1 /* 2 * platform.c - platform 'pseudo' bus for legacy devices 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * 7 * This file is released under the GPLv2 8 * 9 * Please see Documentation/driver-model/platform.txt for more 10 * information. 11 */ 12 13 #include <linux/string.h> 14 #include <linux/platform_device.h> 15 #include <linux/of_device.h> 16 #include <linux/of_irq.h> 17 #include <linux/module.h> 18 #include <linux/init.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/bootmem.h> 21 #include <linux/err.h> 22 #include <linux/slab.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/idr.h> 26 #include <linux/acpi.h> 27 #include <linux/clk/clk-conf.h> 28 #include <linux/limits.h> 29 30 #include "base.h" 31 #include "power/power.h" 32 33 /* For automatically allocated device IDs */ 34 static DEFINE_IDA(platform_devid_ida); 35 36 struct device platform_bus = { 37 .init_name = "platform", 38 }; 39 EXPORT_SYMBOL_GPL(platform_bus); 40 41 /** 42 * arch_setup_pdev_archdata - Allow manipulation of archdata before its used 43 * @pdev: platform device 44 * 45 * This is called before platform_device_add() such that any pdev_archdata may 46 * be setup before the platform_notifier is called. So if a user needs to 47 * manipulate any relevant information in the pdev_archdata they can do: 48 * 49 * platform_device_alloc() 50 * ... manipulate ... 51 * platform_device_add() 52 * 53 * And if they don't care they can just call platform_device_register() and 54 * everything will just work out. 55 */ 56 void __weak arch_setup_pdev_archdata(struct platform_device *pdev) 57 { 58 } 59 60 /** 61 * platform_get_resource - get a resource for a device 62 * @dev: platform device 63 * @type: resource type 64 * @num: resource index 65 */ 66 struct resource *platform_get_resource(struct platform_device *dev, 67 unsigned int type, unsigned int num) 68 { 69 int i; 70 71 for (i = 0; i < dev->num_resources; i++) { 72 struct resource *r = &dev->resource[i]; 73 74 if (type == resource_type(r) && num-- == 0) 75 return r; 76 } 77 return NULL; 78 } 79 EXPORT_SYMBOL_GPL(platform_get_resource); 80 81 /** 82 * platform_get_irq - get an IRQ for a device 83 * @dev: platform device 84 * @num: IRQ number index 85 */ 86 int platform_get_irq(struct platform_device *dev, unsigned int num) 87 { 88 #ifdef CONFIG_SPARC 89 /* sparc does not have irqs represented as IORESOURCE_IRQ resources */ 90 if (!dev || num >= dev->archdata.num_irqs) 91 return -ENXIO; 92 return dev->archdata.irqs[num]; 93 #else 94 struct resource *r; 95 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) { 96 int ret; 97 98 ret = of_irq_get(dev->dev.of_node, num); 99 if (ret >= 0 || ret == -EPROBE_DEFER) 100 return ret; 101 } 102 103 r = platform_get_resource(dev, IORESOURCE_IRQ, num); 104 /* 105 * The resources may pass trigger flags to the irqs that need 106 * to be set up. It so happens that the trigger flags for 107 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER* 108 * settings. 109 */ 110 if (r && r->flags & IORESOURCE_BITS) 111 irqd_set_trigger_type(irq_get_irq_data(r->start), 112 r->flags & IORESOURCE_BITS); 113 114 return r ? r->start : -ENXIO; 115 #endif 116 } 117 EXPORT_SYMBOL_GPL(platform_get_irq); 118 119 /** 120 * platform_get_resource_byname - get a resource for a device by name 121 * @dev: platform device 122 * @type: resource type 123 * @name: resource name 124 */ 125 struct resource *platform_get_resource_byname(struct platform_device *dev, 126 unsigned int type, 127 const char *name) 128 { 129 int i; 130 131 for (i = 0; i < dev->num_resources; i++) { 132 struct resource *r = &dev->resource[i]; 133 134 if (unlikely(!r->name)) 135 continue; 136 137 if (type == resource_type(r) && !strcmp(r->name, name)) 138 return r; 139 } 140 return NULL; 141 } 142 EXPORT_SYMBOL_GPL(platform_get_resource_byname); 143 144 /** 145 * platform_get_irq_byname - get an IRQ for a device by name 146 * @dev: platform device 147 * @name: IRQ name 148 */ 149 int platform_get_irq_byname(struct platform_device *dev, const char *name) 150 { 151 struct resource *r; 152 153 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) { 154 int ret; 155 156 ret = of_irq_get_byname(dev->dev.of_node, name); 157 if (ret >= 0 || ret == -EPROBE_DEFER) 158 return ret; 159 } 160 161 r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name); 162 return r ? r->start : -ENXIO; 163 } 164 EXPORT_SYMBOL_GPL(platform_get_irq_byname); 165 166 /** 167 * platform_add_devices - add a numbers of platform devices 168 * @devs: array of platform devices to add 169 * @num: number of platform devices in array 170 */ 171 int platform_add_devices(struct platform_device **devs, int num) 