1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * platform.c - platform 'pseudo' bus for legacy devices 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * 8 * Please see Documentation/driver-model/platform.txt for more 9 * information. 10 */ 11 12 #include <linux/string.h> 13 #include <linux/platform_device.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/memblock.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/idr.h> 25 #include <linux/acpi.h> 26 #include <linux/clk/clk-conf.h> 27 #include <linux/limits.h> 28 #include <linux/property.h> 29 30 #include "base.h" 31 #include "power/power.h" 32 33 /* For automatically allocated device IDs */ 34 static DEFINE_IDA(platform_devid_ida); 35 36 struct device platform_bus = { 37 .init_name = "platform", 38 }; 39 EXPORT_SYMBOL_GPL(platform_bus); 40 41 /** 42 * arch_setup_pdev_archdata - Allow manipulation of archdata before its used 43 * @pdev: platform device 44 * 45 * This is called before platform_device_add() such that any pdev_archdata may 46 * be setup before the platform_notifier is called. So if a user needs to 47 * manipulate any relevant information in the pdev_archdata they can do: 48 * 49 * platform_device_alloc() 50 * ... manipulate ... 51 * platform_device_add() 52 * 53 * And if they don't care they can just call platform_device_register() and 54 * everything will just work out. 55 */ 56 void __weak arch_setup_pdev_archdata(struct platform_device *pdev) 57 { 58 } 59 60 /** 61 * platform_get_resource - get a resource for a device 62 * @dev: platform device 63 * @type: resource type 64 * @num: resource index 65 */ 66 struct resource *platform_get_resource(struct platform_device *dev, 67 unsigned int type, unsigned int num) 68 { 69 int i; 70 71 for (i = 0; i < dev->num_resources; i++) { 72 struct resource *r = &dev->resource[i]; 73 74 if (type == resource_type(r) && num-- == 0) 75 return r; 76 } 77 return NULL; 78 } 79 EXPORT_SYMBOL_GPL(platform_get_resource); 80 81 /** 82 * platform_get_irq - get an IRQ for a device 83 * @dev: platform device 84 * @num: IRQ number index 85 */ 86 int platform_get_irq(struct platform_device *dev, unsigned int num) 87 { 88 #ifdef CONFIG_SPARC 89 /* sparc does not have irqs represented as IORESOURCE_IRQ resources */ 90 if (!dev || num >= dev->archdata.num_irqs) 91 return -ENXIO; 92 return dev->archdata.irqs[num]; 93 #else 94 struct resource *r; 95 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) { 96 int ret; 97 98 ret = of_irq_get(dev->dev.of_node, num); 99 if (ret > 0 || ret == -EPROBE_DEFER) 100 return ret; 101 } 102 103 r = platform_get_resource(dev, IORESOURCE_IRQ, num); 104 if (has_acpi_companion(&dev->dev)) { 105 if (r && r->flags & IORESOURCE_DISABLED) { 106 int ret; 107 108 ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r); 109 if (ret) 110 return ret; 111 } 112 } 113 114 /* 115 * The resources may pass trigger flags to the irqs that need 116 * to be set up. It so happens that the trigger flags for 117 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER* 118 * settings. 119 */ 120 if (r && r->flags & IORESOURCE_BITS) { 121 struct irq_data *irqd; 122 123 irqd = irq_get_irq_data(r->start); 124 if (!irqd) 125 return -ENXIO; 126 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); 127 } 128 129 return r ? r->start : -ENXIO; 130 #endif 131 } 132 EXPORT_SYMBOL_GPL(platform_get_irq); 133 134 /** 135 * platform_irq_count - Count the number of IRQs a platform device uses 136 * @dev: platform device 137 * 138 * Return: Number of IRQs a platform device uses or EPROBE_DEFER 139 */ 140 int platform_irq_count(struct platform_device *dev) 141 { 142 int ret, nr = 0; 143 144 while ((ret = platform_get_irq(dev, nr)) >= 0) 145 nr++; 146 147 if (ret == -EPROBE_DEFER) 148 return ret; 149 150 return nr; 151 } 152 EXPORT_SYMBOL_GPL(platform_irq_count); 153 154 /** 155 * platform_get_resource_byname - get a resource for a device by name 156 * @dev: platform device 157 * @type: resource type 158 * @name: resource name 159 */ 160 struct resource *platform_get_resource_byname(struct platform_device *dev, 161 unsigned int type, 162 const char *name) 163 { 164 int i; 165 166 for (i = 0; i < dev->num_resources; i++) { 167 struct resource *r = &dev->resource[i]; 168 169 if (unlikely(!r->name)) 170 continue; 171 172 if (type == resource_type(r) && !strcmp(r->name, name)) 173 return r; 174 } 175 return NULL; 176 } 177 EXPORT_SYMBOL_GPL(platform_get_resource_byname); 178 179 /** 180 * platform_get_irq_byname - get an IRQ for a device by name 181 * @dev: platform device 182 * @name: IRQ name 183 */ 184 int platform_get_irq_byname(struct platform_device *dev, const char *name) 185 { 186 struct resource *r; 187 188 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) { 189 int ret; 190 191 ret = of_irq_get_byname(dev->dev.of_node, name); 192 if (ret > 0 || ret == -EPROBE_DEFER) 193 return ret; 194 } 195 196 r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name); 197 return r ? r->start : -ENXIO; 198 } 199 EXPORT_SYMBOL_GPL(platform_get_irq_byname); 200 201 /** 202 * platform_add_devices - add a numbers of platform devices 203 * @devs: array of platform