1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * platform.c - platform 'pseudo' bus for legacy devices 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * 8 * Please see Documentation/driver-model/platform.txt for more 9 * information. 10 */ 11 12 #include <linux/string.h> 13 #include <linux/platform_device.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/bootmem.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/idr.h> 25 #include <linux/acpi.h> 26 #include <linux/clk/clk-conf.h> 27 #include <linux/limits.h> 28 #include <linux/property.h> 29 30 #include "base.h" 31 #include "power/power.h" 32 33 /* For automatically allocated device IDs */ 34 static DEFINE_IDA(platform_devid_ida); 35 36 struct device platform_bus = { 37 .init_name = "platform", 38 }; 39 EXPORT_SYMBOL_GPL(platform_bus); 40 41 /** 42 * arch_setup_pdev_archdata - Allow manipulation of archdata before its used 43 * @pdev: platform device 44 * 45 * This is called before platform_device_add() such that any pdev_archdata may 46 * be setup before the platform_notifier is called. So if a user needs to 47 * manipulate any relevant information in the pdev_archdata they can do: 48 * 49 * platform_device_alloc() 50 * ... manipulate ... 51 * platform_device_add() 52 * 53 * And if they don't care they can just call platform_device_register() and 54 * everything will just work out. 55 */ 56 void __weak arch_setup_pdev_archdata(struct platform_device *pdev) 57 { 58 } 59 60 /** 61 * platform_get_resource - get a resource for a device 62 * @dev: platform device 63 * @type: resource type 64 * @num: resource index 65 */ 66 struct resource *platform_get_resource(struct platform_device *dev, 67 unsigned int type, unsigned int num) 68 { 69 int i; 70 71 for (i = 0; i < dev->num_resources; i++) { 72 struct resource *r = &dev->resource[i]; 73 74 if (type == resource_type(r) && num-- == 0) 75 return r; 76 } 77 return NULL; 78 } 79 EXPORT_SYMBOL_GPL(platform_get_resource); 80 81 /** 82 * platform_get_irq - get an IRQ for a device 83 * @dev: platform device 84 * @num: IRQ number index 85 */ 86 int platform_get_irq(struct platform_device *dev, unsigned int num) 87 { 88 #ifdef CONFIG_SPARC 89 /* sparc does not have irqs represented as IORESOURCE_IRQ resources */ 90 if (!dev || num >= dev->archdata.num_irqs) 91 return -ENXIO; 92 return dev->archdata.irqs[num]; 93 #else 94 struct resource *r; 95 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) { 96 int ret; 97 98 ret = of_irq_get(dev->dev.of_node, num); 99 if (ret > 0 || ret == -EPROBE_DEFER) 100 return ret; 101 } 102 103 r = platform_get_resource(dev, IORESOURCE_IRQ, num); 104 if (has_acpi_companion(&dev->dev)) { 105 if (r && r->flags & IORESOURCE_DISABLED) { 106 int ret; 107 108 ret = acpi_irq_get(ACPI_HANDLE(&dev->dev), num, r); 109 if (ret) 110 return ret; 111 } 112 } 113 114 /* 115 * The resources may pass trigger flags to the irqs that need 116 * to be set up. It so happens that the trigger flags for 117 * IORESOURCE_BITS correspond 1-to-1 to the IRQF_TRIGGER* 118 * settings. 119 */ 120 if (r && r->flags & IORESOURCE_BITS) { 121 struct irq_data *irqd; 122 123 irqd = irq_get_irq_data(r->start); 124 if (!irqd) 125 return -ENXIO; 126 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); 127 } 128 129 return r ? r->start : -ENXIO; 130 #endif 131 } 132 EXPORT_SYMBOL_GPL(platform_get_irq); 133 134 /** 135 * platform_irq_count - Count the number of IRQs a platform device uses 136 * @dev: platform device 137 * 138 * Return: Number of IRQs a platform device uses or EPROBE_DEFER 139 */ 140 int platform_irq_count(struct platform_device *dev) 141 { 142 int ret, nr = 0; 143 144 while ((ret = platform_get_irq(dev, nr)) >= 0) 145 nr++; 146 147 if (ret == -EPROBE_DEFER) 148 return ret; 149 150 return nr; 151 } 152 EXPORT_SYMBOL_GPL(platform_irq_count); 153 154 /** 155 * platform_get_resource_byname - get a resource for a device by name 156 * @dev: platform device 157 * @type: resource type 158 * @name: resource name 159 */ 160 struct resource *platform_get_resource_byname(struct platform_device *dev, 161 unsigned int type, 162 const char *name) 163 { 164 int i; 165 166 for (i = 0; i < dev->num_resources; i++) { 167 struct resource *r = &dev->resource[i]; 168 169 if (unlikely(!r->name)) 170 continue; 171 172 if (type == resource_type(r) && !strcmp(r->name, name)) 173 return r; 174 } 175 return NULL; 176 } 177 EXPORT_SYMBOL_GPL(platform_get_resource_byname); 178 179 /** 180 * platform_get_irq_byname - get an IRQ for a device by name 181 * @dev: platform device 182 * @name: IRQ name 183 */ 184 int platform_get_irq_byname(struct platform_device *dev, const char *name) 185 { 186 struct resource *r; 187 188 if (IS_ENABLED(CONFIG_OF_IRQ) && dev->dev.of_node) { 189 int ret; 190 191 ret = of_irq_get_byname(dev->dev.of_node, name); 192 if (ret > 0 || ret == -EPROBE_DEFER) 193 return ret; 194 } 195 196 r = platform_get_resource_byname(dev, IORESOURCE_IRQ, name); 197 return r ? r->start : -ENXIO; 198 } 199 EXPORT_SYMBOL_GPL(platform_get_irq_byname); 200 201 /** 202 * platform_add_devices - add a numbers of platform devices 203 * @devs: array of platform devices to add 204 * @num: number of platform devices in array 205 */ 206 int