172 { 173 int i, ret = 0; 174 175 for (i = 0; i < num; i++) { 176 ret = platform_device_register(devs[i]); 177 if (ret) { 178 while (--i >= 0) 179 platform_device_unregister(devs[i]); 180 break; 181 } 182 } 183 184 return ret; 185 } 186 EXPORT_SYMBOL_GPL(platform_add_devices); 187 188 struct platform_object { 189 struct platform_device pdev; 190 char name[]; 191 }; 192 193 /** 194 * platform_device_put - destroy a platform device 195 * @pdev: platform device to free 196 * 197 * Free all memory associated with a platform device. This function must 198 * _only_ be externally called in error cases. All other usage is a bug. 199 */ 200 void platform_device_put(struct platform_device *pdev) 201 { 202 if (pdev) 203 put_device(&pdev->dev); 204 } 205 EXPORT_SYMBOL_GPL(platform_device_put); 206 207 static void platform_device_release(struct device *dev) 208 { 209 struct platform_object *pa = container_of(dev, struct platform_object, 210 pdev.dev); 211 212 of_device_node_put(&pa->pdev.dev); 213 kfree(pa->pdev.dev.platform_data); 214 kfree(pa->pdev.mfd_cell); 215 kfree(pa->pdev.resource); 216 kfree(pa->pdev.driver_override); 217 kfree(pa); 218 } 219 220 /** 221 * platform_device_alloc - create a platform device 222 * @name: base name of the device we're adding 223 * @id: instance id 224 * 225 * Create a platform device object which can have other objects attached 226 * to it, and which will have attached objects freed when it is released. 227 */ 228 struct platform_device *platform_device_alloc(const char *name, int id) 229 { 230 struct platform_object *pa; 231 232 pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL); 233 if (pa) { 234 strcpy(pa->name, name); 235 pa->pdev.name = pa->name; 236 pa->pdev.id = id; 237 device_initialize(&pa->pdev.dev); 238 pa->pdev.dev.release = platform_device_release; 239 arch_setup_pdev_archdata(&pa->pdev); 240 } 241 242 return pa ? &pa->pdev : NULL; 243 } 244 EXPORT_SYMBOL_GPL(platform_device_alloc); 245 246 /** 247 * platform_device_add_resources - add resources to a platform device 248 * @pdev: platform device allocated by platform_device_alloc to add resources to 249 * @res: set of resources that needs to be allocated for the device 250 * @num: number of resources 251 * 252 * Add a copy of the resources to the platform device. The memory 253 * associated with the resources will be freed when the platform device is 254 * released. 255 */ 256 int platform_device_add_resources(struct platform_device *pdev, 257 const struct resource *res, unsigned int num) 258 { 259 struct resource *r = NULL; 260 261 if (res) { 262 r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL); 263 if (!r) 264 return -ENOMEM; 265 } 266 267 kfree(pdev->resource); 268 pdev->resource = r; 269 pdev->num_resources = num; 270 return 0; 271 } 272 EXPORT_SYMBOL_GPL(platform_device_add_resources); 273 274 /** 275 * platform_device_add_data - add platform-specific data to a platform device 276 * @pdev: platform device allocated by platform_device_alloc to add resources to 277 * @data: platform specific data for this platform device 278 * @size: size of platform specific data 279 * 280 * Add a copy of platform specific data to the platform device's 281 * platform_data pointer. The memory associated with the platform data 282 * will be freed when the platform device is released. 283 */ 284 int platform_device_add_data(struct platform_device *pdev, const void *data, 285 size_t size) 286 { 287 void *d = NULL; 288 289 if (data) { 290 d = kmemdup(data, size, GFP_KERNEL); 291 if (!d) 292 return -ENOMEM; 293 } 294 295 kfree(pdev->dev.platform_data); 296 pdev->dev.platform_data = d; 297 return 0; 298 } 299 EXPORT_SYMBOL_GPL(platform_device_add_data); 300 301 /** 302 * platform_device_add - add a platform device to device hierarchy 303 * @pdev: platform device we're adding 304 * 305 * This is part 2 of platform_device_register(), though may be called 306 * separately _iff_ pdev was allocated by platform_device_alloc(). 