devices to add 204 * @num: number of platform devices in array 205 */ 206 int platform_add_devices(struct platform_device **devs, int num) 207 { 208 int i, ret = 0; 209 210 for (i = 0; i < num; i++) { 211 ret = platform_device_register(devs[i]); 212 if (ret) { 213 while (--i >= 0) 214 platform_device_unregister(devs[i]); 215 break; 216 } 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(platform_add_devices); 222 223 struct platform_object { 224 struct platform_device pdev; 225 char name[]; 226 }; 227 228 /** 229 * platform_device_put - destroy a platform device 230 * @pdev: platform device to free 231 * 232 * Free all memory associated with a platform device. This function must 233 * _only_ be externally called in error cases. All other usage is a bug. 234 */ 235 void platform_device_put(struct platform_device *pdev) 236 { 237 if (!IS_ERR_OR_NULL(pdev)) 238 put_device(&pdev->dev); 239 } 240 EXPORT_SYMBOL_GPL(platform_device_put); 241 242 static void platform_device_release(struct device *dev) 243 { 244 struct platform_object *pa = container_of(dev, struct platform_object, 245 pdev.dev); 246 247 of_device_node_put(&pa->pdev.dev); 248 kfree(pa->pdev.dev.platform_data); 249 kfree(pa->pdev.mfd_cell); 250 kfree(pa->pdev.resource); 251 kfree(pa->pdev.driver_override); 252 kfree(pa); 253 } 254 255 /** 256 * platform_device_alloc - create a platform device 257 * @name: base name of the device we're adding 258 * @id: instance id 259 * 260 * Create a platform device object which can have other objects attached 261 * to it, and which will have attached objects freed when it is released. 262 */ 263 struct platform_device *platform_device_alloc(const char *name, int id) 264 { 265 struct platform_object *pa; 266 267 pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL); 268 if (pa) { 269 strcpy(pa->name, name); 270 pa->pdev.name = pa->name; 271 pa->pdev.id = id; 272 device_initialize(&pa->pdev.dev); 273 pa->pdev.dev.release = platform_device_release; 274 arch_setup_pdev_archdata(&pa->pdev); 275 } 276 277 return pa ? &pa->pdev : NULL; 278 } 279 EXPORT_SYMBOL_GPL(platform_device_alloc); 280 281 /** 282 * platform_device_add_resources - add resources to a platform device 283 * @pdev: platform device allocated by platform_device_alloc to add resources to 284 * @res: set of resources that needs to be allocated for the device 285 * @num: number of resources 286 * 287 * Add a copy of the resources to the platform device. The memory 288 * associated with the resources will be freed when the platform device is 289 * released. 290 */ 291 int platform_device_add_resources(struct platform_device *pdev, 292 const struct resource *res, unsigned int num) 293 { 294 struct resource *r = NULL; 295 296 if (res) { 297 r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL); 298 if (!r) 299 return -ENOMEM; 300 } 301 302 kfree(pdev->resource); 303 pdev->resource = r; 304 pdev->num_resources = num; 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(platform_device_add_resources); 308 309 /** 310 * platform_device_add_data - add platform-specific data to a platform device 311 * @pdev: platform device allocated by platform_device_alloc to add resources to 312 * @data: platform specific data for this platform device 313 * @size: size of platform specific data 314 * 315 * Add a copy of platform specific data to the platform device's 316 * platform_data pointer. The memory associated with the platform data 317 * will be freed when the platform device is released. 318 */ 319 int platform_device_add_data(struct platform_device *pdev, const void *data, 320 size_t size) 321 { 322 void *d = NULL; 323 324 if (data) { 325 d = kmemdup(data, size, GFP_KERNEL); 326 if (!d) 327 return -ENOMEM; 328 } 329 330 kfree(pdev->dev.platform_data); 331 pdev->dev.platform_data = d; 332 return 0; 333 } 334 EXPORT_SYMBOL_GPL(platform_device_add_data); 335 336 /** 337 * platform_device_add_properties - add built-in properties to a platform device 338 * @pdev: platform device to add properties to 339 * @properties: null terminated array of properties to add 340 * 341 * The function will take deep copy of @properties and attach the copy to the 342 * platform device. The memory associated with properties will be freed when the 343 * platform device is released. 344 */ 345 int platform_device_add_properties(struct platform_device *pdev, 346 const struct property_entry *properties) 347 { 348 return device_add_properties(&pdev->dev, properties); 349 } 350 EXPORT_SYMBOL_GPL(platform_device_add_properties); 351 352 /** 353 * platform_device_add - add a platform device to device hierarchy 354 * @pdev: platform device we're adding 355 * 356 * This is part 2 of platform_device_register(), though may be called 357 * separately _iff_ pdev was allocated by platform_device_alloc(). 