xref: /openbmc/linux/drivers/base/platform.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * platform.c - platform 'pseudo' bus for legacy devices
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  *
8  * Please see Documentation/driver-model/platform.txt for more
9  * information.
10  */
11 
12 #include <linux/string.h>
13 #include <linux/platform_device.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/memblock.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/idr.h>
25 #include <linux/acpi.h>
26 #include <linux/clk/clk-conf.h>
27 #include <linux/limits.h>
28 #include <linux/property.h>
29 #include <linux/kmemleak.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 /* For automatically allocated device IDs */
35 static DEFINE_IDA(platform_devid_ida);
36 
37 struct device platform_bus = {
38 	.init_name	= "platform",
39 };
40 EXPORT_SYMBOL_GPL(platform_bus);
41 
42 /**
43  * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
44  * @pdev: platform device
45  *
46  * This is called before platform_device_add() such that any pdev_archdata may
47  * be setup before the platform_notifier is called.  So if a user needs to
48  * manipulate any relevant information in the pdev_archdata they can do:
49  *
50  *	platform_device_alloc()
51  *	... manipulate ...
52  *	platform_device_add()
53  *
54  * And if they don't care they can just call platform_device_register() and
55  * everything will just work out.
56  */
57 void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
58 {
59 }
60 
61 /**
62  * platform_get_resource - get a resource for a device
63  * @dev: platform device
64  * @type: resource type
65  * @num: resource index
66  */
67 struct resource *platform_get_resource(struct platform_device *dev,
68 				       unsigned int type, unsigned int num)
69 {
70 	int i;
71 
72 	for (i = 0; i < dev->num_resources; i++) {
73 		struct resource *r = &dev->resource[i];
74 
75 		if (type == resource_type(r) && num-- == 0)
76 			return r;
77 	}
78 	return NULL;
79 }
80 EXPORT_SYMBOL_GPL(platform_get_resource);
81 
82 /**
83  * devm_platform_ioremap_resource - call devm_ioremap_resource() for a platform
84  *				    device
85  *
86  * @pdev: platform device to use both for memory resource lookup as well as
87  *        resource managemend
88  * @index: resource index
89  */
90 #ifdef CONFIG_HAS_IOMEM
91 void __iomem *devm_platform_ioremap_resource(struct platform_device *pdev,
92 					     unsigned int index)
93 {
94 	struct resource *res;
95 
96 	res = platform_get_resource(pdev, IORESOURCE_MEM, index);
97 	return devm_ioremap_resource(&pdev->dev, res);
98 }
99 EXPORT_SYMBOL_GPL(devm_platform_ioremap_resource);
100 #endif /* CONFIG_HAS_IOMEM */
101 
102 /**
103  * platform_get_irq - get an IRQ for a device
104  * @dev: platform device
105  * @num: IRQ number index
106  */
107 int platform_get_irq(struct platform_device *dev, unsigned int num)
108 {
109 #ifdef CONFIG_SPARC
110 	/* sparc does not have irqs represented as IORESOURCE_IRQ resources */
111 	if (!dev || num >= dev->archdata.num_irqs)
112 		return -ENXIO;
113 	return dev->archdata.irqs[num];
114 #else
115 	struct resource *r;
116 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
117 		int ret;
118 
119 		ret = of_irq_get(dev->dev.of_node, num);
120 		if (ret > 0 || ret == -EPROBE_DEFER)
121 			return ret;
122 	}
123 
124 	r = platform_get_resource(dev, IORESOURCE_IRQ, num);
125 	if (has_acpi_companion(&dev->dev)) {
126 		if (r && r->flags & IORESOURCE_DISABLED) {
127 			int ret;
128 
129 			ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r);
130 			if (ret)
131 				return ret;
132 		}
133 	}
134 
135 	/*
136 	 * The resources may pass trigger flags to the irqs that need
137 	 * to be set up. It so happens that the trigger flags for
138 	 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER*
139 	 * settings.
140 	 */
141 	if (r && r->flags & IORESOURCE_BITS) {
142 		struct irq_data *irqd;
143 
144 		irqd = irq_get_irq_data(r->start);
145 		if (!irqd)
146 			return -ENXIO;
147 		irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
148 	}
149 
150 	if (r)
151 		return r->start;
152 
153 	/*
154 	 * For the index 0 interrupt, allow falling back to GpioInt
155 	 * resources. While a device could have both Interrupt and GpioInt
156 	 * resources, making this fallback ambiguous, in many common cases
157 	 * the device will only expose one IRQ, and this fallback
158 	 * allows a common code path across either kind of resource.