platform_add_devices(struct platform_device **devs, int num) 207 { 208 int i, ret = 0; 209 210 for (i = 0; i < num; i++) { 211 ret = platform_device_register(devs[i]); 212 if (ret) { 213 while (--i >= 0) 214 platform_device_unregister(devs[i]); 215 break; 216 } 217 } 218 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(platform_add_devices); 222 223 struct platform_object { 224 struct platform_device pdev; 225 char name[]; 226 }; 227 228 /** 229 * platform_device_put - destroy a platform device 230 * @pdev: platform device to free 231 * 232 * Free all memory associated with a platform device. This function must 233 * _only_ be externally called in error cases. All other usage is a bug. 234 */ 235 void platform_device_put(struct platform_device *pdev) 236 { 237 if (pdev) 238 put_device(&pdev->dev); 239 } 240 EXPORT_SYMBOL_GPL(platform_device_put); 241 242 static void platform_device_release(struct device *dev) 243 { 244 struct platform_object *pa = container_of(dev, struct platform_object, 245 pdev.dev); 246 247 of_device_node_put(&pa->pdev.dev); 248 kfree(pa->pdev.dev.platform_data); 249 kfree(pa->pdev.mfd_cell); 250 kfree(pa->pdev.resource); 251 kfree(pa->pdev.driver_override); 252 kfree(pa); 253 } 254 255 /** 256 * platform_device_alloc - create a platform device 257 * @name: base name of the device we're adding 258 * @id: instance id 259 * 260 * Create a platform device object which can have other objects attached 261 * to it, and which will have attached objects freed when it is released. 262 */ 263 struct platform_device *platform_device_alloc(const char *name, int id) 264 { 265 struct platform_object *pa; 266 267 pa = kzalloc(sizeof(*pa) + strlen(name) + 1, GFP_KERNEL); 268 if (pa) { 269 strcpy(pa->name, name); 270 pa->pdev.name = pa->name; 271 pa->pdev.id = id; 272 device_initialize(&pa->pdev.dev); 273 pa->pdev.dev.release = platform_device_release; 274 arch_setup_pdev_archdata(&pa->pdev); 275 } 276 277 return pa ? &pa->pdev : NULL; 278 } 279 EXPORT_SYMBOL_GPL(platform_device_alloc); 280 281 /** 282 * platform_device_add_resources - add resources to a platform device 283 * @pdev: platform device allocated by platform_device_alloc to add resources to 284 * @res: set of resources that needs to be allocated for the device 285 * @num: number of resources 286 * 287 * Add a copy of the resources to the platform device. The memory 288 * associated with the resources will be freed when the platform device is 289 * released. 290 */ 291 int platform_device_add_resources(struct platform_device *pdev, 292 const struct resource *res, unsigned int num) 293 { 294 struct resource *r = NULL; 295 296 if (res) { 297 r = kmemdup(res, sizeof(struct resource) * num, GFP_KERNEL); 298 if (!r) 299 return -ENOMEM; 300 } 301 302 kfree(pdev->resource); 303 pdev->resource = r; 304 pdev->num_resources = num; 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(platform_device_add_resources); 308 309 /** 310 * platform_device_add_data - add platform-specific data to a platform device 311 * @pdev: platform device allocated by platform_device_alloc to add resources to 312 * @data: platform specific data for this platform device 313 * @size: size of platform specific data 314 * 315 * Add a copy of platform specific data to the platform device's 316 * platform_data pointer. The memory associated with the platform data 317 * will be freed when the platform device is released. 318 */ 319 int platform_device_add_data(struct platform_device *pdev, const void *data, 320 size_t size) 321 { 322 void *d = NULL; 323 324 if (data) { 325 d = kmemdup(data, size, GFP_KERNEL); 326 if (!d) 327 return -ENOMEM; 328 } 329 330 kfree(pdev->dev.platform_data); 331 pdev->dev.platform_data = d; 332 return 0; 333 } 334 EXPORT_SYMBOL_GPL(platform_device_add_data); 335 336 /** 337 * platform_device_add_properties - add built-in properties to a platform device 338 * @pdev: platform device to add properties to 339 * @properties: null terminated array of properties to add 340 * 341 * The function will take deep copy of @properties and attach the copy to the 342 * platform device. The memory associated with properties will be freed when the 343 * platform device is released. 344 */ 345 int platform_device_add_properties(struct platform_device *pdev, 346 const struct property_entry *properties) 347 { 348 return device_add_properties(&pdev->dev, properties); 349 } 350 EXPORT_SYMBOL_GPL(platform_device_add_properties); 351 352 /** 353 * platform_device_add - add a platform device to device hierarchy 354 * @pdev: platform device we're adding 355 * 356 * This is part 2 of platform_device_register(), though may be called 357 * separately _iff_ pdev was allocated by platform_device_alloc(). 358 */ 359 int platform_device_add(struct platform_device *pdev) 360 { 361 int i, ret; 362 363 if (!pdev) 364 return -EINVAL; 365 366 if (!pdev->dev.parent) 367 pdev->dev.parent = &platform_bus; 368 369 pdev->dev.bus = &platform_bus_type; 370 371 switch (pdev->id) { 372 default: 373 dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id); 374 break; 375 case PLATFORM_DEVID_NONE: 376 dev_set_name(&pdev->dev, "%s", pdev->name); 377 break; 378 case PLATFORM_DEVID_AUTO: 379 /* 380 * Automatically allocated device ID. We mark it as such so 381 * that we remember it must be freed, and we append a suffix 382 * to avoid namespace collision with explicit IDs. 383 */ 384 ret = ida_simple_get(&platform_devid_ida, 0, 0, GFP_KERNEL); 385 if (ret < 0) 386 goto err_out; 387 pdev->id = ret; 388 pdev->id_auto = true; 389 dev_set_name(&pdev->dev, "%s.