307 */ 308 int platform_device_add(struct platform_device *pdev) 309 { 310 int i, ret; 311 312 if (!pdev) 313 return -EINVAL; 314 315 if (!pdev->dev.parent) 316 pdev->dev.parent = &platform_bus; 317 318 pdev->dev.bus = &platform_bus_type; 319 320 switch (pdev->id) { 321 default: 322 dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id); 323 break; 324 case PLATFORM_DEVID_NONE: 325 dev_set_name(&pdev->dev, "%s", pdev->name); 326 break; 327 case PLATFORM_DEVID_AUTO: 328 /* 329 * Automatically allocated device ID. We mark it as such so 330 * that we remember it must be freed, and we append a suffix 331 * to avoid namespace collision with explicit IDs. 332 */ 333 ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL); 334 if (ret < 0) 335 goto err_out; 336 pdev->id = ret; 337 pdev->id_auto = true; 338 dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id); 339 break; 340 } 341 342 for (i = 0; i < pdev->num_resources; i++) { 343 struct resource *p, *r = &pdev->resource[i]; 344 345 if (r->name == NULL) 346 r->name = dev_name(&pdev->dev); 347 348 p = r->parent; 349 if (!p) { 350 if (resource_type(r) == IORESOURCE_MEM) 351 p = &iomem_resource; 352 else if (resource_type(r) == IORESOURCE_IO) 353 p = &ioport_resource; 354 } 355 356 if (p && insert_resource(p, r)) { 357 dev_err(&pdev->dev, "failed to claim resource %d\n", i); 358 ret = -EBUSY; 359 goto failed; 360 } 361 } 362 363 pr_debug("Registering platform device '%s'. Parent at %s\n", 364 dev_name(&pdev->dev), dev_name(pdev->dev.parent)); 365 366 ret = device_add(&pdev->dev); 367 if (ret == 0) 368 return ret; 369 370 failed: 371 if (pdev->id_auto) { 372 ida_simple_remove(&platform_devid_ida, pdev->id); 373 pdev->id = PLATFORM_DEVID_AUTO; 374 } 375 376 while (--i >= 0) { 377 struct resource *r = &pdev->resource[i]; 378 unsigned long type = resource_type(r); 379 380 if (type == IORESOURCE_MEM || type == IORESOURCE_IO) 381 release_resource(r); 382 } 383 384 err_out: 385 return ret; 386 } 387 EXPORT_SYMBOL_GPL(platform_device_add); 388 389 /** 390 * platform_device_del - remove a platform-level device 391 * @pdev: platform device we're removing 392 * 393 * Note that this function will also release all memory- and port-based 394 * resources owned by the device (@dev->resource). This function must 395 * _only_ be externally called in error cases. All other usage is a bug. 396 */ 397 void platform_device_del(struct platform_device *pdev) 398 { 399 int i; 400 401 if (pdev) { 402 device_del(&pdev->dev); 403 404 if (pdev->id_auto) { 405 ida_simple_remove(&platform_devid_ida, pdev->id); 406 pdev->id = PLATFORM_DEVID_AUTO; 407 } 408 409 for (i = 0; i < pdev->num_resources; i++) { 410 struct resource *r = &pdev->resource[i]; 411 unsigned long type = resource_type(r); 412 413 if (type == IORESOURCE_MEM || type == IORESOURCE_IO) 414 release_resource(r); 415 } 416 } 417 } 418 EXPORT_SYMBOL_GPL(platform_device_del); 419 420 /** 421 * platform_device_register - add a platform-level device 422 * @pdev: platform device we're adding 423 */ 424 int platform_device_register(struct platform_device *pdev) 425 { 426 device_initialize(&pdev->dev); 427 arch_setup_pdev_archdata(pdev); 428 return platform_device_add(pdev); 429 } 430 EXPORT_SYMBOL_GPL(platform_device_register); 431 432 /** 433 * platform_device_unregister - unregister a platform-level device 434 * @pdev: platform device we're unregistering 435 * 436 * Unregistration is done in 2 steps. First we release all resources 437 * and remove it from the subsystem, then we drop reference count by 438 * calling platform_device_put(). 439 */ 440 void platform_device_unregister(struct platform_device *pdev) 441 { 442 platform_device_del(pdev); 443 platform_device_put(pdev); 444 } 445 EXPORT_SYMBOL_GPL(platform_device_unregister); 446 447 /** 448 * platform_device_register_full - add a platform-level device with 449 * resources and platform-specific data 450 * 451 * @pdevinfo: data used to create device 452 * 453 * Returns &struct platform_device pointer on success, or ERR_PTR() on error. 454 */ 455 struct platform_device *platform_device_register_full( 456 const struct platform_device_info *pdevinfo) 457 { 458 int ret = -ENOMEM; 459 struct platform_device *pdev; 460 461 pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id); 462 if (!pdev) 463 goto err_alloc; 464 465 pdev->dev.parent = pdevinfo->parent; 466 pdev->dev.fwnode = pdevinfo->fwnode; 467 468 if (pdevinfo->dma_mask) { 469 /* 470 * This memory isn't freed when the device is put, 471 * I don't have a nice idea for that though. Conceptually 472 * dma_mask in struct device should not be a pointer. 473 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081 474 */ 475 pdev->dev.dma_mask = 476 kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL); 477 if (!pdev->dev.dma_mask) 478 goto err; 479 480 *pdev->dev.dma_mask = pdevinfo->dma_mask; 481 pdev->dev.coherent_dma_mask = pdevinfo->dma_mask; 482 } 483 484 ret = platform_device_add_resources(pdev, 485 pdevinfo->res, pdevinfo->num_res); 486 if (ret) 487 goto err; 488 489 ret = platform_device_add_data(pdev, 490 pdevinfo->data, pdevinfo->size_data); 491 if (ret) 492 goto err; 493 494 ret = platform_device_add(pdev); 495 if (ret) { 496 err: 497 ACPI_COMPANION_SET(&pdev->dev, NULL); 498 kfree(pdev->dev.dma_mask); 499 500 err_alloc: 501 platform_device_put(pdev); 502 return ERR_PTR(ret); 