159 	 */
160 	if (num == 0 && has_acpi_companion(&dev->dev))
161 		return acpi_dev_gpio_irq_get(ACPI_COMPANION(&dev->dev), num);
162 
163 	return -ENXIO;
164 #endif
165 }
166 EXPORT_SYMBOL_GPL(platform_get_irq);
167 
168 /**
169  * platform_irq_count - Count the number of IRQs a platform device uses
170  * @dev: platform device
171  *
172  * Return: Number of IRQs a platform device uses or EPROBE_DEFER
173  */
174 int platform_irq_count(struct platform_device *dev)
175 {
176 	int ret, nr = 0;
177 
178 	while ((ret = platform_get_irq(dev, nr)) >= 0)
179 		nr++;
180 
181 	if (ret == -EPROBE_DEFER)
182 		return ret;
183 
184 	return nr;
185 }
186 EXPORT_SYMBOL_GPL(platform_irq_count);
187 
188 /**
189  * platform_get_resource_byname - get a resource for a device by name
190  * @dev: platform device
191  * @type: resource type
192  * @name: resource name
193  */
194 struct resource *platform_get_resource_byname(struct platform_device *dev,
195 					      unsigned int type,
196 					      const char *name)
197 {
198 	int i;
199 
200 	for (i = 0; i < dev->num_resources; i++) {
201 		struct resource *r = &dev->resource[i];
202 
203 		if (unlikely(!r->name))
204 			continue;
205 
206 		if (type == resource_type(r) && !strcmp(r->name, name))
207 			return r;
208 	}
209 	return NULL;
210 }
211 EXPORT_SYMBOL_GPL(platform_get_resource_byname);
212 
213 /**
214  * platform_get_irq_byname - get an IRQ for a device by name
215  * @dev: platform device
216  * @name: IRQ name
217  */
218 int platform_get_irq_byname(struct platform_device *dev, const char *name)
219 {
220 	struct resource *r;
221 
222 	if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) {
223 		int ret;
224 
225 		ret = of_irq_get_byname(dev->dev.of_node, name);
226 		if (ret > 0 || ret == -EPROBE_DEFER)
227 			return ret;
228 	}
229 
230 	r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name);
231 	return r ? r->start : -ENXIO;
232 }
233 EXPORT_SYMBOL_GPL(platform_get_irq_byname);
234 
235 /**
236  * platform_add_devices - add a numbers of platform devices
237  * @devs: array of platform devices to add
238  * @num: number of platform devices in array
239  */
240 int platform_add_devices(struct platform_device **devs, int num)
241 {
242 	int i, ret = 0;
243 
244 	for (i = 0; i < num; i++) {
245 		ret = platform_device_register(devs[i]);
246 		if (ret) {
247 			while (--i >= 0)
248 				platform_device_unregister(devs[i]);
249 			break;
250 		}
251 	}
252 
253 	return ret;
254 }
255 EXPORT_SYMBOL_GPL(platform_add_devices);
256 
257 struct platform_object {
258 	struct platform_device pdev;
259 	char name[];
260 };
261 
262 /**
263  * platform_device_put - destroy a platform device
264  * @pdev: platform device to free
265  *
266  * Free all memory associated with a platform device.  This function must
267  * _only_ be externally called in error cases.  All other usage is a bug.
268  */
269 void platform_device_put(struct platform_device *pdev)
270 {
271 	if (!IS_ERR_OR_NULL(pdev))
272 		put_device(&pdev->dev);
273 }
274 EXPORT_SYMBOL_GPL(platform_device_put);
275 
276 static void platform_device_release(struct device *dev)
277 {
278 	struct platform_object *pa = container_of(dev, struct platform_object,
279 						  pdev.dev);
280 
281 	of_device_node_put(&pa->pdev.dev);
282 	kfree(pa->pdev.dev.platform_data);
283 	kfree(pa->pdev.mfd_cell);
284 	kfree(pa->pdev.resource);
285 	kfree(pa->pdev.driver_override);
286 	kfree(pa);
287 }
288 
289 /**
290  * platform_device_alloc - create a platform device
291  * @name: base name of the device we're adding
292  * @id: instance id
293  *
294  * Create a platform device object which can have other objects attached
295  * to it, and which will have attached objects freed when it is released.
296  */
297 struct platform_device *platform_device_alloc(const char *name, int id)
298 {
299 	struct platform_object *pa;
300 
301 	pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL);
302 	if (pa) {
303 		strcpy(pa->name, name);
304 		pa->pdev.name = pa->name;
305 		pa->pdev.id = id;
306 		device_initialize(&pa->pdev.dev);
307 		pa->pdev.dev.release = platform_device_release;
308 		arch_setup_pdev_archdata(&pa->pdev);
309 	}
310 
311 	return pa ? &pa->pdev : NULL;
312 }
313 EXPORT_SYMBOL_GPL(platform_device_alloc);
314 
315 /**
316  * platform_device_add_resources - add resources to a platform device
317  * @pdev: platform device allocated by platform_device_alloc to add resources to
318  * @res: set of resources that needs to be allocated for the device
319  * @num: number of resources
320  *
321  * Add a copy of the resources to the platform device.  The memory
322  * associated with the resources will be freed when the platform device is
323  * released.
324  */
325 int platform_device_add_resources(struct platform_device *pdev,
326 				  const struct resource *res, unsigned int num)
327 {
328 	struct resource *r = NULL;
329 
330 	if (res) {
331 		r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL);
332 		if (!r)
333 			return -ENOMEM;
334 	}
335 
336 	kfree(pdev->resource);
337 	pdev->resource = r;
338 	pdev->num_resources = num;
339 	return 0;
340 }
341 EXPORT_SYMBOL_GPL(platform_device_add_resources);
342 
343 /**
344  * platform_device_add_data - add platform-specific data to a platform device
345  * @pdev: platform device allocated by platform_device_alloc to add resources to
346  * @data: platform specific data for this platform device
347  * @size: size of platform specific data
348  *
349  * Add a copy of platform specific data to the platform device's
350  * platform_data pointer.  The memory associated with the platform data
351  * will be freed when the platform device is released.
352  */
353 int platform_device_add_data(struct platform_device *pdev, const void *data,
354 			     size_t size)
355 {
356 	void *d = NULL;
357 
358 	if (data) {
359 		d = kmemdup(data, size, GFP_KERNEL);
360 		if (!d)
361 			return -ENOMEM;
362 	}
363 
364 	kfree(pdev->dev.platform_data);
365 	pdev->dev.platform_data = d;
366 	return 0;
367 }
368 EXPORT_SYMBOL_GPL(platform_device_add_data);
369 
370 /**
371  * platform_device_add_properties - add built-in properties to a platform device
372  * @pdev: platform device to add properties to
373  * @properties: null terminated array of properties to add
374  *
375  * The function will take deep copy of @properties and attach the copy to the
376  * platform device. The memory associated with properties will be freed when the
377  * platform device is released.
378  */
379 int platform_device_add_properties(struct platform_device *pdev,
380 				   const struct property_entry *properties)
381 {
382 	return device_add_properties(&pdev->dev, properties);
383 }
384 EXPORT_SYMBOL_GPL(platform_device_add_properties);
385 
386 /**
387  * platform_device_add - add a platform device to device hierarchy
388  * @pdev: platform device we're adding
389  *
390  * This is part 2 of platform_device_register(), though may be called
391  * separately _iff_ pdev was allocated by platform_device_alloc().