%d.auto", pdev->name, pdev->id); 390 break; 391 } 392 393 for (i = 0; i < pdev->num_resources; i++) { 394 struct resource *p, *r = &pdev->resource[i]; 395 396 if (r->name == NULL) 397 r->name = dev_name(&pdev->dev); 398 399 p = r->parent; 400 if (!p) { 401 if (resource_type(r) == IORESOURCE_MEM) 402 p = &iomem_resource; 403 else if (resource_type(r) == IORESOURCE_IO) 404 p = &ioport_resource; 405 } 406 407 if (p && insert_resource(p, r)) { 408 dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r); 409 ret = -EBUSY; 410 goto failed; 411 } 412 } 413 414 pr_debug("Registering platform device '%s'. Parent at %s\n", 415 dev_name(&pdev->dev), dev_name(pdev->dev.parent)); 416 417 ret = device_add(&pdev->dev); 418 if (ret == 0) 419 return ret; 420 421 failed: 422 if (pdev->id_auto) { 423 ida_simple_remove(&platform_devid_ida, pdev->id); 424 pdev->id = PLATFORM_DEVID_AUTO; 425 } 426 427 while (--i >= 0) { 428 struct resource *r = &pdev->resource[i]; 429 if (r->parent) 430 release_resource(r); 431 } 432 433 err_out: 434 return ret; 435 } 436 EXPORT_SYMBOL_GPL(platform_device_add); 437 438 /** 439 * platform_device_del - remove a platform-level device 440 * @pdev: platform device we're removing 441 * 442 * Note that this function will also release all memory- and port-based 443 * resources owned by the device (@dev->resource). This function must 444 * _only_ be externally called in error cases. All other usage is a bug. 445 */ 446 void platform_device_del(struct platform_device *pdev) 447 { 448 int i; 449 450 if (pdev) { 451 device_remove_properties(&pdev->dev); 452 device_del(&pdev->dev); 453 454 if (pdev->id_auto) { 455 ida_simple_remove(&platform_devid_ida, pdev->id); 456 pdev->id = PLATFORM_DEVID_AUTO; 457 } 458 459 for (i = 0; i < pdev->num_resources; i++) { 460 struct resource *r = &pdev->resource[i]; 461 if (r->parent) 462 release_resource(r); 463 } 464 } 465 } 466 EXPORT_SYMBOL_GPL(platform_device_del); 467 468 /** 469 * platform_device_register - add a platform-level device 470 * @pdev: platform device we're adding 471 */ 472 int platform_device_register(struct platform_device *pdev) 473 { 474 device_initialize(&pdev->dev); 475 arch_setup_pdev_archdata(pdev); 476 return platform_device_add(pdev); 477 } 478 EXPORT_SYMBOL_GPL(platform_device_register); 479 480 /** 481 * platform_device_unregister - unregister a platform-level device 482 * @pdev: platform device we're unregistering 483 * 484 * Unregistration is done in 2 steps. First we release all resources 485 * and remove it from the subsystem, then we drop reference count by 486 * calling platform_device_put(). 487 */ 488 void platform_device_unregister(struct platform_device *pdev) 489 { 490 platform_device_del(pdev); 491 platform_device_put(pdev); 492 } 493 EXPORT_SYMBOL_GPL(platform_device_unregister); 494 495 /** 496 * platform_device_register_full - add a platform-level device with 497 * resources and platform-specific data 498 * 499 * @pdevinfo: data used to create device 500 * 501 * Returns &struct platform_device pointer on success, or ERR_PTR() on error. 502 */ 503 struct platform_device *platform_device_register_full( 504 const struct platform_device_info *pdevinfo) 505 { 506 int ret = -ENOMEM; 507 struct platform_device *pdev; 508 509 pdev = platform_device_alloc(pdevinfo->name, pdevinfo->id); 510 if (!pdev) 511 goto err_alloc; 512 513 pdev->dev.parent = pdevinfo->parent; 514 pdev->dev.fwnode = pdevinfo->fwnode; 515 516 if (pdevinfo->dma_mask) { 517 /* 518 * This memory isn't freed when the device is put, 519 * I don't have a nice idea for that though. Conceptually 520 * dma_mask in struct device should not be a pointer. 521 * See http://thread.gmane.org/gmane.linux.kernel.pci/9081 522 */ 523 pdev->dev.dma_mask = 524 kmalloc(sizeof(*pdev->dev.dma_mask), GFP_KERNEL); 525 if (!pdev->dev.dma_mask) 526 goto err; 527 528 *pdev->dev.dma_mask = pdevinfo->dma_mask; 529 pdev->dev.coherent_dma_mask = pdevinfo->dma_mask; 530 } 531 532 ret = platform_device_add_resources(pdev, 533 pdevinfo->res, pdevinfo->num_res); 534 if (ret) 535 goto err; 536 537 ret = platform_device_add_data(pdev, 538 pdevinfo->data, pdevinfo->size_data); 539 if (ret) 540 goto err; 541 542 if (pdevinfo->properties) { 543 ret = platform_device_add_properties(pdev, 544 pdevinfo->properties); 545 if (ret) 546 goto err; 547 } 548 549 ret = platform_device_add(pdev); 550 if (ret) { 551 err: 552 ACPI_COMPANION_SET(&pdev->dev, NULL); 553 kfree(pdev->dev.dma_mask); 554 555 err_alloc: 556 platform_device_put(pdev); 557 return ERR_PTR(ret); 558 } 559 560 return pdev; 561 } 562 EXPORT_SYMBOL_GPL(platform_device_register_full); 563 564 static int platform_drv_probe(struct device *_dev) 565 { 566 struct platform_driver *drv = to_platform_driver(_dev->driver); 567 struct platform_device *dev = to_platform_device(_dev); 568 int ret; 569 570 ret = of_clk_set_defaults(_dev->of_node, false); 