503 } 504 505 return pdev; 506 } 507 EXPORT_SYMBOL_GPL(platform_device_register_full); 508 509 static int platform_drv_probe(struct device *_dev) 510 { 511 struct platform_driver *drv = to_platform_driver(_dev->driver); 512 struct platform_device *dev = to_platform_device(_dev); 513 int ret; 514 515 ret = of_clk_set_defaults(_dev->of_node, false); 516 if (ret < 0) 517 return ret; 518 519 ret = dev_pm_domain_attach(_dev, true); 520 if (ret != -EPROBE_DEFER) { 521 ret = drv->probe(dev); 522 if (ret) 523 dev_pm_domain_detach(_dev, true); 524 } 525 526 if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) { 527 dev_warn(_dev, "probe deferral not supported\n"); 528 ret = -ENXIO; 529 } 530 531 return ret; 532 } 533 534 static int platform_drv_probe_fail(struct device *_dev) 535 { 536 return -ENXIO; 537 } 538 539 static int platform_drv_remove(struct device *_dev) 540 { 541 struct platform_driver *drv = to_platform_driver(_dev->driver); 542 struct platform_device *dev = to_platform_device(_dev); 543 int ret; 544 545 ret = drv->remove(dev); 546 dev_pm_domain_detach(_dev, true); 547 548 return ret; 549 } 550 551 static void platform_drv_shutdown(struct device *_dev) 552 { 553 struct platform_driver *drv = to_platform_driver(_dev->driver); 554 struct platform_device *dev = to_platform_device(_dev); 555 556 drv->shutdown(dev); 557 dev_pm_domain_detach(_dev, true); 558 } 559 560 /** 561 * __platform_driver_register - register a driver for platform-level devices 562 * @drv: platform driver structure 563 * @owner: owning module/driver 564 */ 565 int __platform_driver_register(struct platform_driver *drv, 566 struct module *owner) 567 { 568 drv->driver.owner = owner; 569 drv->driver.bus = &platform_bus_type; 570 if (drv->probe) 571 drv->driver.probe = platform_drv_probe; 572 if (drv->remove) 573 drv->driver.remove = platform_drv_remove; 574 if (drv->shutdown) 575 drv->driver.shutdown = platform_drv_shutdown; 576 577 return driver_register(&drv->driver); 578 } 579 EXPORT_SYMBOL_GPL(__platform_driver_register); 580 581 /** 582 * platform_driver_unregister - unregister a driver for platform-level devices 583 * @drv: platform driver structure 584 */ 585 void platform_driver_unregister(struct platform_driver *drv) 586 { 587 driver_unregister(&drv->driver); 588 } 589 EXPORT_SYMBOL_GPL(platform_driver_unregister); 590 591 /** 592 * __platform_driver_probe - register driver for non-hotpluggable device 593 * @drv: platform driver structure 594 * @probe: the driver probe routine, probably from an __init section 595 * @module: module which will be the owner of the driver 596 * 597 * Use this instead of platform_driver_register() when you know the device 598 * is not hotpluggable and has already been registered, and you want to 599 * remove its run-once probe() infrastructure from memory after the driver 600 * has bound to the device. 601 * 602 * One typical use for this would be with drivers for controllers integrated 603 * into system-on-chip processors, where the controller devices have been 604 * configured as part of board setup. 605 * 606 * Note that this is incompatible with deferred probing. 607 * 608 * Returns zero if the driver registered and bound to a device, else returns 609 * a negative error code and with the driver not registered. 610 */ 611 int __init_or_module __platform_driver_probe(struct platform_driver *drv, 612 int (*probe)(struct platform_device *), struct module *module) 613 { 614 int retval, code; 615 616 /* 617 * Prevent driver from requesting probe deferral to avoid further 618 * futile probe attempts. 619 */ 620 drv->prevent_deferred_probe = true; 621 622 /* make sure driver won't have bind/unbind attributes */ 623 drv->driver.suppress_bind_attrs = true; 624 625 /* temporary section violation during probe() */ 626 drv->probe = probe; 627 retval = code = __platform_driver_register(drv, module); 628 629 /* 630 * Fixup that section violation, being paranoid about code scanning 631 * the list of drivers in order to probe new devices. Check to see 632 * if the probe was successful, and make sure any forced probes of 633 * new devices fail. 634 */ 635 spin_lock(&drv->driver.bus->p->klist_drivers.k_lock); 636 drv->probe = NULL; 637 if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list)) 638 retval = -ENODEV; 639 drv->driver.probe = platform_drv_probe_fail; 640 spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock); 641 642 if (code != retval) 643 platform_driver_unregister(drv); 644 return retval; 645 } 646 EXPORT_SYMBOL_GPL(__platform_driver_probe); 647 648 /** 649 * __platform_create_bundle - register driver and create corresponding device 650 * @driver: platform driver structure 651 * @probe: the driver probe routine, probably from an __init section 652 * @res: set of resources that needs to be allocated for the device 653 * @n_res: number of resources 654 * @data: platform specific data for this platform device 655 * @size: size of platform specific data 656 * @module: module which will be the owner of the driver 657 * 658 * Use this in legacy-style modules that probe hardware directly and 659 * register a single platform device and corresponding platform driver. 