392  */
393 int platform_device_add(struct platform_device *pdev)
394 {
395 	int i, ret;
396 
397 	if (!pdev)
398 		return -EINVAL;
399 
400 	if (!pdev->dev.parent)
401 		pdev->dev.parent = &platform_bus;
402 
403 	pdev->dev.bus = &platform_bus_type;
404 
405 	switch (pdev->id) {
406 	default:
407 		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
408 		break;
409 	case PLATFORM_DEVID_NONE:
410 		dev_set_name(&pdev->dev, "%s", pdev->name);
411 		break;
412 	case PLATFORM_DEVID_AUTO:
413 		/*
414 		 * Automatically allocated device ID. We mark it as such so
415 		 * that we remember it must be freed, and we append a suffix
416 		 * to avoid namespace collision with explicit IDs.
417 		 */
418 		ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL);
419 		if (ret < 0)
420 			goto err_out;
421 		pdev->id = ret;
422 		pdev->id_auto = true;
423 		dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id);
424 		break;
425 	}
426 
427 	for (i = 0; i < pdev->num_resources; i++) {
428 		struct resource *p, *r = &pdev->resource[i];
429 
430 		if (r->name == NULL)
431 			r->name = dev_name(&pdev->dev);
432 
433 		p = r->parent;
434 		if (!p) {
435 			if (resource_type(r) == IORESOURCE_MEM)
436 				p = &iomem_resource;
437 			else if (resource_type(r) == IORESOURCE_IO)
438 				p = &ioport_resource;
439 		}
440 
441 		if (p && insert_resource(p, r)) {
442 			dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r);
443 			ret = -EBUSY;
444 			goto failed;
445 		}
446 	}
447 
448 	pr_debug("Registering platform device '%s'. Parent at %s\n",
449 		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));
450 
451 	ret = device_add(&pdev->dev);
452 	if (ret == 0)
453 		return ret;
454 
455  failed:
456 	if (pdev->id_auto) {
457 		ida_simple_remove(&platform_devid_ida, pdev->id);
458 		pdev->id = PLATFORM_DEVID_AUTO;
459 	}
460 
461 	while (--i >= 0) {
462 		struct resource *r = &pdev->resource[i];
463 		if (r->parent)
464 			release_resource(r);
465 	}
466 
467  err_out:
468 	return ret;
469 }
470 EXPORT_SYMBOL_GPL(platform_device_add);
471 
472 /**
473  * platform_device_del - remove a platform-level device
474  * @pdev: platform device we're removing
475  *
476  * Note that this function will also release all memory- and port-based
477  * resources owned by the device (@dev->resource).  This function must
478  * _only_ be externally called in error cases.  All other usage is a bug.
479  */
480 void platform_device_del(struct platform_device *pdev)
481 {
482 	int i;
483 
484 	if (!IS_ERR_OR_NULL(pdev)) {
485 		device_del(&pdev->dev);
486 
487 		if (pdev->id_auto) {
488 			ida_simple_remove(&platform_devid_ida, pdev->id);
489 			pdev->id = PLATFORM_DEVID_AUTO;
490 		}
491 
492 		for (i = 0; i < pdev->num_resources; i++) {
493 			struct resource *r = &pdev->resource[i];
494 			if (r->parent)
495 				release_resource(r);
496 		}
497 	}
498 }
499 EXPORT_SYMBOL_GPL(platform_device_del);
500 
501 /**
502  * platform_device_register - add a platform-level device
503  * @pdev: platform device we're adding
504  */
505 int platform_device_register(struct platform_device *pdev)
506 {
507 	device_initialize(&pdev->dev);
508 	arch_setup_pdev_archdata(pdev);
509 	return platform_device_add(pdev);
510 }
511 EXPORT_SYMBOL_GPL(platform_device_register);
512 
513 /**
514  * platform_device_unregister - unregister a platform-level device
515  * @pdev: platform device we're unregistering
516  *
517  * Unregistration is done in 2 steps. First we release all resources
518  * and remove it from the subsystem, then we drop reference count by
519  * calling platform_device_put().
520  */
521 void platform_device_unregister(struct platform_device *pdev)
522 {
523 	platform_device_del(pdev);
524 	platform_device_put(pdev);
525 }
526 EXPORT_SYMBOL_GPL(platform_device_unregister);
527 
528 /**
529  * platform_device_register_full - add a platform-level device with
530  * resources and platform-specific data
531  *
532  * @pdevinfo: data used to create device
533  *
534  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
535  */
536 struct platform_device *platform_device_register_full(
537 		const struct platform_device_info *pdevinfo)
538 {
539 	int ret = -ENOMEM;
540 	struct platform_device *pdev;
541 
542 	pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id);
543 	if (!pdev)
544 		return ERR_PTR(-ENOMEM);
545 
546 	pdev->dev.parent = pdevinfo->parent;
547 	pdev->dev.fwnode = pdevinfo->fwnode;
548 	pdev->dev.of_node = of_node_get(to_of_node(pdev->dev.fwnode));
549 	pdev->dev.of_node_reused = pdevinfo->of_node_reused;
550 
551 	if (pdevinfo->dma_mask) {
552 		/*
553 		 * This memory isn't freed when the device is put,
554 		 * I don't have a nice idea for that though.  Conceptually
555 		 * dma_mask in struct device should not be a pointer.