571 if (ret < 0) 572 return ret; 573 574 ret = dev_pm_domain_attach(_dev, true); 575 if (ret) 576 goto out; 577 578 if (drv->probe) { 579 ret = drv->probe(dev); 580 if (ret) 581 dev_pm_domain_detach(_dev, true); 582 } 583 584 out: 585 if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) { 586 dev_warn(_dev, "probe deferral not supported\n"); 587 ret = -ENXIO; 588 } 589 590 return ret; 591 } 592 593 static int platform_drv_probe_fail(struct device *_dev) 594 { 595 return -ENXIO; 596 } 597 598 static int platform_drv_remove(struct device *_dev) 599 { 600 struct platform_driver *drv = to_platform_driver(_dev->driver); 601 struct platform_device *dev = to_platform_device(_dev); 602 int ret = 0; 603 604 if (drv->remove) 605 ret = drv->remove(dev); 606 dev_pm_domain_detach(_dev, true); 607 608 return ret; 609 } 610 611 static void platform_drv_shutdown(struct device *_dev) 612 { 613 struct platform_driver *drv = to_platform_driver(_dev->driver); 614 struct platform_device *dev = to_platform_device(_dev); 615 616 if (drv->shutdown) 617 drv->shutdown(dev); 618 } 619 620 /** 621 * __platform_driver_register - register a driver for platform-level devices 622 * @drv: platform driver structure 623 * @owner: owning module/driver 624 */ 625 int __platform_driver_register(struct platform_driver *drv, 626 struct module *owner) 627 { 628 drv->driver.owner = owner; 629 drv->driver.bus = &platform_bus_type; 630 drv->driver.probe = platform_drv_probe; 631 drv->driver.remove = platform_drv_remove; 632 drv->driver.shutdown = platform_drv_shutdown; 633 634 return driver_register(&drv->driver); 635 } 636 EXPORT_SYMBOL_GPL(__platform_driver_register); 637 638 /** 639 * platform_driver_unregister - unregister a driver for platform-level devices 640 * @drv: platform driver structure 641 */ 642 void platform_driver_unregister(struct platform_driver *drv) 643 { 644 driver_unregister(&drv->driver); 645 } 646 EXPORT_SYMBOL_GPL(platform_driver_unregister); 647 648 /** 649 * __platform_driver_probe - register driver for non-hotpluggable device 650 * @drv: platform driver structure 651 * @probe: the driver probe routine, probably from an __init section 652 * @module: module which will be the owner of the driver 653 * 654 * Use this instead of platform_driver_register() when you know the device 655 * is not hotpluggable and has already been registered, and you want to 656 * remove its run-once probe() infrastructure from memory after the driver 657 * has bound to the device. 658 * 659 * One typical use for this would be with drivers for controllers integrated 660 * into system-on-chip processors, where the controller devices have been 661 * configured as part of board setup. 662 * 663 * Note that this is incompatible with deferred probing. 664 * 665 * Returns zero if the driver registered and bound to a device, else returns 666 * a negative error code and with the driver not registered. 667 */ 668 int __init_or_module __platform_driver_probe(struct platform_driver *drv, 669 int (*probe)(struct platform_device *), struct module *module) 670 { 671 int retval, code; 672 673 if (drv->driver.probe_type == PROBE_PREFER_ASYNCHRONOUS) { 674 pr_err("%s: drivers registered with %s can not be probed asynchronously\n", 675 drv->driver.name, __func__); 676 return -EINVAL; 677 } 678 679 /* 680 * We have to run our probes synchronously because we check if 681 * we find any devices to bind to and exit with error if there 682 * are any. 683 */ 684 drv->driver.probe_type = PROBE_FORCE_SYNCHRONOUS; 685 686 /* 687 * Prevent driver from requesting probe deferral to avoid further 688 * futile probe attempts. 689 */ 690 drv->prevent_deferred_probe = true; 691 692 /* make sure driver won't have bind/unbind attributes */ 693 drv->driver.suppress_bind_attrs = true; 694 695 /* temporary section violation during probe() */ 696 drv->probe = probe; 697 retval = code = __platform_driver_register(drv, module); 698 699 /* 700 * Fixup that section violation, being paranoid about code scanning 701 * the list of drivers in order to probe new devices. Check to see 702 * if the probe was successful, and make sure any forced probes of 703 * new devices fail. 704 */ 705 spin_lock(&drv->driver.bus->p->klist_drivers.k_lock); 706 drv->probe = NULL; 707 if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list)) 708 retval = -ENODEV; 709 drv->driver.probe = platform_drv_probe_fail; 710 spin_unlock(&drv->driver.bus->p->klist_drivers.k_lock); 711 712 if (code != retval) 713 platform_driver_unregister(drv); 714 return retval; 715 } 716 EXPORT_SYMBOL_GPL(__platform_driver_probe); 717 718 /** 719 * __platform_create_bundle - register driver and create corresponding device 720 * @driver: platform driver structure 721 * @probe: the driver probe routine, probably from an __init section 722 * @res: set of resources that needs to be allocated for the device 723 * @n_res: number of resources 724 * @data: platform specific data for this platform device 725 * @size: size of platform specific data 726 * @module: module which will be the owner of the driver 727 * 728 * Use this in legacy-style modules that probe hardware directly and 729 * register a single platform device and corresponding platform driver. 