
449 	if (!pdev->dev.parent)
450 		pdev->dev.parent = &platform_bus;
451 
452 	pdev->dev.bus = &platform_bus_type;
453 
454 	switch (pdev->id) {
455 	default:
456 		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
457 		break;
458 	case PLATFORM_DEVID_NONE:
459 		dev_set_name(&pdev->dev, "%s", pdev->name);
460 		break;
461 	case PLATFORM_DEVID_AUTO:
462 		/*
463 		 * Automatically allocated device ID. We mark it as such so
464 		 * that we remember it must be freed, and we append a suffix
465 		 * to avoid namespace collision with explicit IDs.
466 		 */
467 		ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
468 		if (ret < 0)
469 			goto err_out;
470 		pdev->id = ret;
471 		pdev->id_auto = true;
472 		dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
473 		break;
474 	}
475 
476 	for (i = 0; i < pdev->num_resources; i++) {
477 		struct resource *p, *r = &pdev->resource[i];
478 
479 		if (r->name == NULL)
480 			r->name = dev_name(&pdev->dev);
481 
482 		p = r->parent;
483 		if (!p) {
484 			if (resource_type(r) == IORESOURCE_MEM)
485 				p = &iomem_resource;
486 			else if (resource_type(r) == IORESOURCE_IO)
487 				p = &ioport_resource;
488 		}
489 
490 		if (p) {
491 			ret = insert_resource(p, r);
492 			if (ret) {
493 				dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r);
494 				goto failed;
495 			}
496 		}
497 	}
498 
499 	pr_debug("Registering platform device '%s'. Parent at %s\n",
500 		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
501 
502 	ret = device_add(&pdev->dev);
503 	if (ret == 0)
504 		return ret;
505 
506  failed:
507 	if (pdev->id_auto) {
508 		ida_simple_remove(&platform_devid_ida, pdev->id);
509 		pdev->id = PLATFORM_DEVID_AUTO;
510 	}
511 
512 	while (--i >= 0) {
513 		struct resource *r = &pdev->resource[i];
514 		if (r->parent)
515 			release_resource(r);
516 	}
517 
518  err_out:
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(platform_device_add);
522 
523 /**
524  * platform_device_del - remove a platform-level device
525  * @pdev: platform device we're removing
526  *
527  * Note that this function will also release all memory- and port-based
528  * resources owned by the device (@dev->resource).  This function must
529  * _only_ be externally called in error cases.  All other usage is a bug.
530  */
531 void platform_device_del(struct platform_device *pdev)
532 {
533 	int i;
534 
535 	if (!IS_ERR_OR_NULL(pdev)) {
536 		device_del(&pdev->dev);
537 
538 		if (pdev->id_auto) {
539 			ida_simple_remove(&platform_devid_ida, pdev->id);
540 			pdev->id = PLATFORM_DEVID_AUTO;
541 		}
542 
543 		for (i = 0; i < pdev->num_resources; i++) {
544 			struct resource *r = &pdev->resource[i];
545 			if (r->parent)
546 				release_resource(r);
547 		}
548 	}
549 }
550 EXPORT_SYMBOL_GPL(platform_device_del);
551 
552 /**
553  * platform_device_register - add a platform-level device
554  * @pdev: platform device we're adding
555  */
556 int platform_device_register(struct platform_device *pdev)
557 {
558 	device_initialize(&pdev->dev);
559 	setup_pdev_dma_masks(pdev);
560 	return platform_device_add(pdev);
561 }
562 EXPORT_SYMBOL_GPL(platform_device_register);
563 
564 /**
565  * platform_device_unregister - unregister a platform-level device
566  * @pdev: platform device we're unregistering
567  *
568  * Unregistration is done in 2 steps. First we release all resources
569  * and remove it from the subsystem, then we drop reference count by
570  * calling platform_device_put().
571  */
572 void platform_device_unregister(struct platform_device *pdev)
573 {
574 	platform_device_del(pdev);
575 	platform_device_put(pdev);
576 }
577 EXPORT_SYMBOL_GPL(platform_device_unregister);
578 
579 /**
580  * platform_device_register_full - add a platform-level device with
581  * resources and platform-specific data
582  *
583  * @pdevinfo: data used to create device
584  *
585  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
586  */
587 struct platform_device *platform_device_register_full(
588 		const struct platform_device_info *pdevinfo)
589 {
590 	int ret = -ENOMEM;
591 	struct platform_device *pdev;
592 
593 	pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
594 	if (!pdev)
595 		return ERR_PTR(-ENOMEM);
596 
597 	pdev->dev.parent = pdevinfo->parent;
598 	pdev->dev.fwnode = pdevinfo->fwnode;
599 	pdev->dev.of_node = of_node_get(to_of_node(pdev->dev.fwnode));
600 	pdev->dev.of_node_reused = pdevinfo->of_node_reused;
601 
602 	if (pdevinfo->dma_mask) {
603 		/*
604 		 * This memory isn't freed when the device is put,
605 		 * I don't have a nice idea for that though.  Conceptually
606 		 * dma_mask in struct device should not be a pointer.