660 * 661 * Returns &struct platform_device pointer on success, or ERR_PTR() on error. 662 */ 663 struct platform_device * __init_or_module __platform_create_bundle( 664 struct platform_driver *driver, 665 int (*probe)(struct platform_device *), 666 struct resource *res, unsigned int n_res, 667 const void *data, size_t size, struct module *module) 668 { 669 struct platform_device *pdev; 670 int error; 671 672 pdev = platform_device_alloc(driver->driver.name, -1); 673 if (!pdev) { 674 error = -ENOMEM; 675 goto err_out; 676 } 677 678 error = platform_device_add_resources(pdev, res, n_res); 679 if (error) 680 goto err_pdev_put; 681 682 error = platform_device_add_data(pdev, data, size); 683 if (error) 684 goto err_pdev_put; 685 686 error = platform_device_add(pdev); 687 if (error) 688 goto err_pdev_put; 689 690 error = __platform_driver_probe(driver, probe, module); 691 if (error) 692 goto err_pdev_del; 693 694 return pdev; 695 696 err_pdev_del: 697 platform_device_del(pdev); 698 err_pdev_put: 699 platform_device_put(pdev); 700 err_out: 701 return ERR_PTR(error); 702 } 703 EXPORT_SYMBOL_GPL(__platform_create_bundle); 704 705 /* modalias support enables more hands-off userspace setup: 706 * (a) environment variable lets new-style hotplug events work once system is 707 * fully running: "modprobe $MODALIAS" 708 * (b) sysfs attribute lets new-style coldplug recover from hotplug events 709 * mishandled before system is fully running: "modprobe $(cat modalias)" 710 */ 711 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 712 char *buf) 713 { 714 struct platform_device *pdev = to_platform_device(dev); 715 int len; 716 717 len = of_device_get_modalias(dev, buf, PAGE_SIZE -1); 718 if (len != -ENODEV) 719 return len; 720 721 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1); 722 if (len != -ENODEV) 723 return len; 724 725 len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name); 726 727 return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len; 728 } 729 static DEVICE_ATTR_RO(modalias); 730 731 static ssize_t driver_override_store(struct device *dev, 732 struct device_attribute *attr, 733 const char *buf, size_t count) 734 { 735 struct platform_device *pdev = to_platform_device(dev); 736 char *driver_override, *old = pdev->driver_override, *cp; 737 738 if (count > PATH_MAX) 739 return -EINVAL; 740 741 driver_override = kstrndup(buf, count, GFP_KERNEL); 742 if (!driver_override) 743 return -ENOMEM; 744 745 cp = strchr(driver_override, '\n'); 746 if (cp) 747 *cp = '\0'; 748 749 if (strlen(driver_override)) { 750 pdev->driver_override = driver_override; 751 } else { 752 kfree(driver_override); 753 pdev->driver_override = NULL; 754 } 755 756 kfree(old); 757 758 return count; 759 } 760 761 static ssize_t driver_override_show(struct device *dev, 762 struct device_attribute *attr, char *buf) 763 { 764 struct platform_device *pdev = to_platform_device(dev); 765 766 return sprintf(buf, "%s\n", pdev->driver_override); 767 } 768 static DEVICE_ATTR_RW(driver_override); 769 770 771 static struct attribute *platform_dev_attrs[] = { 772 &dev_attr_modalias.attr, 773 &dev_attr_driver_override.attr, 774 NULL, 775 }; 776 ATTRIBUTE_GROUPS(platform_dev); 777 778 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env) 779 { 780 struct platform_device *pdev = to_platform_device(dev); 781 int rc; 782 783 /* Some devices have extra OF data and an OF-style MODALIAS */ 784 rc = of_device_uevent_modalias(dev, env); 785 if (rc != -ENODEV) 786 return rc; 787 788 rc = acpi_device_uevent_modalias(dev, env); 789 if (rc != -ENODEV) 790 return rc; 791 792 add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX, 793 pdev->name); 794 return 0; 795 } 796 797 static const struct platform_device_id *platform_match_id( 798 const struct platform_device_id *id, 799 struct platform_device *pdev) 800 { 801 while (id->name[0]) { 802 if (strcmp(pdev->name, id->name) == 0) { 803 pdev->id_entry = id; 804 return id; 805 } 806 id++; 807 } 808 return NULL; 809 } 810 811 /** 812 * platform_match - bind platform device to platform driver. 813 * @dev: device. 814 * @drv: driver. 