358 */ 359 int platform_device_add(struct platform_device *pdev) 360 { 361 int i, ret; 362 363 if (!pdev) 364 return -EINVAL; 365 366 if (!pdev->dev.parent) 367 pdev->dev.parent = &platform_bus; 368 369 pdev->dev.bus = &platform_bus_type; 370 371 switch (pdev->id) { 372 default: 373 dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id); 374 break; 375 case PLATFORM_DEVID_NONE: 376 dev_set_name(&pdev->dev, "%s", pdev->name); 377 break; 378 case PLATFORM_DEVID_AUTO: 379 /* 380 * Automatically allocated device ID. We mark it as such so 381 * that we remember it must be freed, and we append a suffix 382 * to avoid namespace collision with explicit IDs. 383 */ 384 ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL); 385 if (ret < 0) 386 goto err_out; 387 pdev->id = ret; 388 pdev->id_auto = true; 389 dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id); 390 break; 391 } 392 393 for (i = 0; i < pdev->num_resources; i++) { 394 struct resource *p, *r = &pdev->resource[i]; 395 396 if (r->name == NULL) 397 r->name = dev_name(&pdev->dev); 398 399 p = r->parent; 400 if (!p) { 401 if (resource_type(r) == IORESOURCE_MEM) 402 p = &iomem_resource; 403 else if (resource_type(r) == IORESOURCE_IO) 404 p = &ioport_resource; 405 } 406 407 if (p && insert_resource(p, r)) { 408 dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r); 409 ret = -EBUSY; 410 goto failed; 411 } 412 } 413 414 pr_debug("Registering platform device '%s'. Parent at %s\n", 415 dev_name(&pdev->dev), dev_name(pdev->dev.parent)); 416 417 ret = device_add(&pdev->dev); 418 if (ret == 0) 419 return ret; 420 421 failed: 422 if (pdev->id_auto) { 423 ida_simple_remove(&platform_devid_ida, pdev->id); 424 pdev->id = PLATFORM_DEVID_AUTO; 425 } 426 427 while (--i >= 0) { 428 struct resource *r = &pdev->resource[i]; 429 if (r->parent) 430 release_resource(r); 431 } 432 433 err_out: 434 return ret; 435 } 436 EXPORT_SYMBOL_GPL(platform_device_add); 437 438 /** 439 * platform_device_del - remove a platform-level device 440 * @pdev: platform device we're removing 441 * 442 * Note that this function will also release all memory- and port-based 443 * resources owned by the device (@dev->resource). This function must 444 * _only_ be externally called in error cases. All other usage is a bug. 445 */ 446 void platform_device_del(struct platform_device *pdev) 447 { 448 int i; 449 450 if (!IS_ERR_OR_NULL(pdev)) { 451 device_del(&pdev->dev); 452 453 if (pdev->id_auto) { 454 ida_simple_remove(&platform_devid_ida, pdev->id); 455 pdev->id = PLATFORM_DEVID_AUTO; 456 } 457 458 for (i = 0; i < pdev->num_resources; i++) { 459 struct resource *r = &pdev->resource[i]; 460 if (r->parent) 461 release_resource(r); 462 } 463 } 464 } 465 EXPORT_SYMBOL_GPL(platform_device_del); 466 467 /** 468 * platform_device_register - add a platform-level device 469 * @pdev: platform device we're adding 470 */ 471 int platform_device_register(struct platform_device *pdev) 472 { 473 device_initialize(&pdev->dev); 474 arch_setup_pdev_archdata(pdev); 475 return platform_device_add(pdev); 476 } 477 EXPORT_SYMBOL_GPL(platform_device_register); 478 479 /** 480 * platform_device_unregister - unregister a platform-level device 481 * @pdev: platform device we're unregistering 482 * 483 * Unregistration is done in 2 steps. First we release all resources 484 * and remove it from the subsystem, then we drop reference count by 485 * calling platform_device_put(). 486 */ 487 void platform_device_unregister(struct platform_device *pdev) 488 { 489 platform_device_del(pdev); 490 platform_device_put(pdev); 491 } 492 EXPORT_SYMBOL_GPL(platform_device_unregister); 493 494 /** 495 * platform_device_register_full - add a platform-level device with 496 * resources and platform-specific data 497 * 498 * @pdevinfo: data used to create device 499 * 500 * Returns &struct platform_device pointer on success, or ERR_PTR() on error. 501 */ 502 struct platform_device *platform_device_register_full( 503 const struct platform_device_info *pdevinfo) 504 { 505 int ret = -ENOMEM; 506 struct platform_device *pdev; 507 508 pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id); 509 if (!pdev) 510 goto err_alloc; 511 512 pdev->dev.parent = pdevinfo->parent; 513 pdev->dev.fwnode = pdevinfo->fwnode; 514 515 if (pdevinfo->dma_mask) { 516 /* 517 * This memory isn't freed when the device is put, 518 * I don't have a nice idea for that though. Conceptually 519 * dma_mask in struct device should not be a pointer. 520 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081 521 */ 522 pdev->dev.dma_mask = 523 kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL); 524 if (!pdev->dev.dma_mask) 525 goto err; 526 527 *pdev->dev.dma_mask = pdevinfo->dma_mask; 528 pdev->dev.coherent_dma_mask = pdevinfo->dma_mask; 529 } 530 531 ret = platform_device_add_resources(pdev, 532 pdevinfo->res, pdevinfo->num_res); 533 if (ret) 534 goto err; 535 536 ret = platform_device_add_data(pdev, 537 pdevinfo->data, pdevinfo->size_data); 538 if (ret) 539 goto err; 540 541 if (pdevinfo->properties) { 542 ret = platform_device_add_properties(pdev, 543 pdevinfo->properties); 544 if (ret) 545 goto err; 546 } 547 548 ret = platform_device_add(pdev); 549 if (ret) { 550 err: 551 ACPI_COMPANION_SET(&pdev->dev, NULL); 552 kfree(pdev->dev.dma_mask); 553 554 err_alloc: 555 platform_device_put(pdev); 556 return ERR_PTR(ret); 557 } 558 559 return pdev; 560 } 561 EXPORT_SYMBOL_GPL(platform_device_register_full); 562 563 static int platform_drv_probe(struct