730 * 731 * Returns &struct platform_device pointer on success, or ERR_PTR() on error. 732 */ 733 struct platform_device * __init_or_module __platform_create_bundle( 734 struct platform_driver *driver, 735 int (*probe)(struct platform_device *), 736 struct resource *res, unsigned int n_res, 737 const void *data, size_t size, struct module *module) 738 { 739 struct platform_device *pdev; 740 int error; 741 742 pdev = platform_device_alloc(driver->driver.name, -1); 743 if (!pdev) { 744 error = -ENOMEM; 745 goto err_out; 746 } 747 748 error = platform_device_add_resources(pdev, res, n_res); 749 if (error) 750 goto err_pdev_put; 751 752 error = platform_device_add_data(pdev, data, size); 753 if (error) 754 goto err_pdev_put; 755 756 error = platform_device_add(pdev); 757 if (error) 758 goto err_pdev_put; 759 760 error = __platform_driver_probe(driver, probe, module); 761 if (error) 762 goto err_pdev_del; 763 764 return pdev; 765 766 err_pdev_del: 767 platform_device_del(pdev); 768 err_pdev_put: 769 platform_device_put(pdev); 770 err_out: 771 return ERR_PTR(error); 772 } 773 EXPORT_SYMBOL_GPL(__platform_create_bundle); 774 775 /** 776 * __platform_register_drivers - register an array of platform drivers 777 * @drivers: an array of drivers to register 778 * @count: the number of drivers to register 779 * @owner: module owning the drivers 780 * 781 * Registers platform drivers specified by an array. On failure to register a 782 * driver, all previously registered drivers will be unregistered. Callers of 783 * this API should use platform_unregister_drivers() to unregister drivers in 784 * the reverse order. 785 * 786 * Returns: 0 on success or a negative error code on failure. 787 */ 788 int __platform_register_drivers(struct platform_driver * const *drivers, 789 unsigned int count, struct module *owner) 790 { 791 unsigned int i; 792 int err; 793 794 for (i = 0; i < count; i++) { 795 pr_debug("registering platform driver %ps\n", drivers[i]); 796 797 err = __platform_driver_register(drivers[i], owner); 798 if (err < 0) { 799 pr_err("failed to register platform driver %ps: %d\n", 800 drivers[i], err); 801 goto error; 802 } 803 } 804 805 return 0; 806 807 error: 808 while (i--) { 809 pr_debug("unregistering platform driver %ps\n", drivers[i]); 810 platform_driver_unregister(drivers[i]); 811 } 812 813 return err; 814 } 815 EXPORT_SYMBOL_GPL(__platform_register_drivers); 816 817 /** 818 * platform_unregister_drivers - unregister an array of platform drivers 819 * @drivers: an array of drivers to unregister 820 * @count: the number of drivers to unregister 821 * 822 * Unegisters platform drivers specified by an array. This is typically used 823 * to complement an earlier call to platform_register_drivers(). Drivers are 824 * unregistered in the reverse order in which they were registered. 825 */ 826 void platform_unregister_drivers(struct platform_driver * const *drivers, 827 unsigned int count) 828 { 829 while (count--) { 830 pr_debug("unregistering platform driver %ps\n", drivers[count]); 831 platform_driver_unregister(drivers[count]); 832 } 833 } 834 EXPORT_SYMBOL_GPL(platform_unregister_drivers); 835 836 /* modalias support enables more hands-off userspace setup: 837 * (a) environment variable lets new-style hotplug events work once system is 838 * fully running: "modprobe $MODALIAS" 839 * (b) sysfs attribute lets new-style coldplug recover from hotplug events 840 * mishandled before system is fully running: "modprobe $(cat modalias)" 841 */ 842 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 843 char *buf) 844 { 845 struct platform_device *pdev = to_platform_device(dev); 846 int len; 847 848 len = of_device_modalias(dev, buf, PAGE_SIZE); 849 if (len != -ENODEV) 850 return len; 851 852 len = acpi_device_modalias(dev, buf, PAGE_SIZE -1); 853 if (len != -ENODEV) 854 return len; 855 856 len = snprintf(buf, PAGE_SIZE, "platform:%s\n", pdev->name); 857 858 return (len >= PAGE_SIZE) ? (PAGE_SIZE - 1) : len; 859 } 860 static DEVICE_ATTR_RO(modalias); 861 862 static ssize_t driver_override_store(struct device *dev, 863 struct device_attribute *attr, 864 const char *buf, size_t count) 865 { 866 struct platform_device *pdev = to_platform_device(dev); 867 char *driver_override, *old, *cp; 868 869 /* We need to keep extra room for a newline */ 870 if (count >= (PAGE_SIZE - 1)) 871 return -EINVAL; 872 873 driver_override = kstrndup(buf, count, GFP_KERNEL); 874 if (!driver_override) 875 return -ENOMEM; 876 877 cp = strchr(driver_override, '\n'); 878 if (cp) 879 *cp = '\0'; 880 881 device_lock(dev); 882 old = pdev->driver_override; 883 if (strlen(driver_override)) { 884 pdev->driver_override = driver_override; 885 } else { 886 kfree(driver_override); 887 pdev->driver_override = NULL; 888 } 889 device_unlock(dev); 890 891 kfree(old); 892 893 return count; 894 } 895 896 static ssize_t driver_override_show(struct device *dev, 897 struct device_attribute *attr, char *buf) 898 { 899 struct platform_device *pdev = to_platform_device(dev); 900 ssize_t len; 901 902 device_lock(dev); 903 len = sprintf(buf, "%s\n", pdev->driver_override); 904 device_unlock(dev); 905 return len; 906 } 907 static DEVICE_ATTR_RW(driver_override); 