556 		 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081
557 		 */
558 		pdev->dev.dma_mask =
559 			kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL);
560 		if (!pdev->dev.dma_mask)
561 			goto err;
562 
563 		kmemleak_ignore(pdev->dev.dma_mask);
564 
565 		*pdev->dev.dma_mask = pdevinfo->dma_mask;
566 		pdev->dev.coherent_dma_mask = pdevinfo->dma_mask;
567 	}
568 
569 	ret = platform_device_add_resources(pdev,
570 			pdevinfo->res, pdevinfo->num_res);
571 	if (ret)
572 		goto err;
573 
574 	ret = platform_device_add_data(pdev,
575 			pdevinfo->data, pdevinfo->size_data);
576 	if (ret)
577 		goto err;
578 
579 	if (pdevinfo->properties) {
580 		ret = platform_device_add_properties(pdev,
581 						     pdevinfo->properties);
582 		if (ret)
583 			goto err;
584 	}
585 
586 	ret = platform_device_add(pdev);
587 	if (ret) {
588 err:
589 		ACPI_COMPANION_SET(&pdev->dev, NULL);
590 		kfree(pdev->dev.dma_mask);
591 		platform_device_put(pdev);
592 		return ERR_PTR(ret);
593 	}
594 
595 	return pdev;
596 }
597 EXPORT_SYMBOL_GPL(platform_device_register_full);
598 
599 static int platform_drv_probe(struct device *_dev)
600 {
601 	struct platform_driver *drv = to_platform_driver(_dev->driver);
602 	struct platform_device *dev = to_platform_device(_dev);
603 	int ret;
604 
605 	ret = of_clk_set_defaults(_dev->of_node, false);
606 	if (ret < 0)
607 		return ret;
608 
609 	ret = dev_pm_domain_attach(_dev, true);
610 	if (ret)
611 		goto out;
612 
613 	if (drv->probe) {
614 		ret = drv->probe(dev);
615 		if (ret)
616 			dev_pm_domain_detach(_dev, true);
617 	}
618 
619 out:
620 	if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {
621 		dev_warn(_dev, "probe deferral not supported\n");
622 		ret = -ENXIO;
623 	}
624 
625 	return ret;
626 }
627 
628 static int platform_drv_probe_fail(struct device *_dev)
629 {
630 	return -ENXIO;
631 }
632 
633 static int platform_drv_remove(struct device *_dev)
634 {
635 	struct platform_driver *drv = to_platform_driver(_dev->driver);
636 	struct platform_device *dev = to_platform_device(_dev);
637 	int ret = 0;
638 
639 	if (drv->remove)
640 		ret = drv->remove(dev);
641 	dev_pm_domain_detach(_dev, true);
642 
643 	return ret;
644 }
645 
646 static void platform_drv_shutdown(struct device *_dev)
647 {
648 	struct platform_driver *drv = to_platform_driver(_dev->driver);
649 	struct platform_device *dev = to_platform_device(_dev);
650 
651 	if (drv->shutdown)
652 		drv->shutdown(dev);
653 }
654 
655 /**
656  * __platform_driver_register - register a driver for platform-level devices
657  * @drv: platform driver structure
658  * @owner: owning module/driver
659  */
660 int __platform_driver_register(struct platform_driver *drv,
661 				struct module *owner)
662 {
663 	drv->driver.owner = owner;
664 	drv->driver.bus = &platform_bus_type;
665 	drv->driver.probe = platform_drv_probe;
666 	drv->driver.remove = platform_drv_remove;
667 	drv->driver.shutdown = platform_drv_shutdown;
668 
669 	return driver_register(&drv->driver);
670 }
671 EXPORT_SYMBOL_GPL(__platform_driver_register);
672 
673 /**
674  * platform_driver_unregister - unregister a driver for platform-level devices
675  * @drv: platform driver structure
676  */
677 void platform_driver_unregister(struct platform_driver *drv)
678 {
679 	driver_unregister(&drv->driver);
680 }
681 EXPORT_SYMBOL_GPL(platform_driver_unregister);
682 
683 /**
684  * __platform_driver_probe - register driver for non-hotpluggable device
685  * @drv: platform driver structure
686  * @probe: the driver probe routine, probably from an __init section
687  * @module: module which will be the owner of the driver
688  *
689  * Use this instead of platform_driver_register() when you know the device
690  * is not hotpluggable and has already been registered, and you want to
691  * remove its run-once probe() infrastructure from memory after the driver
692  * has bound to the device.
693  *
694  * One typical use for this would be with drivers for controllers integrated
695  * into system-on-chip processors, where the controller devices have been
696  * configured as part of board setup.
697  *
698  * Note that this is incompatible with deferred probing.
699  *
700  * Returns zero if the driver registered and bound to a device, else returns
701  * a negative error code and with the driver not registered.
702  */
703 int __init_or_module __platform_driver_probe(struct platform_driver *drv,
704 		int (*probe)(struct platform_device *), struct module *module)
705 {
706 	int retval, code;
707 
708 	if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) {
709 		pr_err("%s: drivers registered with %s can not be probed asynchronously\n",
710 			 drv->driver.name, __func__);
711 		return -EINVAL;
712 	}
713 
714 	/*
715 	 * We have to run our probes synchronously because we check if
716 	 * we find any devices to bind to and exit with error if there
717 	 * are any.
718 	 */
719 	drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS;
720 
721 	/*
722 	 * Prevent driver from requesting probe deferral to avoid further
723 	 * futile probe attempts.
724 	 */
725 	drv->prevent_deferred_probe = true;
726 
727 	/* make sure driver won't have bind/unbind attributes */
728 	drv->driver.suppress_bind_attrs = true;
729 
730 	/* temporary section violation during probe() */
731 	drv->probe = probe;
732 	retval = code = __platform_driver_register(drv, module);
733 
734 	/*
735 	 * Fixup that section violation, being paranoid about code scanning
736 	 * the list of drivers in order to probe new devices.  Check to see
737 	 * if the probe was successful, and make sure any forced probes of
738 	 * new devices fail.
739 	 */
740 	spin_lock(&drv->driver.bus->p->klist_drivers.k_lock);
741 	drv->probe = NULL;
742 	if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
743 		retval = -ENODEV;
744 	drv->driver.probe = platform_drv_probe_fail;
745 	spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock);
746 
747 	if (code != retval)
748 		platform_driver_unregister(drv);
749 	return retval;
750 }
751 EXPORT_SYMBOL_GPL(__platform_driver_probe);
752 
753 /**
754  * __platform_create_bundle - register driver and create corresponding device
755  * @driver: platform driver structure
756  * @probe: the driver probe routine, probably from an __init section
757  * @res: set of resources that needs to be allocated for the device
758  * @n_res: number of resources
759  * @data: platform specific data for this platform device
760  * @size: size of platform specific data
761  * @module: module which will be the owner of the driver
762  *
763  * Use this in legacy-style modules that probe hardware directly and
764  * register a single platform device and corresponding platform driver.