device *_dev) 564 { 565 struct platform_driver *drv = to_platform_driver(_dev->driver); 566 struct platform_device *dev = to_platform_device(_dev); 567 int ret; 568 569 ret = of_clk_set_defaults(_dev->of_node, false); 570 if (ret < 0) 571 return ret; 572 573 ret = dev_pm_domain_attach(_dev, true); 574 if (ret) 575 goto out; 576 577 if (drv->probe) { 578 ret = drv->probe(dev); 579 if (ret) 580 dev_pm_domain_detach(_dev, true); 581 } 582 583 out: 584 if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) { 585 dev_warn(_dev, "probe deferral not supported\n"); 586 ret = -ENXIO; 587 } 588 589 return ret; 590 } 591 592 static int platform_drv_probe_fail(struct device *_dev) 593 { 594 return -ENXIO; 595 } 596 597 static int platform_drv_remove(struct device *_dev) 598 { 599 struct platform_driver *drv = to_platform_driver(_dev->driver); 600 struct platform_device *dev = to_platform_device(_dev); 601 int ret = 0; 602 603 if (drv->remove) 604 ret = drv->remove(dev); 605 dev_pm_domain_detach(_dev, true); 606 607 return ret; 608 } 609 610 static void platform_drv_shutdown(struct device *_dev) 611 { 612 struct platform_driver *drv = to_platform_driver(_dev->driver); 613 struct platform_device *dev = to_platform_device(_dev); 614 615 if (drv->shutdown) 616 drv->shutdown(dev); 617 } 618 619 /** 620 * __platform_driver_register - register a driver for platform-level devices 621 * @drv: platform driver structure 622 * @owner: owning module/driver 623 */ 624 int __platform_driver_register(struct platform_driver *drv, 625 struct module *owner) 626 { 627 drv->driver.owner = owner; 628 drv->driver.bus = &platform_bus_type; 629 drv->driver.probe = platform_drv_probe; 630 drv->driver.remove = platform_drv_remove; 631 drv->driver.shutdown = platform_drv_shutdown; 632 633 return driver_register(&drv->driver); 634 } 635 EXPORT_SYMBOL_GPL(__platform_driver_register); 636 637 /** 638 * platform_driver_unregister - unregister a driver for platform-level devices 639 * @drv: platform driver structure 640 */ 641 void platform_driver_unregister(struct platform_driver *drv) 642 { 643 driver_unregister(&drv->driver); 644 } 645 EXPORT_SYMBOL_GPL(platform_driver_unregister); 646 647 /** 648 * __platform_driver_probe - register driver for non-hotpluggable device 649 * @drv: platform driver structure 650 * @probe: the driver probe routine, probably from an __init section 651 * @module: module which will be the owner of the driver 652 * 653 * Use this instead of platform_driver_register() when you know the device 654 * is not hotpluggable and has already been registered, and you want to 655 * remove its run-once probe() infrastructure from memory after the driver 656 * has bound to the device. 657 * 658 * One typical use for this would be with drivers for controllers integrated 659 * into system-on-chip processors, where the controller devices have been 660 * configured as part of board setup. 661 * 662 * Note that this is incompatible with deferred probing. 663 * 664 * Returns zero if the driver registered and bound to a device, else returns 665 * a negative error code and with the driver not registered. 666 */ 667 int __init_or_module __platform_driver_probe(struct platform_driver *drv, 668 int (*probe)(struct platform_device *), struct module *module) 669 { 670 int retval, code; 671 672 if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) { 673 pr_err("%s: drivers registered with %s can not be probed asynchronously\n", 674 drv->driver.name, __func__); 675 return -EINVAL; 676 } 677 678 /* 679 * We have to run our probes synchronously because we check if 680 * we find any devices to bind to and exit with error if there 681 * are any. 682 */ 683 drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 684 685 /* 686 * Prevent driver from requesting probe deferral to avoid further 687 * futile probe attempts. 688 */ 689 drv->prevent_deferred_probe = true; 690 691 /* make sure driver won't have bind/unbind attributes */ 692 drv->driver.suppress_bind_attrs = true; 693 694 /* temporary section violation during probe() */ 695 drv->probe = probe; 696 retval = code = __platform_driver_register(drv, module); 697 698 /* 699 * Fixup that section violation, being paranoid about code scanning 700 * the list of drivers in order to probe new devices. Check to see 701 * if the probe was successful, and make sure any forced probes of 702 * new devices fail. 703 */ 704 spin_lock(&drv->driver.bus->p->klist_drivers.k_lock); 705 drv->probe = NULL; 706 if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list)) 707 retval = -ENODEV; 708 drv->driver.probe = platform_drv_probe_fail; 709 spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock); 710 711 if (code != retval) 712 platform_driver_unregister(drv); 713 return retval; 714 } 715 EXPORT_SYMBOL_GPL(__platform_driver_probe); 716 717 /** 718 * __platform_create_bundle - register driver and create corresponding device 719 * @driver: platform driver structure 720 * @probe: the driver probe routine, probably from an __init section 721 * @res: set of resources that needs to be allocated for the device 722 * @n_res: number of resources 723 * @data: platform specific data for this platform device 724 * @size: size of platform specific data 725 * @module: module which will be the owner of the driver 726 * 727 * Use this in legacy-style modules that probe hardware directly and 728 * register a single platform device and corresponding platform driver. 