815 * 816 * Platform device IDs are assumed to be encoded like this: 817 * "<name><instance>", where <name> is a short description of the type of 818 * device, like "pci" or "floppy", and <instance> is the enumerated 819 * instance of the device, like '0' or '42'. Driver IDs are simply 820 * "<name>". So, extract the <name> from the platform_device structure, 821 * and compare it against the name of the driver. Return whether they match 822 * or not. 823 */ 824 static int platform_match(struct device *dev, struct device_driver *drv) 825 { 826 struct platform_device *pdev = to_platform_device(dev); 827 struct platform_driver *pdrv = to_platform_driver(drv); 828 829 /* When driver_override is set, only bind to the matching driver */ 830 if (pdev->driver_override) 831 return !strcmp(pdev->driver_override, drv->name); 832 833 /* Attempt an OF style match first */ 834 if (of_driver_match_device(dev, drv)) 835 return 1; 836 837 /* Then try ACPI style match */ 838 if (acpi_driver_match_device(dev, drv)) 839 return 1; 840 841 /* Then try to match against the id table */ 842 if (pdrv->id_table) 843 return platform_match_id(pdrv->id_table, pdev) != NULL; 844 845 /* fall-back to driver name match */ 846 return (strcmp(pdev->name, drv->name) == 0); 847 } 848 849 #ifdef CONFIG_PM_SLEEP 850 851 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg) 852 { 853 struct platform_driver *pdrv = to_platform_driver(dev->driver); 854 struct platform_device *pdev = to_platform_device(dev); 855 int ret = 0; 856 857 if (dev->driver && pdrv->suspend) 858 ret = pdrv->suspend(pdev, mesg); 859 860 return ret; 861 } 862 863 static int platform_legacy_resume(struct device *dev) 864 { 865 struct platform_driver *pdrv = to_platform_driver(dev->driver); 866 struct platform_device *pdev = to_platform_device(dev); 867 int ret = 0; 868 869 if (dev->driver && pdrv->resume) 870 ret = pdrv->resume(pdev); 871 872 return ret; 873 } 874 875 #endif /* CONFIG_PM_SLEEP */ 876 877 #ifdef CONFIG_SUSPEND 878 879 int platform_pm_suspend(struct device *dev) 880 { 881 struct device_driver *drv = dev->driver; 882 int ret = 0; 883 884 if (!drv) 885 return 0; 886 887 if (drv->pm) { 888 if (drv->pm->suspend) 889 ret = drv->pm->suspend(dev); 890 } else { 891 ret = platform_legacy_suspend(dev, PMSG_SUSPEND); 892 } 893 894 return ret; 895 } 896 897 int platform_pm_resume(struct device *dev) 898 { 899 struct device_driver *drv = dev->driver; 900 int ret = 0; 901 902 if (!drv) 903 return 0; 904 905 if (drv->pm) { 906 if (drv->pm->resume) 907 ret = drv->pm->resume(dev); 908 } else { 909 ret = platform_legacy_resume(dev); 910 } 911 912 return ret; 913 } 914 915 #endif /* CONFIG_SUSPEND */ 916 917 #ifdef CONFIG_HIBERNATE_CALLBACKS 918 919 int platform_pm_freeze(struct device *dev) 920 { 921 struct device_driver *drv = dev->driver; 922 int ret = 0; 923 924 if (!drv) 925 return 0; 926 927 if (drv->pm) { 928 if (drv->pm->freeze) 929 ret = drv->pm->freeze(dev); 930 } else { 931 ret = platform_legacy_suspend(dev, PMSG_FREEZE); 932 } 933 934 return ret; 935 } 936 937 int platform_pm_thaw(struct device *dev) 938 { 939 struct device_driver *drv = dev->driver; 940 int ret = 0; 941 942 if (!drv) 943 return 0; 944 945 if (drv->pm) { 946 if (drv->pm->thaw) 947 ret = drv->pm->thaw(dev); 948 } else { 949 ret = platform_legacy_resume(dev); 950 } 951 952 return ret; 953 } 954 955 int platform_pm_poweroff(struct device *dev) 956 { 957 struct device_driver *drv = dev->driver; 958 int ret = 0; 959 960 if (!drv) 961 return 0; 962 963 if (drv->pm) { 964 if (drv->pm->poweroff) 965 ret = drv->pm->poweroff(dev); 966 } else { 967 ret = platform_legacy_suspend(dev, PMSG_HIBERNATE); 968 } 969 970 return ret; 971 } 972 973 int platform_pm_restore(struct device *dev) 974 { 975 struct device_driver *drv = dev->driver; 976 int ret = 0; 977 978 if (!drv) 979 return 0; 980 981 if (drv->pm) { 982 if (drv->pm->restore) 983 ret = drv->pm->restore(dev); 984 } else { 985 ret = platform_legacy_resume(dev); 986 } 987 988 return ret; 989 } 990 991 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 992 993 static const struct dev_pm_ops platform_dev_pm_ops = { 994 .runtime_suspend = pm_generic_runtime_suspend, 995 .runtime_resume = pm_generic_runtime_resume, 996 USE_PLATFORM_PM_SLEEP_OPS 997 }; 998 999 struct bus_type platform_bus_type = { 1000 .name = "platform", 1001 .dev_groups = platform_dev_groups, 1002 .match = platform_match, 1003 .uevent = platform_uevent, 1004 .pm = &platform_dev_pm_ops, 1005 }; 1006 EXPORT_SYMBOL_GPL(platform_bus_type); 1007 1008 int __init platform_bus_init(void) 1009 { 1010 int error; 1011 1012 early_platform_cleanup(); 1013 1014 error = device_register(&platform_bus); 1015 if (error) 1016 return error; 1017 