765  *
766  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
767  */
768 struct platform_device * __init_or_module __platform_create_bundle(
769 			struct platform_driver *driver,
770 			int (*probe)(struct platform_device *),
771 			struct resource *res, unsigned int n_res,
772 			const void *data, size_t size, struct module *module)
773 {
774 	struct platform_device *pdev;
775 	int error;
776 
777 	pdev = platform_device_alloc(driver->driver.name, -1);
778 	if (!pdev) {
779 		error = -ENOMEM;
780 		goto err_out;
781 	}
782 
783 	error = platform_device_add_resources(pdev, res, n_res);
784 	if (error)
785 		goto err_pdev_put;
786 
787 	error = platform_device_add_data(pdev, data, size);
788 	if (error)
789 		goto err_pdev_put;
790 
791 	error = platform_device_add(pdev);
792 	if (error)
793 		goto err_pdev_put;
794 
795 	error = __platform_driver_probe(driver, probe, module);
796 	if (error)
797 		goto err_pdev_del;
798 
799 	return pdev;
800 
801 err_pdev_del:
802 	platform_device_del(pdev);
803 err_pdev_put:
804 	platform_device_put(pdev);
805 err_out:
806 	return ERR_PTR(error);
807 }
808 EXPORT_SYMBOL_GPL(__platform_create_bundle);
809 
810 /**
811  * __platform_register_drivers - register an array of platform drivers
812  * @drivers: an array of drivers to register
813  * @count: the number of drivers to register
814  * @owner: module owning the drivers
815  *
816  * Registers platform drivers specified by an array. On failure to register a
817  * driver, all previously registered drivers will be unregistered. Callers of
818  * this API should use platform_unregister_drivers() to unregister drivers in
819  * the reverse order.
820  *
821  * Returns: 0 on success or a negative error code on failure.
822  */
823 int __platform_register_drivers(struct platform_driver * const *drivers,
824 				unsigned int count, struct module *owner)
825 {
826 	unsigned int i;
827 	int err;
828 
829 	for (i = 0; i < count; i++) {
830 		pr_debug("registering platform driver %ps\n", drivers[i]);
831 
832 		err = __platform_driver_register(drivers[i], owner);
833 		if (err < 0) {
834 			pr_err("failed to register platform driver %ps: %d\n",
835 			       drivers[i], err);
836 			goto error;
837 		}
838 	}
839 
840 	return 0;
841 
842 error:
843 	while (i--) {
844 		pr_debug("unregistering platform driver %ps\n", drivers[i]);
845 		platform_driver_unregister(drivers[i]);
846 	}
847 
848 	return err;
849 }
850 EXPORT_SYMBOL_GPL(__platform_register_drivers);
851 
852 /**
853  * platform_unregister_drivers - unregister an array of platform drivers
854  * @drivers: an array of drivers to unregister
855  * @count: the number of drivers to unregister
856  *
857  * Unegisters platform drivers specified by an array. This is typically used
858  * to complement an earlier call to platform_register_drivers(). Drivers are
859  * unregistered in the reverse order in which they were registered.
860  */
861 void platform_unregister_drivers(struct platform_driver * const *drivers,
862 				 unsigned int count)
863 {
864 	while (count--) {
865 		pr_debug("unregistering platform driver %ps\n", drivers[count]);
866 		platform_driver_unregister(drivers[count]);
867 	}
868 }
869 EXPORT_SYMBOL_GPL(platform_unregister_drivers);
870 
871 /* modalias support enables more hands-off userspace setup:
872  * (a) environment variable lets new-style hotplug events work once system is
873  *     fully running:  "modprobe $MODALIAS"
874  * (b) sysfs attribute lets new-style coldplug recover from hotplug events
875  *     mishandled before system is fully running:  "modprobe $(cat modalias)"
876  */
877 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
878 			     char *buf)
879 {
880 	struct platform_device	*pdev = to_platform_device(dev);
881 	int len;
882 
883 	len = of_device_modalias(dev, buf, PAGE_SIZE);
884 	if (len != -ENODEV)
885 		return len;
886 
887 	len = acpi_device_modalias(dev, buf, PAGE_SIZE -1);
888 	if (len != -ENODEV)
889 		return len;
890 
891 	len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name);
892 
893 	return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len;
894 }
895 static DEVICE_ATTR_RO(modalias);
896 
897 static ssize_t driver_override_store(struct device *dev,
898 				     struct device_attribute *attr,
899 				     const char *buf, size_t count)
900 {
901 	struct platform_device *pdev = to_platform_device(dev);
902 	char *driver_override, *old, *cp;
903 
904 	/* We need to keep extra room for a newline */
905 	if (count >= (PAGE_SIZE - 1))
906 		return -EINVAL;
907 
908 	driver_override = kstrndup(buf, count, GFP_KERNEL);
909 	if (!driver_override)
910 		return -ENOMEM;
911 
912 	cp = strchr(driver_override, '\n');
913 	if (cp)
914 		*cp = '\0';
915 
916 	device_lock(dev);
917 	old = pdev->driver_override;
918 	if (strlen(driver_override)) {
919 		pdev->driver_override = driver_override;
920 	} else {
921 		kfree(driver_override);
922 		pdev->driver_override = NULL;
923 	}
924 	device_unlock(dev);
925 
926 	kfree(old);
927 
928 	return count;
929 }
930 
931 static ssize_t driver_override_show(struct device *dev,
932 				    struct device_attribute *attr, char *buf)
933 {
934 	struct platform_device *pdev = to_platform_device(dev);
935 	ssize_t len;
936 
937 	device_lock(dev);
938 	len = sprintf(buf, "%s\n", pdev->driver_override);
939 	device_unlock(dev);
940 	return len;
941 }
942 static DEVICE_ATTR_RW(driver_override);
943 
944 
945 static struct attribute *platform_dev_attrs[] = {
946 	&dev_attr_modalias.attr,
947 	&dev_attr_driver_override.attr,
948 	NULL,
949 };
950 ATTRIBUTE_GROUPS(platform_dev);
951 
952 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env)
953 {
954 	struct platform_device	*pdev = to_platform_device(dev);
955 	int rc;
956 
957 	/* Some devices have extra OF data and an OF-style MODALIAS */
958 	rc = of_device_uevent_modalias(dev, env);
959 	if (rc != -ENODEV)
960 		return rc;
961 
962 	rc = acpi_device_uevent_modalias(dev, env);
963 	if (rc != -ENODEV)
964 		return rc;
965 
966 	add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX,
967 			pdev->name);
968 	return 0;
969 }
970 
971 static const struct platform_device_id *platform_match_id(
972 			const struct platform_device_id *id,
973 			struct platform_device *pdev)
974 {
975 	while (id->name[0]) {
976 		if (strcmp(pdev->name, id->name) == 0) {
977 			pdev->id_entry = id;
978 			return id;
979 		}
980 		id++;
981 	}
982 	return NULL;
983 }
984 
985 /**
986  * platform_match - bind platform device to platform driver.