729 * 730 * Returns &struct platform_device pointer on success, or ERR_PTR() on error. 731 */ 732 struct platform_device * __init_or_module __platform_create_bundle( 733 struct platform_driver *driver, 734 int (*probe)(struct platform_device *), 735 struct resource *res, unsigned int n_res, 736 const void *data, size_t size, struct module *module) 737 { 738 struct platform_device *pdev; 739 int error; 740 741 pdev = platform_device_alloc(driver->driver.name, -1); 742 if (!pdev) { 743 error = -ENOMEM; 744 goto err_out; 745 } 746 747 error = platform_device_add_resources(pdev, res, n_res); 748 if (error) 749 goto err_pdev_put; 750 751 error = platform_device_add_data(pdev, data, size); 752 if (error) 753 goto err_pdev_put; 754 755 error = platform_device_add(pdev); 756 if (error) 757 goto err_pdev_put; 758 759 error = __platform_driver_probe(driver, probe, module); 760 if (error) 761 goto err_pdev_del; 762 763 return pdev; 764 765 err_pdev_del: 766 platform_device_del(pdev); 767 err_pdev_put: 768 platform_device_put(pdev); 769 err_out: 770 return ERR_PTR(error); 771 } 772 EXPORT_SYMBOL_GPL(__platform_create_bundle); 773 774 /** 775 * __platform_register_drivers - register an array of platform drivers 776 * @drivers: an array of drivers to register 777 * @count: the number of drivers to register 778 * @owner: module owning the drivers 779 * 780 * Registers platform drivers specified by an array. On failure to register a 781 * driver, all previously registered drivers will be unregistered. Callers of 782 * this API should use platform_unregister_drivers() to unregister drivers in 783 * the reverse order. 784 * 785 * Returns: 0 on success or a negative error code on failure. 786 */ 787 int __platform_register_drivers(struct platform_driver * const *drivers, 788 unsigned int count, struct module *owner) 789 { 790 unsigned int i; 791 int err; 792 793 for (i = 0; i < count; i++) { 794 pr_debug("registering platform driver %ps\n", drivers[i]); 795 796 err = __platform_driver_register(drivers[i], owner); 797 if (err < 0) { 798 pr_err("failed to register platform driver %ps: %d\n", 799 drivers[i], err); 800 goto error; 801 } 802 } 803 804 return 0; 805 806 error: 807 while (i--) { 808 pr_debug("unregistering platform driver %ps\n", drivers[i]); 809 platform_driver_unregister(drivers[i]); 810 } 811 812 return err; 813 } 814 EXPORT_SYMBOL_GPL(__platform_register_drivers); 815 816 /** 817 * platform_unregister_drivers - unregister an array of platform drivers 818 * @drivers: an array of drivers to unregister 819 * @count: the number of drivers to unregister 820 * 821 * Unegisters platform drivers specified by an array. This is typically used 822 * to complement an earlier call to platform_register_drivers(). Drivers are 823 * unregistered in the reverse order in which they were registered. 824 */ 825 void platform_unregister_drivers(struct platform_driver * const *drivers, 826 unsigned int count) 827 { 828 while (count--) { 829 pr_debug("unregistering platform driver %ps\n", drivers[count]); 830 platform_driver_unregister(drivers[count]); 831 } 832 } 833 EXPORT_SYMBOL_GPL(platform_unregister_drivers); 834 835 /* modalias support enables more hands-off userspace setup: 836 * (a) environment variable lets new-style hotplug events work once system is 837 * fully running: "modprobe $MODALIAS" 838 * (b) sysfs attribute lets new-style coldplug recover from hotplug events 839 * mishandled before system is fully running: "modprobe $(cat modalias)" 840 */ 841 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 842 char *buf) 843 { 844 struct platform_device *pdev = to_platform_device(dev); 845 int len; 846 847 len = of_device_modalias(dev, buf, PAGE_SIZE); 848 if (len != -ENODEV) 849 return len; 850 851 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1); 852 if (len != -ENODEV) 853 return len; 854 855 len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name); 856 857 return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len; 858 } 859 static DEVICE_ATTR_RO(modalias); 860 861 static ssize_t driver_override_store(struct device *dev, 862 struct device_attribute *attr, 863 const char *buf, size_t count) 864 { 865 struct platform_device *pdev = to_platform_device(dev); 866 char *driver_override, *old, *cp; 867 868 /* We need to keep extra room for a newline */ 869 if (count >= (PAGE_SIZE - 1)) 870 return -EINVAL; 871 872 driver_override = kstrndup(buf, count, GFP_KERNEL); 873 if (!driver_override) 874 return -ENOMEM; 875 876 cp = strchr(driver_override, '\n'); 877 if (cp) 878 *cp = '\0'; 879 880 device_lock(dev); 881 old = pdev->driver_override; 882 if (strlen(driver_override)) { 883 pdev->driver_override = driver_override; 884 } else { 885 kfree(driver_override); 886 pdev->driver_override = NULL; 887 } 888 device_unlock(dev); 889 890 kfree(old); 891 892 return count; 