607 		 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
608 		 */
609 		pdev->dev.dma_mask =
610 			kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
611 		if (!pdev->dev.dma_mask)
612 			goto err;
613 
614 		kmemleak_ignore(pdev->dev.dma_mask);
615 
616 		*pdev->dev.dma_mask = pdevinfo->dma_mask;
617 		pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
618 	}
619 
620 	ret = platform_device_add_resources(pdev,
621 			pdevinfo->res, pdevinfo->num_res);
622 	if (ret)
623 		goto err;
624 
625 	ret = platform_device_add_data(pdev,
626 			pdevinfo->data, pdevinfo->size_data);
627 	if (ret)
628 		goto err;
629 
630 	if (pdevinfo->properties) {
631 		ret = platform_device_add_properties(pdev,
632 						     pdevinfo->properties);
633 		if (ret)
634 			goto err;
635 	}
636 
637 	ret = platform_device_add(pdev);
638 	if (ret) {
639 err:
640 		ACPI_COMPANION_SET(&pdev->dev, NULL);
641 		kfree(pdev->dev.dma_mask);
642 		platform_device_put(pdev);
643 		return ERR_PTR(ret);
644 	}
645 
646 	return pdev;
647 }
648 EXPORT_SYMBOL_GPL(platform_device_register_full);
649 
650 static int platform_drv_probe(struct device *_dev)
651 {
652 	struct platform_driver *drv = to_platform_driver(_dev->driver);
653 	struct platform_device *dev = to_platform_device(_dev);
654 	int ret;
655 
656 	ret = of_clk_set_defaults(_dev->of_node, false);
657 	if (ret < 0)
658 		return ret;
659 
660 	ret = dev_pm_domain_attach(_dev, true);
661 	if (ret)
662 		goto out;
663 
664 	if (drv->probe) {
665 		ret = drv->probe(dev);
666 		if (ret)
667 			dev_pm_domain_detach(_dev, true);
668 	}
669 
670 out:
671 	if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {
672 		dev_warn(_dev, "probe deferral not supported\n");
673 		ret = -ENXIO;
674 	}
675 
676 	return ret;
677 }
678 
679 static int platform_drv_probe_fail(struct device *_dev)
680 {
681 	return -ENXIO;
682 }
683 
684 static int platform_drv_remove(struct device *_dev)
685 {
686 	struct platform_driver *drv = to_platform_driver(_dev->driver);
687 	struct platform_device *dev = to_platform_device(_dev);
688 	int ret = 0;
689 
690 	if (drv->remove)
691 		ret = drv->remove(dev);
692 	dev_pm_domain_detach(_dev, true);
693 
694 	return ret;
695 }
696 
697 static void platform_drv_shutdown(struct device *_dev)
698 {
699 	struct platform_driver *drv = to_platform_driver(_dev->driver);
700 	struct platform_device *dev = to_platform_device(_dev);
701 
702 	if (drv->shutdown)
703 		drv->shutdown(dev);
704 }
705 
706 /**
707  * __platform_driver_register - register a driver for platform-level devices
708  * @drv: platform driver structure
709  * @owner: owning module/driver
710  */
711 int __platform_driver_register(struct platform_driver *drv,
712 				struct module *owner)
713 {
714 	drv->driver.owner = owner;
715 	drv->driver.bus = &platform_bus_type;
716 	drv->driver.probe = platform_drv_probe;
717 	drv->driver.remove = platform_drv_remove;
718 	drv->driver.shutdown = platform_drv_shutdown;
719 
720 	return driver_register(&drv->driver);
721 }
722 EXPORT_SYMBOL_GPL(__platform_driver_register);
723 
724 /**
725  * platform_driver_unregister - unregister a driver for platform-level devices
726  * @drv: platform driver structure
727  */
728 void platform_driver_unregister(struct platform_driver *drv)
729 {
730 	driver_unregister(&drv->driver);
731 }
732 EXPORT_SYMBOL_GPL(platform_driver_unregister);
733 
734 /**
735  * __platform_driver_probe - register driver for non-hotpluggable device
736  * @drv: platform driver structure
737  * @probe: the driver probe routine, probably from an __init section
738  * @module: module which will be the owner of the driver
739  *
740  * Use this instead of platform_driver_register() when you know the device
741  * is not hotpluggable and has already been registered, and you want to
742  * remove its run-once probe() infrastructure from memory after the driver
743  * has bound to the device.