987  * @dev: device.
988  * @drv: driver.
989  *
990  * Platform device IDs are assumed to be encoded like this:
991  * "<name><instance>", where <name> is a short description of the type of
992  * device, like "pci" or "floppy", and <instance> is the enumerated
993  * instance of the device, like '0' or '42'.  Driver IDs are simply
994  * "<name>".  So, extract the <name> from the platform_device structure,
995  * and compare it against the name of the driver. Return whether they match
996  * or not.
997  */
998 static int platform_match(struct device *dev, struct device_driver *drv)
999 {
1000 	struct platform_device *pdev = to_platform_device(dev);
1001 	struct platform_driver *pdrv = to_platform_driver(drv);
1002 
1003 	/* When driver_override is set, only bind to the matching driver */
1004 	if (pdev->driver_override)
1005 		return !strcmp(pdev->driver_override, drv->name);
1006 
1007 	/* Attempt an OF style match first */
1008 	if (of_driver_match_device(dev, drv))
1009 		return 1;
1010 
1011 	/* Then try ACPI style match */
1012 	if (acpi_driver_match_device(dev, drv))
1013 		return 1;
1014 
1015 	/* Then try to match against the id table */
1016 	if (pdrv->id_table)
1017 		return platform_match_id(pdrv->id_table, pdev) != NULL;
1018 
1019 	/* fall-back to driver name match */
1020 	return (strcmp(pdev->name, drv->name) == 0);
1021 }
1022 
1023 #ifdef CONFIG_PM_SLEEP
1024 
1025 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg)
1026 {
1027 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1028 	struct platform_device *pdev = to_platform_device(dev);
1029 	int ret = 0;
1030 
1031 	if (dev->driver && pdrv->suspend)
1032 		ret = pdrv->suspend(pdev, mesg);
1033 
1034 	return ret;
1035 }
1036 
1037 static int platform_legacy_resume(struct device *dev)
1038 {
1039 	struct platform_driver *pdrv = to_platform_driver(dev->driver);
1040 	struct platform_device *pdev = to_platform_device(dev);
1041 	int ret = 0;
1042 
1043 	if (dev->driver && pdrv->resume)
1044 		ret = pdrv->resume(pdev);
1045 
1046 	return ret;
1047 }
1048 
1049 #endif /* CONFIG_PM_SLEEP */
1050 
1051 #ifdef CONFIG_SUSPEND
1052 
1053 int platform_pm_suspend(struct device *dev)
1054 {
1055 	struct device_driver *drv = dev->driver;
1056 	int ret = 0;
1057 
1058 	if (!drv)
1059 		return 0;
1060 
1061 	if (drv->pm) {
1062 		if (drv->pm->suspend)
1063 			ret = drv->pm->suspend(dev);
1064 	} else {
1065 		ret = platform_legacy_suspend(dev, PMSG_SUSPEND);
1066 	}
1067 
1068 	return ret;
1069 }
1070 
1071 int platform_pm_resume(struct device *dev)
1072 {
1073 	struct device_driver *drv = dev->driver;
1074 	int ret = 0;
1075 
1076 	if (!drv)
1077 		return 0;
1078 
1079 	if (drv->pm) {
1080 		if (drv->pm->resume)
1081 			ret = drv->pm->resume(dev);
1082 	} else {
1083 		ret = platform_legacy_resume(dev);
1084 	}
1085 
1086 	return ret;
1087 }
1088 
1089 #endif /* CONFIG_SUSPEND */
1090 
1091 #ifdef CONFIG_HIBERNATE_CALLBACKS
1092 
1093 int platform_pm_freeze(struct device *dev)
1094 {
1095 	struct device_driver *drv = dev->driver;
1096 	int ret = 0;
1097 
1098 	if (!drv)
1099 		return 0;
1100 
1101 	if (drv->pm) {
1102 		if (drv->pm->freeze)
1103 			ret = drv->pm->freeze(dev);
1104 	} else {
1105 		ret = platform_legacy_suspend(dev, PMSG_FREEZE);
1106 	}
1107 
1108 	return ret;
1109 }
1110 
1111 int platform_pm_thaw(struct device *dev)
1112 {
1113 	struct device_driver *drv = dev->driver;
1114 	int ret = 0;
1115 
1116 	if (!drv)
1117 		return 0;
1118 
1119 	if (drv->pm) {
1120 		if (drv->pm->thaw)
1121 			ret = drv->pm->thaw(dev);
1122 	} else {
1123 		ret = platform_legacy_resume(dev);
1124 	}
1125 
1126 	return ret;
1127 }
1128 
1129 int platform_pm_poweroff(struct device *dev)
1130 {
1131 	struct device_driver *drv = dev->driver;
1132 	int ret = 0;
1133 
1134 	if (!drv)
1135 		return 0;
1136 
1137 	if (drv->pm) {
1138 		if (drv->pm->poweroff)
1139 			ret = drv->pm->poweroff(dev);
1140 	} else {
1141 		ret = platform_legacy_suspend(dev, PMSG_HIBERNATE);
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 int platform_pm_restore(struct device *dev)
1148 {
1149 	struct device_driver *drv = dev->driver;
1150 	int ret = 0;
1151 
1152 	if (!drv)
1153 		return 0;
1154 
1155 	if (drv->pm) {
1156 		if (drv->pm->restore)
1157 			ret = drv->pm->restore(dev);
1158 	} else {
1159 		ret = platform_legacy_resume(dev);
1160 	}
1161 
1162 	return ret;
1163 }
1164 
1165 #endif /* CONFIG_HIBERNATE_CALLBACKS */
1166 
1167 int platform_dma_configure(struct device *dev)
1168 {
1169 	enum dev_dma_attr attr;
1170 	int ret = 0;
1171 
1172 	if (dev->of_node) {