893 } 894 895 static ssize_t driver_override_show(struct device *dev, 896 struct device_attribute *attr, char *buf) 897 { 898 struct platform_device *pdev = to_platform_device(dev); 899 ssize_t len; 900 901 device_lock(dev); 902 len = sprintf(buf, "%s\n", pdev->driver_override); 903 device_unlock(dev); 904 return len; 905 } 906 static DEVICE_ATTR_RW(driver_override); 907 908 909 static struct attribute *platform_dev_attrs[] = { 910 &dev_attr_modalias.attr, 911 &dev_attr_driver_override.attr, 912 NULL, 913 }; 914 ATTRIBUTE_GROUPS(platform_dev); 915 916 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env) 917 { 918 struct platform_device *pdev = to_platform_device(dev); 919 int rc; 920 921 /* Some devices have extra OF data and an OF-style MODALIAS */ 922 rc = of_device_uevent_modalias(dev, env); 923 if (rc != -ENODEV) 924 return rc; 925 926 rc = acpi_device_uevent_modalias(dev, env); 927 if (rc != -ENODEV) 928 return rc; 929 930 add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX, 931 pdev->name); 932 return 0; 933 } 934 935 static const struct platform_device_id *platform_match_id( 936 const struct platform_device_id *id, 937 struct platform_device *pdev) 938 { 939 while (id->name[0]) { 940 if (strcmp(pdev->name, id->name) == 0) { 941 pdev->id_entry = id; 942 return id; 943 } 944 id++; 945 } 946 return NULL; 947 } 948 949 /** 950 * platform_match - bind platform device to platform driver. 951 * @dev: device. 952 * @drv: driver. 953 * 954 * Platform device IDs are assumed to be encoded like this: 955 * "<name><instance>", where <name> is a short description of the type of 956 * device, like "pci" or "floppy", and <instance> is the enumerated 957 * instance of the device, like '0' or '42'. Driver IDs are simply 958 * "<name>". So, extract the <name> from the platform_device structure, 959 * and compare it against the name of the driver. Return whether they match 960 * or not. 961 */ 962 static int platform_match(struct device *dev, struct device_driver *drv) 963 { 964 struct platform_device *pdev = to_platform_device(dev); 965 struct platform_driver *pdrv = to_platform_driver(drv); 966 967 /* When driver_override is set, only bind to the matching driver */ 968 if (pdev->driver_override) 969 return !strcmp(pdev->driver_override, drv->name); 970 971 /* Attempt an OF style match first */ 972 if (of_driver_match_device(dev, drv)) 973 return 1; 974 975 /* Then try ACPI style match */ 976 if (acpi_driver_match_device(dev, drv)) 977 return 1; 978 979 /* Then try to match against the id table */ 980 if (pdrv->id_table) 981 return platform_match_id(pdrv->id_table, pdev) != NULL; 982 983 /* fall-back to driver name match */ 984 return (strcmp(pdev->name, drv->name) == 0); 985 } 986 987 #ifdef CONFIG_PM_SLEEP 988 989 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg) 990 { 991 struct platform_driver *pdrv = to_platform_driver(dev->driver); 992 struct platform_device *pdev = to_platform_device(dev); 993 int ret = 0; 994 995 if (dev->driver && pdrv->suspend) 996 ret = pdrv->suspend(pdev, mesg); 997 998 return ret; 999 } 1000 1001 static int platform_legacy_resume(struct device *dev) 1002 { 1003 struct platform_driver *pdrv = to_platform_driver(dev->driver); 1004 struct platform_device *pdev = to_platform_device(dev); 1005 int ret = 0; 1006 1007 if (dev->driver && pdrv->resume) 1008 ret = pdrv->resume(pdev); 1009 1010 return ret; 1011 } 1012 1013 #endif /* CONFIG_PM_SLEEP */ 1014 1015 #ifdef CONFIG_SUSPEND 1016 1017 int platform_pm_suspend(struct device *dev) 1018 { 1019 struct device_driver *drv = dev->driver; 1020 int ret = 0; 1021 1022 if (!drv) 1023 return 0; 1024 1025 if (drv->pm) { 1026 if (drv->pm->suspend) 1027 ret = drv->pm->suspend(dev); 1028 } else { 1029 ret = platform_legacy_suspend(dev, PMSG_SUSPEND); 1030 } 1031 1032 return ret; 1033 } 1034 1035 int platform_pm_resume(struct device *dev) 1036 { 1037 struct device_driver *drv = dev->driver; 1038 int ret = 0; 1039 1040 if (!drv) 1041 return 0; 1042 1043 if (drv->pm) { 1044 if (drv->pm->resume) 1045 ret = drv->pm->resume(dev); 1046 } else { 1047 ret = platform_legacy_resume(dev); 1048 } 1049 1050 return ret; 1051 } 1052 1053 #endif /* CONFIG_SUSPEND */ 1054 1055 #ifdef CONFIG_HIBERNATE_CALLBACKS 1056 1057 int platform_pm_freeze(struct device *dev) 1058 { 1059 struct device_driver *drv = dev->driver; 1060 int ret = 0; 1061 1062 if (!drv) 1063 return 0; 1064 1065 if (drv->pm) { 1066 if (drv->pm->freeze) 1067 ret = drv->pm->freeze(dev); 1068 } else { 1069 ret = platform_legacy_suspend(dev, PMSG_FREEZE); 1070 } 1071 1072 return ret; 1073 } 1074 1075 int platform_pm_thaw(struct device *dev) 1076 { 1077 struct device_driver *drv = dev->driver; 1078 int ret = 0; 1079 1080 if (!drv) 1081 return 0; 1082 1083 if (drv->pm) { 1084 if (drv->pm->thaw) 1085 ret = drv->pm->thaw(dev); 1086 } else { 1087 ret = platform_legacy_resume(dev); 1088 } 1089 1090 return ret; 1091 } 1092 1093 int platform_pm_poweroff(struct device *dev) 1094 { 1095 struct device_driver *drv = dev->driver; 1096 int ret = 0; 1097 1098 if (!drv) 1099 return 0; 1100 1101 if (drv->pm) { 1102 if (drv->pm->poweroff) 1103 ret = drv->pm->poweroff(dev); 