744  *
745  * One typical use for this would be with drivers for controllers integrated
746  * into system-on-chip processors, where the controller devices have been
747  * configured as part of board setup.
748  *
749  * Note that this is incompatible with deferred probing.
750  *
751  * Returns zero if the driver registered and bound to a device, else returns
752  * a negative error code and with the driver not registered.
753  */
754 int __init_or_module __platform_driver_probe(struct platform_driver *drv,
755 		int (*probe)(struct platform_device *), struct module *module)
756 {
757 	int retval, code;
758 
759 	if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) {
760 		pr_err("%s: drivers registered with %s can not be probed asynchronously\n",
761 			 drv->driver.name, __func__);
762 		return -EINVAL;
763 	}
764 
765 	/*
766 	 * We have to run our probes synchronously because we check if
767 	 * we find any devices to bind to and exit with error if there
768 	 * are any.
769 	 */
770 	drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
771 
772 	/*
773 	 * Prevent driver from requesting probe deferral to avoid further
774 	 * futile probe attempts.
775 	 */
776 	drv->prevent_deferred_probe = true;
777 
778 	/* make sure driver won't have bind/unbind attributes */
779 	drv->driver.suppress_bind_attrs = true;
780 
781 	/* temporary section violation during probe() */
782 	drv->probe = probe;
783 	retval = code = __platform_driver_register(drv, module);
784 
785 	/*
786 	 * Fixup that section violation, being paranoid about code scanning
787 	 * the list of drivers in order to probe new devices.  Check to see
788 	 * if the probe was successful, and make sure any forced probes of
789 	 * new devices fail.
790 	 */
791 	spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
792 	drv->probe = NULL;
793 	if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
794 		retval = -ENODEV;
795 	drv->driver.probe = platform_drv_probe_fail;
796 	spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
797 
798 	if (code != retval)
799 		platform_driver_unregister(drv);
800 	return retval;
801 }
802 EXPORT_SYMBOL_GPL(__platform_driver_probe);
803 
804 /**
805  * __platform_create_bundle - register driver and create corresponding device
806  * @driver: platform driver structure
807  * @probe: the driver probe routine, probably from an __init section
808  * @res: set of resources that needs to be allocated for the device
809  * @n_res: number of resources
810  * @data: platform specific data for this platform device
811  * @size: size of platform specific data
812  * @module: module which will be the owner of the driver
813  *
814  * Use this in legacy-style modules that probe hardware directly and
815  * register a single platform device and corresponding platform driver.
816  *
817  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
818  */
819 struct platform_device * __init_or_module __platform_create_bundle(
820 			struct platform_driver *driver,
821 			int (*probe)(struct platform_device *),
822 			struct resource *res, unsigned int n_res,
823 			const void *data, size_t size, struct module *module)
824 {
825 	struct platform_device *pdev;
826 	int error;
827 
828 	pdev = platform_device_alloc(driver->driver.name, -1);
829 	if (!pdev) {
830 		error = -ENOMEM;
831 		goto err_out;
832 	}
833 
834 	error = platform_device_add_resources(pdev, res, n_res);
835 	if (error)
836 		goto err_pdev_put;
837 
838 	error = platform_device_add_data(pdev, data, size);
839 	if (error)
840 		goto err_pdev_put;
841 
842 	error = platform_device_add(pdev);
843 	if (error)
844 		goto err_pdev_put;
845 
846 	error = __platform_driver_probe(driver, probe, module);
847 	if (error)
848 		goto err_pdev_del;
849 
850 	return pdev;
851 
852 err_pdev_del:
853 	platform_device_del(pdev);
854 err_pdev_put:
855 	platform_device_put(pdev);
856 err_out:
857 	return ERR_PTR(error);
858 }
859 EXPORT_SYMBOL_GPL(__platform_create_bundle);
860 
861 /**
862  * __platform_register_drivers - register an array of platform drivers
863  * @drivers: an array of drivers to register
864  * @count: the number of drivers to register
865  * @owner: module owning the drivers
866  *
867  * Registers platform drivers specified by an array. On failure to register a
868  * driver, all previously registered drivers will be unregistered. Callers of
869  * this API should use platform_unregister_drivers() to unregister drivers in
870  * the reverse order.