908 909 910 static struct attribute *platform_dev_attrs[] = { 911 &dev_attr_modalias.attr, 912 &dev_attr_driver_override.attr, 913 NULL, 914 }; 915 ATTRIBUTE_GROUPS(platform_dev); 916 917 static int platform_uevent(struct device *dev, struct kobj_uevent_env *env) 918 { 919 struct platform_device *pdev = to_platform_device(dev); 920 int rc; 921 922 /* Some devices have extra OF data and an OF-style MODALIAS */ 923 rc = of_device_uevent_modalias(dev, env); 924 if (rc != -ENODEV) 925 return rc; 926 927 rc = acpi_device_uevent_modalias(dev, env); 928 if (rc != -ENODEV) 929 return rc; 930 931 add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX, 932 pdev->name); 933 return 0; 934 } 935 936 static const struct platform_device_id *platform_match_id( 937 const struct platform_device_id *id, 938 struct platform_device *pdev) 939 { 940 while (id->name[0]) { 941 if (strcmp(pdev->name, id->name) == 0) { 942 pdev->id_entry = id; 943 return id; 944 } 945 id++; 946 } 947 return NULL; 948 } 949 950 /** 951 * platform_match - bind platform device to platform driver. 952 * @dev: device. 953 * @drv: driver. 954 * 955 * Platform device IDs are assumed to be encoded like this: 956 * "<name><instance>", where <name> is a short description of the type of 957 * device, like "pci" or "floppy", and <instance> is the enumerated 958 * instance of the device, like '0' or '42'. Driver IDs are simply 959 * "<name>". So, extract the <name> from the platform_device structure, 960 * and compare it against the name of the driver. Return whether they match 961 * or not. 962 */ 963 static int platform_match(struct device *dev, struct device_driver *drv) 964 { 965 struct platform_device *pdev = to_platform_device(dev); 966 struct platform_driver *pdrv = to_platform_driver(drv); 967 968 /* When driver_override is set, only bind to the matching driver */ 969 if (pdev->driver_override) 970 return !strcmp(pdev->driver_override, drv->name); 971 972 /* Attempt an OF style match first */ 973 if (of_driver_match_device(dev, drv)) 974 return 1; 975 976 /* Then try ACPI style match */ 977 if (acpi_driver_match_device(dev, drv)) 978 return 1; 979 980 /* Then try to match against the id table */ 981 if (pdrv->id_table) 982 return platform_match_id(pdrv->id_table, pdev) != NULL; 983 984 /* fall-back to driver name match */ 985 return (strcmp(pdev->name, drv->name) == 0); 986 } 987 988 #ifdef CONFIG_PM_SLEEP 989 990 static int platform_legacy_suspend(struct device *dev, pm_message_t mesg) 991 { 992 struct platform_driver *pdrv = to_platform_driver(dev->driver); 993 struct platform_device *pdev = to_platform_device(dev); 994 int ret = 0; 995 996 if (dev->driver && pdrv->suspend) 997 ret = pdrv->suspend(pdev, mesg); 998 999 return ret; 1000 } 1001 1002 static int platform_legacy_resume(struct device *dev) 1003 { 1004 struct platform_driver *pdrv = to_platform_driver(dev->driver); 1005 struct platform_device *pdev = to_platform_device(dev); 1006 int ret = 0; 1007 1008 if (dev->driver && pdrv->resume) 1009 ret = pdrv->resume(pdev); 1010 1011 return ret; 1012 } 1013 1014 #endif /* CONFIG_PM_SLEEP */ 1015 1016 #ifdef CONFIG_SUSPEND 1017 1018 int platform_pm_suspend(struct device *dev) 1019 { 1020 struct device_driver *drv = dev->driver; 1021 int ret = 0; 1022 1023 if (!drv) 1024 return 0; 1025 1026 if (drv->pm) { 1027 if (drv->pm->suspend) 1028 ret = drv->pm->suspend(dev); 1029 } else { 1030 ret = platform_legacy_suspend(dev, PMSG_SUSPEND); 1031 } 1032 1033 return ret; 1034 } 1035 1036 int platform_pm_resume(struct device *dev) 1037 { 1038 struct device_driver *drv = dev->driver; 1039 int ret = 0; 1040 1041 if (!drv) 1042 return 0; 1043 1044 if (drv->pm) { 1045 if (drv->pm->resume) 1046 ret = drv->pm->resume(dev); 1047 } else { 1048 ret = platform_legacy_resume(dev); 1049 } 1050 1051 return ret; 1052 } 1053 1054 #endif /* CONFIG_SUSPEND */ 1055 1056 #ifdef CONFIG_HIBERNATE_CALLBACKS 1057 1058 int platform_pm_freeze(struct device *dev) 1059 { 1060 struct device_driver *drv = dev->driver; 1061 int ret = 0; 1062 1063 if (!drv) 1064 return 0; 1065 1066 if (drv->pm) { 1067 if (drv->pm->freeze) 1068 ret = drv->pm->freeze(dev); 1069 } else { 1070 ret = platform_legacy_suspend(dev, PMSG_FREEZE); 1071 } 1072 1073 return ret; 1074 } 1075 1076 int platform_pm_thaw(struct device *dev) 1077 { 1078 struct device_driver *drv = dev->driver; 1079 int ret = 0; 1080 1081 if (!drv) 1082 return 0; 1083 1084 if (drv->pm) { 1085 if (drv->pm->thaw) 1086 ret = drv->pm->thaw(dev); 1087 } else { 1088 ret = platform_legacy_resume(dev); 1089 } 1090 1091 return ret; 1092 } 1093 1094 int platform_pm_poweroff(struct device *dev) 1095 { 1096 struct device_driver *drv = dev->driver; 1097 int ret = 0; 1098 1099 if (!drv) 1100 return 0; 1101 1102 if (drv->pm) { 1103 if (drv->pm->poweroff) 1104 ret = drv->pm->poweroff(dev); 1105 } else { 1106 ret = platform_legacy_suspend(dev, PMSG_HIBERNATE); 1107 } 1108 1109 return ret; 1110 } 1111 1112 int platform_pm_restore(struct device *dev) 1113 { 1114 struct device_driver *drv = dev->driver; 1115 int ret = 0; 1116 1117 if (!drv) 1118 return 0; 1119 1120 if (drv->pm) { 1121 if (drv->pm->restore) 1122 ret = drv->pm->restore(dev); 1123 } else { 1124 ret = platform_legacy_resume(dev); 