1104 } else { 1105 ret = platform_legacy_suspend(dev, PMSG_HIBERNATE); 1106 } 1107 1108 return ret; 1109 } 1110 1111 int platform_pm_restore(struct device *dev) 1112 { 1113 struct device_driver *drv = dev->driver; 1114 int ret = 0; 1115 1116 if (!drv) 1117 return 0; 1118 1119 if (drv->pm) { 1120 if (drv->pm->restore) 1121 ret = drv->pm->restore(dev); 1122 } else { 1123 ret = platform_legacy_resume(dev); 1124 } 1125 1126 return ret; 1127 } 1128 1129 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 1130 1131 int platform_dma_configure(struct device *dev) 1132 { 1133 enum dev_dma_attr attr; 1134 int ret = 0; 1135 1136 if (dev->of_node) { 1137 ret = of_dma_configure(dev, dev->of_node, true); 1138 } else if (has_acpi_companion(dev)) { 1139 attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode)); 1140 ret = acpi_dma_configure(dev, attr); 1141 } 1142 1143 return ret; 1144 } 1145 1146 static const struct dev_pm_ops platform_dev_pm_ops = { 1147 .runtime_suspend = pm_generic_runtime_suspend, 1148 .runtime_resume = pm_generic_runtime_resume, 1149 USE_PLATFORM_PM_SLEEP_OPS 1150 }; 1151 1152 struct bus_type platform_bus_type = { 1153 .name = "platform", 1154 .dev_groups = platform_dev_groups, 1155 .match = platform_match, 1156 .uevent = platform_uevent, 1157 .dma_configure = platform_dma_configure, 1158 .pm = &platform_dev_pm_ops, 1159 }; 1160 EXPORT_SYMBOL_GPL(platform_bus_type); 1161 1162 int __init platform_bus_init(void) 1163 { 1164 int error; 1165 1166 early_platform_cleanup(); 1167 1168 error = device_register(&platform_bus); 1169 if (error) { 1170 put_device(&platform_bus); 1171 return error; 1172 } 1173 error = bus_register(&platform_bus_type); 1174 if (error) 1175 device_unregister(&platform_bus); 1176 of_platform_register_reconfig_notifier(); 1177 return error; 1178 } 1179 1180 static __initdata LIST_HEAD(early_platform_driver_list); 1181 static __initdata LIST_HEAD(early_platform_device_list); 1182 1183 /** 1184 * early_platform_driver_register - register early platform driver 1185 * @epdrv: early_platform driver structure 1186 * @buf: string passed from early_param() 1187 * 1188 * Helper function for early_platform_init() / early_platform_init_buffer() 1189 */ 1190 int __init early_platform_driver_register(struct early_platform_driver *epdrv, 1191 char *buf) 1192 { 1193 char *tmp; 1194 int n; 1195 1196 /* Simply add the driver to the end of the global list. 1197 * Drivers will by default be put on the list in compiled-in order. 1198 */ 1199 if (!epdrv->list.next) { 1200 INIT_LIST_HEAD(&epdrv->list); 1201 list_add_tail(&epdrv->list, &early_platform_driver_list); 1202 } 1203 1204 /* If the user has specified device then make sure the driver 1205 * gets prioritized. The driver of the last device specified on 1206 * command line will be put first on the list. 1207 */ 1208 n = strlen(epdrv->pdrv->driver.name); 1209 if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) { 1210 list_move(&epdrv->list, &early_platform_driver_list); 1211 1212 /* Allow passing parameters after device name */ 1213 if (buf[n] == '\0' || buf[n] == ',') 1214 epdrv->requested_id = -1; 1215 else { 1216 epdrv->requested_id = simple_strtoul(&buf[n + 1], 1217 &tmp, 10); 1218 1219 if (buf[n] != '.' || (tmp == &buf[n + 1])) { 1220 epdrv->requested_id = EARLY_PLATFORM_ID_ERROR; 1221 n = 0; 1222 } else 1223 n += strcspn(&buf[n + 1], ",") + 1; 1224 } 1225 1226 if (buf[n] == ',') 1227 n++; 1228 1229 if (epdrv->bufsize) { 1230 memcpy(epdrv->buffer, &buf[n], 1231 min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1)); 1232 epdrv->buffer[epdrv->bufsize - 1] = '\0'; 1233 } 1234 } 1235 1236 return 0; 1237 } 1238 1239 /** 1240 * early_platform_add_devices - adds a number of early platform devices 1241 * @devs: array of early platform devices to add 1242 * @num: number of early platform devices in array 1243 * 1244 * Used by early architecture code to register early platform devices and 1245 * their platform data. 1246 */ 1247 void __init early_platform_add_devices(struct platform_device **devs, int num) 1248 { 1249 struct device *dev; 1250 int i; 1251 1252 /* simply add the devices to list */ 1253 for (i = 0; i < num; i++) { 1254 dev = &devs[i]->dev; 1255 1256 if (!dev->devres_head.next) { 1257 pm_runtime_early_init(dev); 1258 INIT_LIST_HEAD(&dev->devres_head); 1259 list_add_tail(&dev->devres_head, 1260 &early_platform_device_list); 1261 } 1262 } 1263 } 1264 1265 /** 1266 * early_platform_driver_register_all - register early platform drivers 1267 * @class_str: string to identify early platform driver class 1268 * 1269 * Used by architecture code to register all early platform drivers 1270 * for a certain class. If omitted then only early platform drivers 1271 * with matching kernel command line class parameters will be registered. 1272 */ 1273 void __init early_platform_driver_register_all(char *class_str) 1274 { 1275 /* The "class_str" parameter may or may not be present on the kernel 1276 * command line. If it is present then there may be more than one 1277 * matching parameter. 