871  *
872  * Returns: 0 on success or a negative error code on failure.
873  */
874 int __platform_register_drivers(struct platform_driver * const *drivers,
875 				unsigned int count, struct module *owner)
876 {
877 	unsigned int i;
878 	int err;
879 
880 	for (i = 0; i < count; i++) {
881 		pr_debug("registering platform driver %ps\n", drivers[i]);
882 
883 		err = __platform_driver_register(drivers[i], owner);
884 		if (err < 0) {
885 			pr_err("failed to register platform driver %ps: %d\n",
886 			       drivers[i], err);
887 			goto error;
888 		}
889 	}
890 
891 	return 0;
892 
893 error:
894 	while (i--) {
895 		pr_debug("unregistering platform driver %ps\n", drivers[i]);
896 		platform_driver_unregister(drivers[i]);
897 	}
898 
899 	return err;
900 }
901 EXPORT_SYMBOL_GPL(__platform_register_drivers);
902 
903 /**
904  * platform_unregister_drivers - unregister an array of platform drivers
905  * @drivers: an array of drivers to unregister
906  * @count: the number of drivers to unregister
907  *
908  * Unegisters platform drivers specified by an array. This is typically used
909  * to complement an earlier call to platform_register_drivers(). Drivers are
910  * unregistered in the reverse order in which they were registered.
911  */
912 void platform_unregister_drivers(struct platform_driver * const *drivers,
913 				 unsigned int count)
914 {
915 	while (count--) {
916 		pr_debug("unregistering platform driver %ps\n", drivers[count]);
917 		platform_driver_unregister(drivers[count]);
918 	}
919 }
920 EXPORT_SYMBOL_GPL(platform_unregister_drivers);
921 
922 /* modalias support enables more hands-off userspace setup:
923  * (a) environment variable lets new-style hotplug events work once system is
924  *     fully running:  "modprobe $MODALIAS"
925  * (b) sysfs attribute lets new-style coldplug recover from hotplug events
926  *     mishandled before system is fully running:  "modprobe $(cat modalias)"
927  */
928 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
929 			     char *buf)
930 {
931 	struct platform_device	*pdev = to_platform_device(dev);
932 	int len;
933 
934 	len = of_device_modalias(dev, buf, PAGE_SIZE);
935 	if (len != -ENODEV)
936 		return len;
937 
938 	len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
939 	if (len != -ENODEV)
940 		return len;
941 
942 	len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
943 
944 	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
945 }
946 static DEVICE_ATTR_RO(modalias);
947 
948 static ssize_t driver_override_store(struct device *dev,
949 				     struct device_attribute *attr,
950 				     const char *buf, size_t count)
951 {
952 	struct platform_device *pdev = to_platform_device(dev);
953 	char *driver_override, *old, *cp;
954 
955 	/* We need to keep extra room for a newline */
956 	if (count >= (PAGE_SIZE - 1))
957 		return -EINVAL;
958 
959 	driver_override = kstrndup(buf, count, GFP_KERNEL);
960 	if (!driver_override)
961 		return -ENOMEM;
962 
963 	cp = strchr(driver_override, '\n');
964 	if (cp)
965 		*cp = '\0';
966 
967 	device_lock(dev);
968 	old = pdev->driver_override;
969 	if (strlen(driver_override)) {
970 		pdev->driver_override = driver_override;
971 	} else {
972 		kfree(driver_override);
973 		pdev->driver_override = NULL;
974 	}
975 	device_unlock(dev);
976 
977 	kfree(old);
978 
979 	return count;
980 }
981 
982 static ssize_t driver_override_show(struct device *dev,
983 				    struct device_attribute *attr, char *buf)
984 {
985 	struct platform_device *pdev = to_platform_device(dev);
986 	ssize_t len;
987 
988 	device_lock(dev);
989 	len = sprintf(buf, "%s\n", pdev->driver_override);
990 	device_unlock(dev);
991 	return len;
992 }
993 static DEVICE_ATTR_RW(driver_override);
994 
995 
996 static struct attribute *platform_dev_attrs[] = {
997 	&dev_attr_modalias.attr,
998 	&dev_attr_driver_override.attr,
999 	NULL,
1000 };
1001 ATTRIBUTE_GROUPS(platform_dev);
1002 
1003 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
1004 {
1005 	struct platform_device	*pdev = to_platform_device(dev);
1006 	int rc;
1007 
1008 	/* Some devices have extra OF data and an OF-style MODALIAS */
1009 	rc = of_device_uevent_modalias(dev, env);
1010 	if (rc != -ENODEV)
1011 		return rc;
1012 
1013 	rc = acpi_device_uevent_modalias(dev, env);
1014 	if (rc != -ENODEV)
1015 		return rc;
1016 
1017 	add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
1018 			pdev->name);
1019 	return 0;
1020 }
1021 
1022 static const struct platform_device_id *platform_match_id(
1023 			const struct platform_device_id *id,
1024 			struct platform_device *pdev)
1025 {
1026 	while (id->name[0]) {
1027 		if (strcmp(pdev->name, id->name) == 0) {
1028 			pdev->id_entry = id;
1029 			return id;
1030 		}
1031 		id++;
1032 	}
1033 	return NULL;
1034 }
1035 
1036 /**
1037  * platform_match - bind platform device to platform driver.