error = bus_register(&platform_bus_type); 1018 if (error) 1019 device_unregister(&platform_bus); 1020 of_platform_register_reconfig_notifier(); 1021 return error; 1022 } 1023 1024 #ifndef ARCH_HAS_DMA_GET_REQUIRED_MASK 1025 u64 dma_get_required_mask(struct device *dev) 1026 { 1027 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 1028 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 1029 u64 mask; 1030 1031 if (!high_totalram) { 1032 /* convert to mask just covering totalram */ 1033 low_totalram = (1 << (fls(low_totalram) - 1)); 1034 low_totalram += low_totalram - 1; 1035 mask = low_totalram; 1036 } else { 1037 high_totalram = (1 << (fls(high_totalram) - 1)); 1038 high_totalram += high_totalram - 1; 1039 mask = (((u64)high_totalram) << 32) + 0xffffffff; 1040 } 1041 return mask; 1042 } 1043 EXPORT_SYMBOL_GPL(dma_get_required_mask); 1044 #endif 1045 1046 static __initdata LIST_HEAD(early_platform_driver_list); 1047 static __initdata LIST_HEAD(early_platform_device_list); 1048 1049 /** 1050 * early_platform_driver_register - register early platform driver 1051 * @epdrv: early_platform driver structure 1052 * @buf: string passed from early_param() 1053 * 1054 * Helper function for early_platform_init() / early_platform_init_buffer() 1055 */ 1056 int __init early_platform_driver_register(struct early_platform_driver *epdrv, 1057 char *buf) 1058 { 1059 char *tmp; 1060 int n; 1061 1062 /* Simply add the driver to the end of the global list. 1063 * Drivers will by default be put on the list in compiled-in order. 1064 */ 1065 if (!epdrv->list.next) { 1066 INIT_LIST_HEAD(&epdrv->list); 1067 list_add_tail(&epdrv->list, &early_platform_driver_list); 1068 } 1069 1070 /* If the user has specified device then make sure the driver 1071 * gets prioritized. The driver of the last device specified on 1072 * command line will be put first on the list. 1073 */ 1074 n = strlen(epdrv->pdrv->driver.name); 1075 if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) { 1076 list_move(&epdrv->list, &early_platform_driver_list); 1077 1078 /* Allow passing parameters after device name */ 1079 if (buf[n] == '\0' || buf[n] == ',') 1080 epdrv->requested_id = -1; 1081 else { 1082 epdrv->requested_id = simple_strtoul(&buf[n + 1], 1083 &tmp, 10); 1084 1085 if (buf[n] != '.' || (tmp == &buf[n + 1])) { 1086 epdrv->requested_id = EARLY_PLATFORM_ID_ERROR; 1087 n = 0; 1088 } else 1089 n += strcspn(&buf[n + 1], ",") + 1; 1090 } 1091 1092 if (buf[n] == ',') 1093 n++; 1094 1095 if (epdrv->bufsize) { 1096 memcpy(epdrv->buffer, &buf[n], 1097 min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1)); 1098 epdrv->buffer[epdrv->bufsize - 1] = '\0'; 1099 } 1100 } 1101 1102 return 0; 1103 } 1104 1105 /** 1106 * early_platform_add_devices - adds a number of early platform devices 1107 * @devs: array of early platform devices to add 1108 * @num: number of early platform devices in array 1109 * 1110 * Used by early architecture code to register early platform devices and 1111 * their platform data. 1112 */ 1113 void __init early_platform_add_devices(struct platform_device **devs, int num) 1114 { 1115 struct device *dev; 1116 int i; 1117 1118 /* simply add the devices to list */ 1119 for (i = 0; i < num; i++) { 1120 dev = &devs[i]->dev; 1121 1122 if (!dev->devres_head.next) { 1123 pm_runtime_early_init(dev); 1124 INIT_LIST_HEAD(&dev->devres_head); 1125 list_add_tail(&dev->devres_head, 1126 &early_platform_device_list); 1127 } 1128 } 1129 } 1130 1131 /** 1132 * early_platform_driver_register_all - register early platform drivers 1133 * @class_str: string to identify early platform driver class 1134 * 1135 * Used by architecture code to register all early platform drivers 1136 * for a certain class. If omitted then only early platform drivers 1137 * with matching kernel command line class parameters will be registered. 1138 */ 1139 void __init early_platform_driver_register_all(char *class_str) 1140 { 1141 /* The "class_str" parameter may or may not be present on the kernel 1142 * command line. If it is present then there may be more than one 1143 * matching parameter. 