1173 		ret = of_dma_configure(dev, dev->of_node, true);
1174 	} else if (has_acpi_companion(dev)) {
1175 		attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode));
1176 		ret = acpi_dma_configure(dev, attr);
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 static const struct dev_pm_ops platform_dev_pm_ops = {
1183 	.runtime_suspend = pm_generic_runtime_suspend,
1184 	.runtime_resume = pm_generic_runtime_resume,
1185 	USE_PLATFORM_PM_SLEEP_OPS
1186 };
1187 
1188 struct bus_type platform_bus_type = {
1189 	.name		= "platform",
1190 	.dev_groups	= platform_dev_groups,
1191 	.match		= platform_match,
1192 	.uevent		= platform_uevent,
1193 	.dma_configure	= platform_dma_configure,
1194 	.pm		= &platform_dev_pm_ops,
1195 };
1196 EXPORT_SYMBOL_GPL(platform_bus_type);
1197 
1198 int __init platform_bus_init(void)
1199 {
1200 	int error;
1201 
1202 	early_platform_cleanup();
1203 
1204 	error = device_register(&platform_bus);
1205 	if (error) {
1206 		put_device(&platform_bus);
1207 		return error;
1208 	}
1209 	error =  bus_register(&platform_bus_type);
1210 	if (error)
1211 		device_unregister(&platform_bus);
1212 	of_platform_register_reconfig_notifier();
1213 	return error;
1214 }
1215 
1216 static __initdata LIST_HEAD(early_platform_driver_list);
1217 static __initdata LIST_HEAD(early_platform_device_list);
1218 
1219 /**
1220  * early_platform_driver_register - register early platform driver
1221  * @epdrv: early_platform driver structure
1222  * @buf: string passed from early_param()
1223  *
1224  * Helper function for early_platform_init() / early_platform_init_buffer()
1225  */
1226 int __init early_platform_driver_register(struct early_platform_driver *epdrv,
1227 					  char *buf)
1228 {
1229 	char *tmp;
1230 	int n;
1231 
1232 	/* Simply add the driver to the end of the global list.
1233 	 * Drivers will by default be put on the list in compiled-in order.
1234 	 */
1235 	if (!epdrv->list.next) {
1236 		INIT_LIST_HEAD(&epdrv->list);
1237 		list_add_tail(&epdrv->list, &early_platform_driver_list);
1238 	}
1239 
1240 	/* If the user has specified device then make sure the driver
1241 	 * gets prioritized. The driver of the last device specified on
1242 	 * command line will be put first on the list.
1243 	 */
1244 	n = strlen(epdrv->pdrv->driver.name);
1245 	if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) {
1246 		list_move(&epdrv->list, &early_platform_driver_list);
1247 
1248 		/* Allow passing parameters after device name */
1249 		if (buf[n] == '\0' || buf[n] == ',')
1250 			epdrv->requested_id = -1;
1251 		else {
1252 			epdrv->requested_id = simple_strtoul(&buf[n + 1],
1253 							     &tmp, 10);
1254 
1255 			if (buf[n] != '.' || (tmp == &buf[n + 1])) {
1256 				epdrv->requested_id = EARLY_PLATFORM_ID_ERROR;
1257 				n = 0;
1258 			} else
1259 				n += strcspn(&buf[n + 1], ",") + 1;
1260 		}
1261 
1262 		if (buf[n] == ',')
1263 			n++;
1264 
1265 		if (epdrv->bufsize) {
1266 			memcpy(epdrv->buffer, &buf[n],
1267 			       min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1));
1268 			epdrv->buffer[epdrv->bufsize - 1] = '\0';
1269 		}
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /**
1276  * early_platform_add_devices - adds a number of early platform devices
1277  * @devs: array of early platform devices to add
1278  * @num: number of early platform devices in array
1279  *
1280  * Used by early architecture code to register early platform devices and
1281  * their platform data.
1282  */
1283 void __init early_platform_add_devices(struct platform_device **devs, int num)
1284 {
1285 	struct device *dev;
1286 	int i;
1287 
1288 	/* simply add the devices to list */
1289 	for (i = 0; i < num; i++) {
1290 		dev = &devs[i]->dev;
1291 
1292 		if (!dev->devres_head.next) {
1293 			pm_runtime_early_init(dev);
1294 			INIT_LIST_HEAD(&dev->devres_head);
1295 			list_add_tail(&dev->devres_head,
1296 				      &early_platform_device_list);
1297 		}
1298 	}
1299 }
1300 
1301 /**
1302  * early_platform_driver_register_all - register early platform drivers
1303  * @class_str: string to identify early platform driver class
1304  *
1305  * Used by architecture code to register all early platform drivers
1306  * for a certain class. If omitted then only early platform drivers
1307  * with matching kernel command line class parameters will be registered.
1308  */
1309 void __init early_platform_driver_register_all(char *class_str)
1310 {
1311 	/* The "class_str" parameter may or may not be present on the kernel
1312 	 * command line. If it is present then there may be more than one
1313 	 * matching parameter.