1038  * @dev: device.
1039  * @drv: driver.
1040  *
1041  * Platform device IDs are assumed to be encoded like this:
1042  * "<name><instance>", where <name> is a short description of the type of
1043  * device, like "pci" or "floppy", and <instance> is the enumerated
1044  * instance of the device, like '0' or '42'.  Driver IDs are simply
1045  * "<name>".  So, extract the <name> from the platform_device structure,
1046  * and compare it against the name of the driver. Return whether they match
1047  * or not.
1048  */
1049 static int platform_match(struct device *dev, struct device_driver *drv)
1050 {
1051 	struct platform_device *pdev = to_platform_device(dev);
1052 	struct platform_driver *pdrv = to_platform_driver(drv);
1053 
1054 	/* When driver_override is set, only bind to the matching driver */
1055 	if (pdev->driver_override)
1056 		return !strcmp(pdev->driver_override, drv->name);
1057 
1058 	/* Attempt an OF style match first */
1059 	if (of_driver_match_device(dev, drv))
1060 		return 1;
1061 
1062 	/* Then try ACPI style match */
1063 	if (acpi_driver_match_device(dev, drv))
1064 		return 1;
1065 
1066 	/* Then try to match against the id table */
1067 	if (pdrv->id_table)
1068 		return platform_match_id(pdrv->id_table, pdev) != NULL;
1069 
1070 	/* fall-back to driver name match */
1071 	return (strcmp(pdev->name, drv->name) == 0);
1072 }
1073 
1074 #ifdef CONFIG_PM_SLEEP
1075 
1076 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
1077 {
1078 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1079 	struct platform_device *pdev = to_platform_device(dev);
1080 	int ret = 0;
1081 
1082 	if (dev->driver && pdrv->suspend)
1083 		ret = pdrv->suspend(pdev, mesg);
1084 
1085 	return ret;
1086 }
1087 
1088 static int platform_legacy_resume(struct device *dev)
1089 {
1090 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1091 	struct platform_device *pdev = to_platform_device(dev);
1092 	int ret = 0;
1093 
1094 	if (dev->driver && pdrv->resume)
1095 		ret = pdrv->resume(pdev);
1096 
1097 	return ret;
1098 }
1099 
1100 #endif /* CONFIG_PM_SLEEP */
1101 
1102 #ifdef CONFIG_SUSPEND
1103 
1104 int platform_pm_suspend(struct device *dev)
1105 {
1106 	struct device_driver *drv = dev->driver;
1107 	int ret = 0;
1108 
1109 	if (!drv)
1110 		return 0;
1111 
1112 	if (drv->pm) {
1113 		if (drv->pm->suspend)
1114 			ret = drv->pm->suspend(dev);
1115 	} else {
1116 		ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
1117 	}
1118 
1119 	return ret;
1120 }
1121 
1122 int platform_pm_resume(struct device *dev)
1123 {
1124 	struct device_driver *drv = dev->driver;
1125 	int ret = 0;
1126 
1127 	if (!drv)
1128 		return 0;
1129 
1130 	if (drv->pm) {
1131 		if (drv->pm->resume)
1132 			ret = drv->pm->resume(dev);
1133 	} else {
1134 		ret = platform_legacy_resume(dev);
1135 	}
1136 
1137 	return ret;
1138 }
1139 
1140 #endif /* CONFIG_SUSPEND */
1141 
1142 #ifdef CONFIG_HIBERNATE_CALLBACKS
1143 
1144 int platform_pm_freeze(struct device *dev)
1145 {
1146 	struct device_driver *drv = dev->driver;
1147 	int ret = 0;
1148 
1149 	if (!drv)
1150 		return 0;
1151 
1152 	if (drv->pm) {
1153 		if (drv->pm->freeze)
1154 			ret = drv->pm->freeze(dev);
1155 	} else {
1156 		ret = platform_legacy_suspend(dev, PMSG_FREEZE);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 int platform_pm_thaw(struct device *dev)
1163 {
1164 	struct device_driver *drv = dev->driver;
1165 	int ret = 0;
1166 