1125 } 1126 1127 return ret; 1128 } 1129 1130 #endif /* CONFIG_HIBERNATE_CALLBACKS */ 1131 1132 int platform_dma_configure(struct device *dev) 1133 { 1134 enum dev_dma_attr attr; 1135 int ret = 0; 1136 1137 if (dev->of_node) { 1138 ret = of_dma_configure(dev, dev->of_node, true); 1139 } else if (has_acpi_companion(dev)) { 1140 attr = acpi_get_dma_attr(to_acpi_device_node(dev->fwnode)); 1141 if (attr != DEV_DMA_NOT_SUPPORTED) 1142 ret = acpi_dma_configure(dev, attr); 1143 } 1144 1145 return ret; 1146 } 1147 1148 static const struct dev_pm_ops platform_dev_pm_ops = { 1149 .runtime_suspend = pm_generic_runtime_suspend, 1150 .runtime_resume = pm_generic_runtime_resume, 1151 USE_PLATFORM_PM_SLEEP_OPS 1152 }; 1153 1154 struct bus_type platform_bus_type = { 1155 .name = "platform", 1156 .dev_groups = platform_dev_groups, 1157 .match = platform_match, 1158 .uevent = platform_uevent, 1159 .dma_configure = platform_dma_configure, 1160 .pm = &platform_dev_pm_ops, 1161 }; 1162 EXPORT_SYMBOL_GPL(platform_bus_type); 1163 1164 int __init platform_bus_init(void) 1165 { 1166 int error; 1167 1168 early_platform_cleanup(); 1169 1170 error = device_register(&platform_bus); 1171 if (error) { 1172 put_device(&platform_bus); 1173 return error; 1174 } 1175 error = bus_register(&platform_bus_type); 1176 if (error) 1177 device_unregister(&platform_bus); 1178 of_platform_register_reconfig_notifier(); 1179 return error; 1180 } 1181 1182 #ifndef ARCH_HAS_DMA_GET_REQUIRED_MASK 1183 u64 dma_get_required_mask(struct device *dev) 1184 { 1185 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); 1186 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); 1187 u64 mask; 1188 1189 if (!high_totalram) { 1190 /* convert to mask just covering totalram */ 1191 low_totalram = (1 << (fls(low_totalram) - 1)); 1192 low_totalram += low_totalram - 1; 1193 mask = low_totalram; 1194 } else { 1195 high_totalram = (1 << (fls(high_totalram) - 1)); 1196 high_totalram += high_totalram - 1; 1197 mask = (((u64)high_totalram) << 32) + 0xffffffff; 1198 } 1199 return mask; 1200 } 1201 EXPORT_SYMBOL_GPL(dma_get_required_mask); 1202 #endif 1203 1204 static __initdata LIST_HEAD(early_platform_driver_list); 1205 static __initdata LIST_HEAD(early_platform_device_list); 1206 1207 /** 1208 * early_platform_driver_register - register early platform driver 1209 * @epdrv: early_platform driver structure 1210 * @buf: string passed from early_param() 1211 * 1212 * Helper function for early_platform_init() / early_platform_init_buffer() 1213 */ 1214 int __init early_platform_driver_register(struct early_platform_driver *epdrv, 1215 char *buf) 1216 { 1217 char *tmp; 1218 int n; 1219 1220 /* Simply add the driver to the end of the global list. 1221 * Drivers will by default be put on the list in compiled-in order. 1222 */ 1223 if (!epdrv->list.next) { 1224 INIT_LIST_HEAD(&epdrv->list); 1225 list_add_tail(&epdrv->list, &early_platform_driver_list); 1226 } 1227 1228 /* If the user has specified device then make sure the driver 1229 * gets prioritized. The driver of the last device specified on 1230 * command line will be put first on the list. 1231 */ 1232 n = strlen(epdrv->pdrv->driver.name); 1233 if (buf && !strncmp(buf, epdrv->pdrv->driver.name, n)) { 1234 list_move(&epdrv->list, &early_platform_driver_list); 1235 1236 /* Allow passing parameters after device name */ 1237 if (buf[n] == '\0' || buf[n] == ',') 1238 epdrv->requested_id = -1; 1239 else { 1240 epdrv->requested_id = simple_strtoul(&buf[n + 1], 1241 &tmp, 10); 1242 1243 if (buf[n] != '.' || (tmp == &buf[n + 1])) { 1244 epdrv->requested_id = EARLY_PLATFORM_ID_ERROR; 1245 n = 0; 1246 } else 1247 n += strcspn(&buf[n + 1], ",") + 1; 1248 } 1249 1250 if (buf[n] == ',') 1251 n++; 1252 1253 if (epdrv->bufsize) { 1254 memcpy(epdrv->buffer, &buf[n], 1255 min_t(int, epdrv->bufsize, strlen(&buf[n]) + 1)); 1256 epdrv->buffer[epdrv->bufsize - 1] = '\0'; 1257 } 1258 } 1259 1260 return 0; 1261 } 1262 1263 /** 1264 * early_platform_add_devices - adds a number of early platform devices 1265 * @devs: array of early platform devices to add 1266 * @num: number of early platform devices in array 1267 * 1268 * Used by early architecture code to register early platform devices and 1269 * their platform data. 1270 */ 1271 void __init early_platform_add_devices(struct platform_device **devs, int num) 1272 { 1273 struct device *dev; 1274 int i; 1275 1276 /* simply add the devices to list */ 1277 for (i = 0; i < num; i++) { 1278 dev = &devs[i]->dev; 1279 1280 if (!dev->devres_head.next) { 1281 pm_runtime_early_init(dev); 1282 INIT_LIST_HEAD(&dev->devres_head); 1283 list_add_tail(&dev->devres_head, 1284 &early_platform_device_list); 1285 } 1286 } 1287 } 1288 1289 /** 1290 * early_platform_driver_register_all - register early platform drivers 1291 * @class_str: string to identify early platform driver class 1292 * 1293 * Used by architecture code to register all early platform drivers 1294 * for a certain class. If omitted then only early platform drivers 1295 * with matching kernel command line class parameters will be registered. 