1314 	 *
1315 	 * Since we register our early platform drivers using early_param()
1316 	 * we need to make sure that they also get registered in the case
1317 	 * when the parameter is missing from the kernel command line.
1318 	 *
1319 	 * We use parse_early_options() to make sure the early_param() gets
1320 	 * called at least once. The early_param() may be called more than
1321 	 * once since the name of the preferred device may be specified on
1322 	 * the kernel command line. early_platform_driver_register() handles
1323 	 * this case for us.
1324 	 */
1325 	parse_early_options(class_str);
1326 }
1327 
1328 /**
1329  * early_platform_match - find early platform device matching driver
1330  * @epdrv: early platform driver structure
1331  * @id: id to match against
1332  */
1333 static struct platform_device * __init
1334 early_platform_match(struct early_platform_driver *epdrv, int id)
1335 {
1336 	struct platform_device *pd;
1337 
1338 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1339 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1340 			if (pd->id == id)
1341 				return pd;
1342 
1343 	return NULL;
1344 }
1345 
1346 /**
1347  * early_platform_left - check if early platform driver has matching devices
1348  * @epdrv: early platform driver structure
1349  * @id: return true if id or above exists
1350  */
1351 static int __init early_platform_left(struct early_platform_driver *epdrv,
1352 				       int id)
1353 {
1354 	struct platform_device *pd;
1355 
1356 	list_for_each_entry(pd, &early_platform_device_list, dev.devres_head)
1357 		if (platform_match(&pd->dev, &epdrv->pdrv->driver))
1358 			if (pd->id >= id)
1359 				return 1;
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * early_platform_driver_probe_id - probe drivers matching class_str and id
1366  * @class_str: string to identify early platform driver class
1367  * @id: id to match against
1368  * @nr_probe: number of platform devices to successfully probe before exiting
1369  */
1370 static int __init early_platform_driver_probe_id(char *class_str,
1371 						 int id,
1372 						 int nr_probe)
1373 {
1374 	struct early_platform_driver *epdrv;
1375 	struct platform_device *match;
1376 	int match_id;
1377 	int n = 0;
1378 	int left = 0;
1379 
1380 	list_for_each_entry(epdrv, &early_platform_driver_list, list) {
1381 		/* only use drivers matching our class_str */
1382 		if (strcmp(class_str, epdrv->class_str))
1383 			continue;
1384 
1385 		if (id == -2) {
1386 			match_id = epdrv->requested_id;
1387 			left = 1;
1388 
1389 		} else {
1390 			match_id = id;
1391 			left += early_platform_left(epdrv, id);
1392 
1393 			/* skip requested id */
1394 			switch (epdrv->requested_id) {
1395 			case EARLY_PLATFORM_ID_ERROR:
1396 			case EARLY_PLATFORM_ID_UNSET:
1397 				break;
1398 			default:
1399 				if (epdrv->requested_id == id)
1400 					match_id = EARLY_PLATFORM_ID_UNSET;
1401 			}
1402 		}
1403 
1404 		switch (match_id) {
1405 		case EARLY_PLATFORM_ID_ERROR:
1406 			pr_warn("%s: unable to parse %s parameter\n",
1407 				class_str, epdrv->pdrv->driver.name);
1408 			/* fall-through */
1409 		case EARLY_PLATFORM_ID_UNSET:
1410 			match = NULL;
1411 			break;
1412 		default:
1413 			match = early_platform_match(epdrv, match_id);
1414 		}
1415 
1416 		if (match) {
1417 			/*
1418 			 * Set up a sensible init_name to enable
1419 			 * dev_name() and others to be used before the
1420 			 * rest of the driver core is initialized.
1421 			 */
1422 			if (!match->dev.init_name && slab_is_available()) {
1423 				if (match->id != -1)
1424 					match->dev.init_name =
1425 						kasprintf(GFP_KERNEL, "%s.%d",
1426 							  match->name,
1427 							  match->id);
1428 				else
1429 					match->dev.init_name =
1430 						kasprintf(GFP_KERNEL, "%s",
1431 							  match->name);
1432 
1433 				if (!match->dev.init_name)
1434 					return -ENOMEM;
1435 			}
1436 
1437 			if (epdrv->pdrv->probe(match))
1438 				pr_warn("%s: unable to probe %s early.\n",
1439 					class_str, match->name);
1440 			else
1441 				n++;
1442 		}
1443 
1444 		if (n >= nr_probe)
1445 			break;
1446 	}
1447 
1448 	if (left)
1449 		return n;
1450 	else
1451 		return -ENODEV;
1452 }
1453 
1454 /**
1455  * early_platform_driver_probe - probe a class of registered drivers
1456  * @class_str: string to identify early platform driver class
1457  * @nr_probe: number of platform devices to successfully probe before exiting
1458  * @user_only: only probe user specified early platform devices
1459  *
1460  * Used by architecture code to probe registered early platform drivers
1461  * within a certain class. For probe to happen a registered early platform
1462  * device matching a registered early platform driver is needed.
1463  */
1464 int __init early_platform_driver_probe(char *class_str,
1465 				       int nr_probe,
1466 				       int user_only)
1467 {
1468 	int k, n, i;
1469 
1470 	n = 0;
1471 	for (i = -2; n < nr_probe; i++) {
1472 		k = early_platform_driver_probe_id(class_str, i, nr_probe - n);
1473 
1474 		if (k < 0)
1475 			break;
1476 
1477 		n += k;
1478 
1479 		if (user_only)
1480 			break;
1481 	}
1482 
1483 	return n;
1484 }
1485 
1486 /**
1487  * early_platform_cleanup - clean up early platform code
1488  */
1489 void __init early_platform_cleanup(void)
1490 {
1491 	struct platform_device *pd, *pd2;
1492 
1493 	/* clean up the devres list used to chain devices */
1494 	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
1495 				 dev.devres_head) {
1496 		list_del(&pd->dev.devres_head);
1497 		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
1498 	}
1499 }
1500 
1501