1167 	if (!drv)
1168 		return 0;
1169 
1170 	if (drv->pm) {
1171 		if (drv->pm->thaw)
1172 			ret = drv->pm->thaw(dev);
1173 	} else {
1174 		ret = platform_legacy_resume(dev);
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 int platform_pm_poweroff(struct device *dev)
1181 {
1182 	struct device_driver *drv = dev->driver;
1183 	int ret = 0;
1184 
1185 	if (!drv)
1186 		return 0;
1187 
1188 	if (drv->pm) {
1189 		if (drv->pm->poweroff)
1190 			ret = drv->pm->poweroff(dev);
1191 	} else {
1192 		ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
1193 	}
1194 
1195 	return ret;
1196 }
1197 
1198 int platform_pm_restore(struct device *dev)
1199 {
1200 	struct device_driver *drv = dev->driver;
1201 	int ret = 0;
1202 
1203 	if (!drv)
1204 		return 0;
1205 
1206 	if (drv->pm) {
1207 		if (drv->pm->restore)
1208 			ret = drv->pm->restore(dev);
1209 	} else {
1210 		ret = platform_legacy_resume(dev);
1211 	}
1212 
1213 	return ret;
1214 }
1215 
1216 #endif /* CONFIG_HIBERNATE_CALLBACKS */
1217 
1218 int platform_dma_configure(struct device *dev)
1219 {
1220 	enum dev_dma_attr attr;
1221 	int ret = 0;
1222 
1223 	if (dev->of_node) {
1224 		ret = of_dma_configure(dev, dev->of_node, true);
1225 	} else if (has_acpi_companion(dev)) {
1226 		attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode));
1227 		ret = acpi_dma_configure(dev, attr);
1228 	}
1229 
1230 	return ret;
1231 }
1232 
1233 static const struct dev_pm_ops platform_dev_pm_ops = {
1234 	.runtime_suspend = pm_generic_runtime_suspend,
1235 	.runtime_resume = pm_generic_runtime_resume,
1236 	USE_PLATFORM_PM_SLEEP_OPS
1237 };
1238 
1239 struct bus_type platform_bus_type = {
1240 	.name		= "platform",
1241 	.dev_groups	= platform_dev_groups,
1242 	.match		= platform_match,
1243 	.uevent		= platform_uevent,
1244 	.dma_configure	= platform_dma_configure,
1245 	.pm		= &platform_dev_pm_ops,
1246 };
1247 EXPORT_SYMBOL_GPL(platform_bus_type);
1248 
1249 /**
1250  * platform_find_device_by_driver - Find a platform device with a given
1251  * driver.
1252  * @start: The device to start the search from.
1253  * @drv: The device driver to look for.
1254  */
1255 struct device *platform_find_device_by_driver(struct device *start,
1256 					      const struct device_driver *drv)
1257 {
1258 	return bus_find_device(&platform_bus_type, start, drv,
1259 			       (void *)platform_match);
1260 }
1261 EXPORT_SYMBOL_GPL(platform_find_device_by_driver);
1262 
1263 int __init platform_bus_init(void)
1264 {
1265 	int error;
1266 
1267 	early_platform_cleanup();
1268 
1269 	error = device_register(&platform_bus);
1270 	if (error) {
1271 		put_device(&platform_bus);
1272 		return error;
1273 	}
1274 	error =  bus_register(&platform_bus_type);
1275 	if (error)
1276 		device_unregister(&platform_bus);
1277 	of_platform_register_reconfig_notifier();
1278 	return error;
1279 }
1280 
1281 static __initdata LIST_HEAD(early_platform_driver_list);
1282 static __initdata LIST_HEAD(early_platform_device_list);
1283 
1284 /**
1285  * early_platform_driver_register - register early platform driver
1286  * @epdrv: early_platform driver structure
1287  * @buf: string passed from early_param()
1288  *
1289  * Helper function for early_platform_init() / early_platform_init_buffer()
1290  */
1291 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
1292 					  char *buf)
1293 {
1294 	char *tmp;
1295 	int n;
1296 
1297 	/* Simply add the driver to the end of the global list.