1144 * 1145 * Since we register our early platform drivers using early_param() 1146 * we need to make sure that they also get registered in the case 1147 * when the parameter is missing from the kernel command line. 1148 * 1149 * We use parse_early_options() to make sure the early_param() gets 1150 * called at least once. The early_param() may be called more than 1151 * once since the name of the preferred device may be specified on 1152 * the kernel command line. early_platform_driver_register() handles 1153 * this case for us. 1154 */ 1155 parse_early_options(class_str); 1156 } 1157 1158 /** 1159 * early_platform_match - find early platform device matching driver 1160 * @epdrv: early platform driver structure 1161 * @id: id to match against 1162 */ 1163 static struct platform_device * __init 1164 early_platform_match(struct early_platform_driver *epdrv, int id) 1165 { 1166 struct platform_device *pd; 1167 1168 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head) 1169 if (platform_match(&pd->dev, &epdrv->pdrv->driver)) 1170 if (pd->id == id) 1171 return pd; 1172 1173 return NULL; 1174 } 1175 1176 /** 1177 * early_platform_left - check if early platform driver has matching devices 1178 * @epdrv: early platform driver structure 1179 * @id: return true if id or above exists 1180 */ 1181 static int __init early_platform_left(struct early_platform_driver *epdrv, 1182 int id) 1183 { 1184 struct platform_device *pd; 1185 1186 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head) 1187 if (platform_match(&pd->dev, &epdrv->pdrv->driver)) 1188 if (pd->id >= id) 1189 return 1; 1190 1191 return 0; 1192 } 1193 1194 /** 1195 * early_platform_driver_probe_id - probe drivers matching class_str and id 1196 * @class_str: string to identify early platform driver class 1197 * @id: id to match against 1198 * @nr_probe: number of platform devices to successfully probe before exiting 1199 */ 1200 static int __init early_platform_driver_probe_id(char *class_str, 1201 int id, 1202 int nr_probe) 1203 { 1204 struct early_platform_driver *epdrv; 1205 struct platform_device *match; 1206 int match_id; 1207 int n = 0; 1208 int left = 0; 1209 1210 list_for_each_entry(epdrv, &early_platform_driver_list, list) { 1211 /* only use drivers matching our class_str */ 1212 if (strcmp(class_str, epdrv->class_str)) 1213 continue; 1214 1215 if (id == -2) { 1216 match_id = epdrv->requested_id; 1217 left = 1; 1218 1219 } else { 1220 match_id = id; 1221 left += early_platform_left(epdrv, id); 1222 1223 /* skip requested id */ 1224 switch (epdrv->requested_id) { 1225 case EARLY_PLATFORM_ID_ERROR: 1226 case EARLY_PLATFORM_ID_UNSET: 1227 break; 1228 default: 1229 if (epdrv->requested_id == id) 1230 match_id = EARLY_PLATFORM_ID_UNSET; 1231 } 1232 } 1233 1234 switch (match_id) { 1235 case EARLY_PLATFORM_ID_ERROR: 1236 pr_warn("%s: unable to parse %s parameter\n", 1237 class_str, epdrv->pdrv->driver.name); 1238 /* fall-through */ 1239 case EARLY_PLATFORM_ID_UNSET: 1240 match = NULL; 1241 break; 1242 default: 1243 match = early_platform_match(epdrv, match_id); 1244 } 1245 1246 if (match) { 1247 /* 1248 * Set up a sensible init_name to enable 1249 * dev_name() and others to be used before the 1250 * rest of the driver core is initialized. 1251 */ 1252 if (!match->dev.init_name && slab_is_available()) { 1253 if (match->id != -1) 1254 match->dev.init_name = 1255 kasprintf(GFP_KERNEL, "%s.%d", 1256 match->name, 1257 match->id); 1258 else 1259 match->dev.init_name = 1260 kasprintf(GFP_KERNEL, "%s", 1261 match->name); 1262 1263 if (!match->dev.init_name) 1264 return -ENOMEM; 1265 } 1266 1267 if (epdrv->pdrv->probe(match)) 1268 pr_warn("%s: unable to probe %s early.\n", 1269 class_str, match->name); 1270 else 1271 n++; 1272 } 1273 1274 if (n >= nr_probe) 1275 break; 1276 } 1277 1278 if (left) 1279 return n; 1280 else 1281 return -ENODEV; 1282 } 1283 1284 /** 1285 * early_platform_driver_probe - probe a class of registered drivers 1286 * @class_str: string to identify early platform driver class 1287 * @nr_probe: number of platform devices to successfully probe before exiting 1288 * @user_only: only probe user specified early platform devices 1289 * 1290 * Used by architecture code to probe registered early platform drivers 1291 * within a certain class. For probe to happen a registered early platform 1292 * device matching a registered early platform driver is needed. 1293 */ 1294 int __init early_platform_driver_probe(char *class_str, 1295 int nr_probe, 1296 int user_only) 1297 { 1298 int k, n, i; 1299 1300 n = 0; 1301 for (i = -2; n < nr_probe; i++) { 1302 k = early_platform_driver_probe_id(class_str, i, nr_probe - n); 1303 1304 if (k < 0) 1305 break; 1306 1307 n += k; 1308 1309 if (user_only) 1310 break; 1311 } 1312 1313 return n; 1314 } 1315 1316 /** 1317 * early_platform_cleanup - clean up early platform code 1318 */ 1319 void __init early_platform_cleanup(void) 1320 { 1321 struct platform_device *pd, *pd2; 1322 1323 /* clean up the devres list used to chain devices */ 1324 list_for_each_entry_safe(pd, pd2, &early_platform_device_list, 1325 dev.devres_head) { 1326 list_del(&pd->dev.devres_head); 1327 memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head)); 1328 } 1329 } 1330 1331