1278 * 1279 * Since we register our early platform drivers using early_param() 1280 * we need to make sure that they also get registered in the case 1281 * when the parameter is missing from the kernel command line. 1282 * 1283 * We use parse_early_options() to make sure the early_param() gets 1284 * called at least once. The early_param() may be called more than 1285 * once since the name of the preferred device may be specified on 1286 * the kernel command line. early_platform_driver_register() handles 1287 * this case for us. 1288 */ 1289 parse_early_options(class_str); 1290 } 1291 1292 /** 1293 * early_platform_match - find early platform device matching driver 1294 * @epdrv: early platform driver structure 1295 * @id: id to match against 1296 */ 1297 static struct platform_device * __init 1298 early_platform_match(struct early_platform_driver *epdrv, int id) 1299 { 1300 struct platform_device *pd; 1301 1302 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head) 1303 if (platform_match(&pd->dev, &epdrv->pdrv->driver)) 1304 if (pd->id == id) 1305 return pd; 1306 1307 return NULL; 1308 } 1309 1310 /** 1311 * early_platform_left - check if early platform driver has matching devices 1312 * @epdrv: early platform driver structure 1313 * @id: return true if id or above exists 1314 */ 1315 static int __init early_platform_left(struct early_platform_driver *epdrv, 1316 int id) 1317 { 1318 struct platform_device *pd; 1319 1320 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head) 1321 if (platform_match(&pd->dev, &epdrv->pdrv->driver)) 1322 if (pd->id >= id) 1323 return 1; 1324 1325 return 0; 1326 } 1327 1328 /** 1329 * early_platform_driver_probe_id - probe drivers matching class_str and id 1330 * @class_str: string to identify early platform driver class 1331 * @id: id to match against 1332 * @nr_probe: number of platform devices to successfully probe before exiting 1333 */ 1334 static int __init early_platform_driver_probe_id(char *class_str, 1335 int id, 1336 int nr_probe) 1337 { 1338 struct early_platform_driver *epdrv; 1339 struct platform_device *match; 1340 int match_id; 1341 int n = 0; 1342 int left = 0; 1343 1344 list_for_each_entry(epdrv, &early_platform_driver_list, list) { 1345 /* only use drivers matching our class_str */ 1346 if (strcmp(class_str, epdrv->class_str)) 1347 continue; 1348 1349 if (id == -2) { 1350 match_id = epdrv->requested_id; 1351 left = 1; 1352 1353 } else { 1354 match_id = id; 1355 left += early_platform_left(epdrv, id); 1356 1357 /* skip requested id */ 1358 switch (epdrv->requested_id) { 1359 case EARLY_PLATFORM_ID_ERROR: 1360 case EARLY_PLATFORM_ID_UNSET: 1361 break; 1362 default: 1363 if (epdrv->requested_id == id) 1364 match_id = EARLY_PLATFORM_ID_UNSET; 1365 } 1366 } 1367 1368 switch (match_id) { 1369 case EARLY_PLATFORM_ID_ERROR: 1370 pr_warn("%s: unable to parse %s parameter\n", 1371 class_str, epdrv->pdrv->driver.name); 1372 /* fall-through */ 1373 case EARLY_PLATFORM_ID_UNSET: 1374 match = NULL; 1375 break; 1376 default: 1377 match = early_platform_match(epdrv, match_id); 1378 } 1379 1380 if (match) { 1381 /* 1382 * Set up a sensible init_name to enable 1383 * dev_name() and others to be used before the 1384 * rest of the driver core is initialized. 1385 */ 1386 if (!match->dev.init_name && slab_is_available()) { 1387 if (match->id != -1) 1388 match->dev.init_name = 1389 kasprintf(GFP_KERNEL, "%s.%d", 1390 match->name, 1391 match->id); 1392 else 1393 match->dev.init_name = 1394 kasprintf(GFP_KERNEL, "%s", 1395 match->name); 1396 1397 if (!match->dev.init_name) 1398 return -ENOMEM; 1399 } 1400 1401 if (epdrv->pdrv->probe(match)) 1402 pr_warn("%s: unable to probe %s early.\n", 1403 class_str, match->name); 1404 else 1405 n++; 1406 } 1407 1408 if (n >= nr_probe) 1409 break; 1410 } 1411 1412 if (left) 1413 return n; 1414 else 1415 return -ENODEV; 1416 } 1417 1418 /** 1419 * early_platform_driver_probe - probe a class of registered drivers 1420 * @class_str: string to identify early platform driver class 1421 * @nr_probe: number of platform devices to successfully probe before exiting 1422 * @user_only: only probe user specified early platform devices 1423 * 1424 * Used by architecture code to probe registered early platform drivers 1425 * within a certain class. For probe to happen a registered early platform 1426 * device matching a registered early platform driver is needed. 1427 */ 1428 int __init early_platform_driver_probe(char *class_str, 1429 int nr_probe, 1430 int user_only) 1431 { 1432 int k, n, i; 1433 1434 n = 0; 1435 for (i = -2; n < nr_probe; i++) { 1436 k = early_platform_driver_probe_id(class_str, i, nr_probe - n); 1437 1438 if (k < 0) 1439 break; 1440 1441 n += k; 1442 1443 if (user_only) 1444 break; 1445 } 1446 1447 return n; 1448 } 1449 1450 /** 1451 * early_platform_cleanup - clean up early platform code 1452 */ 1453 void __init early_platform_cleanup(void) 1454 { 1455 struct platform_device *pd, *pd2; 1456 1457 /* clean up the devres list used to chain devices */ 1458 list_for_each_entry_safe(pd, pd2, &early_platform_device_list, 1459 dev.devres_head) { 1460 list_del(&pd->dev.devres_head); 1461 memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head)); 1462 } 1463 } 1464 1465