1298 	 * Drivers will by default be put on the list in compiled-in order.
1299 	 */
1300 	if (!epdrv->list.next) {
1301 		INIT_LIST_HEAD(&epdrv->list);
1302 		list_add_tail(&epdrv->list, &early_platform_driver_list);
1303 	}
1304 
1305 	/* If the user has specified device then make sure the driver
1306 	 * gets prioritized. The driver of the last device specified on
1307 	 * command line will be put first on the list.
1308 	 */
1309 	n = strlen(epdrv->pdrv->driver.name);
1310 	if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
1311 		list_move(&epdrv->list, &early_platform_driver_list);
1312 
1313 		/* Allow passing parameters after device name */
1314 		if (buf[n] == '\0' || buf[n] == ',')
1315 			epdrv->requested_id = -1;
1316 		else {
1317 			epdrv->requested_id = simple_strtoul(&buf[n + 1],
1318 							     &tmp, 10);
1319 
1320 			if (buf[n] != '.' || (tmp == &buf[n + 1])) {
1321 				epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
1322 				n = 0;
1323 			} else
1324 				n += strcspn(&buf[n + 1], ",") + 1;
1325 		}
1326 
1327 		if (buf[n] == ',')
1328 			n++;
1329 
1330 		if (epdrv->bufsize) {
1331 			memcpy(epdrv->buffer, &buf[n],
1332 			       min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
1333 			epdrv->buffer[epdrv->bufsize - 1] = '\0';
1334 		}
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 /**
1341  * early_platform_add_devices - adds a number of early platform devices
1342  * @devs: array of early platform devices to add
1343  * @num: number of early platform devices in array
1344  *
1345  * Used by early architecture code to register early platform devices and
1346  * their platform data.
1347  */
1348 void __init early_platform_add_devices(struct platform_device **devs, int num)
1349 {
1350 	struct device *dev;
1351 	int i;
1352 
1353 	/* simply add the devices to list */
1354 	for (i = 0; i < num; i++) {
1355 		dev = &devs[i]->dev;
1356 
1357 		if (!dev->devres_head.next) {
1358 			pm_runtime_early_init(dev);
1359 			INIT_LIST_HEAD(&dev->devres_head);
1360 			list_add_tail(&dev->devres_head,
1361 				      &early_platform_device_list);
1362 		}
1363 	}
1364 }
1365 
1366 /**
1367  * early_platform_driver_register_all - register early platform drivers
1368  * @class_str: string to identify early platform driver class
1369  *
1370  * Used by architecture code to register all early platform drivers
1371  * for a certain class. If omitted then only early platform drivers
1372  * with matching kernel command line class parameters will be registered.
1373  */
1374 void __init early_platform_driver_register_all(char *class_str)
1375 {
1376 	/* The "class_str" parameter may or may not be present on the kernel
1377 	 * command line. If it is present then there may be more than one
1378 	 * matching parameter.
1379 	 *
1380 	 * Since we register our early platform drivers using early_param()
1381 	 * we need to make sure that they also get registered in the case
1382 	 * when the parameter is missing from the kernel command line.
1383 	 *
1384 	 * We use parse_early_options() to make sure the early_param() gets
1385 	 * called at least once. The early_param() may be called more than
1386 	 * once since the name of the preferred device may be specified on
1387 	 * the kernel command line. early_platform_driver_register() handles
1388 	 * this case for us.
1389 	 */
1390 	parse_early_options(class_str);
1391 }
1392 
1393 /**
1394  * early_platform_match - find early platform device matching driver
1395  * @epdrv: early platform driver structure
1396  * @id: id to match against
1397  */
1398 static struct platform_device * __init
1399 early_platform_match(struct early_platform_driver *epdrv, int id)
1400 {
1401 	struct platform_device *pd;
1402 
1403 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1404 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1405 			if (pd->id == id)
1406 				return pd;
1407 
1408 	return NULL;
1409 }
1410 
1411 /**
1412  * early_platform_left - check if early platform driver has matching devices
1413  * @epdrv: early platform driver structure
1414  * @id: return true if id or above exists
1415  */
1416 static int __init early_platform_left(struct early_platform_driver *epdrv,
1417 				       int id)
1418 {
1419 	struct platform_device *pd;
1420 
1421 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1422 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1423 			if (pd->id >= id)
1424 				return 1;
1425 
1426 	return 0;
1427 }
1428 
1429 /**
1430  * early_platform_driver_probe_id - probe drivers matching class_str and id
1431  * @class_str: string to identify early platform driver class
1432  * @id: id to match against
1433  * @nr_probe: number of platform devices to successfully probe before exiting
1434  */
1435 static int __init early_platform_driver_probe_id(char *class_str,
1436 						 int id,
1437 						 int nr_probe)
1438 {
1439 	struct early_platform_driver *epdrv;
1440 	struct platform_device *match;
1441 	int match_id;
1442 	int n = 0;
1443 	int left = 0;
1444 
1445 	list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1446 		/* only use drivers matching our class_str */
1447 		if (strcmp(class_str, epdrv->class_str))
1448 			continue;
1449 
1450 		if (id == -2) {
1451 			match_id = epdrv->requested_id;
1452 			left = 1;
1453 
1454 		} else {
1455 			match_id = id;
1456 			left += early_platform_left(epdrv, id);
1457 
1458 			/* skip requested id */
1459 			switch (epdrv->requested_id) {
1460 			case EARLY_PLATFORM_ID_ERROR:
1461 			case EARLY_PLATFORM_ID_UNSET:
1462 				break;
1463 			default:
1464 				if (epdrv->requested_id == id)
1465 					match_id = EARLY_PLATFORM_ID_UNSET;
1466 			}
1467 		}
1468 
1469 		switch (match_id) {
1470 		case EARLY_PLATFORM_ID_ERROR:
1471 			pr_warn("%s: unable to parse %s parameter\n",
1472 				class_str, epdrv->pdrv->driver.name);
1473 			/* fall-through */
1474 		case EARLY_PLATFORM_ID_UNSET:
1475 			match = NULL;
1476 			break;
1477 		default:
1478 			match = early_platform_match(epdrv, match_id);
1479 		}
1480 
1481 		if (match) {
1482 			/*
1483 			 * Set up a sensible init_name to enable
1484 			 * dev_name() and others to be used before the
1485 			 * rest of the driver core is initialized.
1486 			 */
1487 			if (!match->dev.init_name && slab_is_available()) {
1488 				if (match->id != -1)
1489 					match->dev.init_name =
1490 						kasprintf(GFP_KERNEL, "%s.%d",
1491 							  match->name,
1492 							  match->id);
1493 				else
1494 					match->dev.init_name =
1495 						kasprintf(GFP_KERNEL, "%s",
1496 							  match->name);
1497 
1498 				if (!match->dev.init_name)
1499 					return -ENOMEM;
1500 			}
1501 
1502 			if (epdrv->pdrv->probe(match))
1503 				pr_warn("%s: unable to probe %s early.\n",
1504 					class_str, match->name);
1505 			else
1506 				n++;
1507 		}
1508 
1509 		if (n >= nr_probe)
1510 			break;
1511 	}
1512 
1513 	if (left)
1514 		return n;
1515 	else
1516 		return -ENODEV;
1517 }
1518 
1519 /**
1520  * early_platform_driver_probe - probe a class of registered drivers
1521  * @class_str: string to identify early platform driver class
1522  * @nr_probe: number of platform devices to successfully probe before exiting
1523  * @user_only: only probe user specified early platform devices
1524  *
1525  * Used by architecture code to probe registered early platform drivers
1526  * within a certain class. For probe to happen a registered early platform
1527  * device matching a registered early platform driver is needed.
1528  */
1529 int __init early_platform_driver_probe(char *class_str,
1530 				       int nr_probe,
1531 				       int user_only)
1532 {
1533 	int k, n, i;
1534 
1535 	n = 0;
1536 	for (i = -2; n < nr_probe; i++) {
1537 		k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1538 
1539 		if (k < 0)
1540 			break;
1541 
1542 		n += k;
1543 
1544 		if (user_only)
1545 			break;
1546 	}
1547 
1548 	return n;
1549 }
1550 
1551 /**
1552  * early_platform_cleanup - clean up early platform code
1553  */
1554 void __init early_platform_cleanup(void)
1555 {
1556 	struct platform_device *pd, *pd2;
1557 
1558 	/* clean up the devres list used to chain devices */
1559 	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1560 				 dev.devres_head) {
1561 		list_del(&pd->dev.devres_head);
1562 		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1563 	}
1564 }
1565 
1566