1296 */ 1297 void __init early_platform_driver_register_all(char *class_str) 1298 { 1299 /* The "class_str" parameter may or may not be present on the kernel 1300 * command line. If it is present then there may be more than one 1301 * matching parameter. 1302 * 1303 * Since we register our early platform drivers using early_param() 1304 * we need to make sure that they also get registered in the case 1305 * when the parameter is missing from the kernel command line. 1306 * 1307 * We use parse_early_options() to make sure the early_param() gets 1308 * called at least once. The early_param() may be called more than 1309 * once since the name of the preferred device may be specified on 1310 * the kernel command line. early_platform_driver_register() handles 1311 * this case for us. 1312 */ 1313 parse_early_options(class_str); 1314 } 1315 1316 /** 1317 * early_platform_match - find early platform device matching driver 1318 * @epdrv: early platform driver structure 1319 * @id: id to match against 1320 */ 1321 static struct platform_device * __init 1322 early_platform_match(struct early_platform_driver *epdrv, int id) 1323 { 1324 struct platform_device *pd; 1325 1326 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head) 1327 if (platform_match(&pd->dev, &epdrv->pdrv->driver)) 1328 if (pd->id == id) 1329 return pd; 1330 1331 return NULL; 1332 } 1333 1334 /** 1335 * early_platform_left - check if early platform driver has matching devices 1336 * @epdrv: early platform driver structure 1337 * @id: return true if id or above exists 1338 */ 1339 static int __init early_platform_left(struct early_platform_driver *epdrv, 1340 int id) 1341 { 1342 struct platform_device *pd; 1343 1344 list_for_each_entry(pd, &early_platform_device_list, dev.devres_head) 1345 if (platform_match(&pd->dev, &epdrv->pdrv->driver)) 1346 if (pd->id >= id) 1347 return 1; 1348 1349 return 0; 1350 } 1351 1352 /** 1353 * early_platform_driver_probe_id - probe drivers matching class_str and id 1354 * @class_str: string to identify early platform driver class 1355 * @id: id to match against 1356 * @nr_probe: number of platform devices to successfully probe before exiting 1357 */ 1358 static int __init early_platform_driver_probe_id(char *class_str, 1359 int id, 1360 int nr_probe) 1361 { 1362 struct early_platform_driver *epdrv; 1363 struct platform_device *match; 1364 int match_id; 1365 int n = 0; 1366 int left = 0; 1367 1368 list_for_each_entry(epdrv, &early_platform_driver_list, list) { 1369 /* only use drivers matching our class_str */ 1370 if (strcmp(class_str, epdrv->class_str)) 1371 continue; 1372 1373 if (id == -2) { 1374 match_id = epdrv->requested_id; 1375 left = 1; 1376 1377 } else { 1378 match_id = id; 1379 left += early_platform_left(epdrv, id); 1380 1381 /* skip requested id */ 1382 switch (epdrv->requested_id) { 1383 case EARLY_PLATFORM_ID_ERROR: 1384 case EARLY_PLATFORM_ID_UNSET: 1385 break; 1386 default: 1387 if (epdrv->requested_id == id) 1388 match_id = EARLY_PLATFORM_ID_UNSET; 1389 } 1390 } 1391 1392 switch (match_id) { 1393 case EARLY_PLATFORM_ID_ERROR: 1394 pr_warn("%s: unable to parse %s parameter\n", 1395 class_str, epdrv->pdrv->driver.name); 1396 /* fall-through */ 1397 case EARLY_PLATFORM_ID_UNSET: 1398 match = NULL; 1399 break; 1400 default: 1401 match = early_platform_match(epdrv, match_id); 1402 } 1403 1404 if (match) { 1405 /* 1406 * Set up a sensible init_name to enable 1407 * dev_name() and others to be used before the 1408 * rest of the driver core is initialized. 1409 */ 1410 if (!match->dev.init_name && slab_is_available()) { 1411 if (match->id != -1) 1412 match->dev.init_name = 1413 kasprintf(GFP_KERNEL, "%s.%d", 1414 match->name, 1415 match->id); 1416 else 1417 match->dev.init_name = 1418 kasprintf(GFP_KERNEL, "%s", 1419 match->name); 1420 1421 if (!match->dev.init_name) 1422 return -ENOMEM; 1423 } 1424 1425 if (epdrv->pdrv->probe(match)) 1426 pr_warn("%s: unable to probe %s early.\n", 1427 class_str, match->name); 1428 else 1429 n++; 1430 } 1431 1432 if (n >= nr_probe) 1433 break; 1434 } 1435 1436 if (left) 1437 return n; 1438 else 1439 return -ENODEV; 1440 } 1441 1442 /** 1443 * early_platform_driver_probe - probe a class of registered drivers 1444 * @class_str: string to identify early platform driver class 1445 * @nr_probe: number of platform devices to successfully probe before exiting 1446 * @user_only: only probe user specified early platform devices 1447 * 1448 * Used by architecture code to probe registered early platform drivers 1449 * within a certain class. For probe to happen a registered early platform 1450 * device matching a registered early platform driver is needed. 1451 */ 1452 int __init early_platform_driver_probe(char *class_str, 1453 int nr_probe, 1454 int user_only) 1455 { 1456 int k, n, i; 1457 1458 n = 0; 1459 for (i = -2; n < nr_probe; i++) { 1460 k = early_platform_driver_probe_id(class_str, i, nr_probe - n); 1461 1462 if (k < 0) 1463 break; 1464 1465 n += k; 1466 1467 if (user_only) 1468 break; 1469 } 1470 1471 return n; 1472 } 1473 1474 /** 1475 * early_platform_cleanup - clean up early platform code 1476 */ 1477 void __init early_platform_cleanup(void) 1478 { 1479 struct platform_device *pd, *pd2; 1480 1481 /* clean up the devres list used to chain devices */ 1482 list_for_each_entry_safe(pd, pd2, &early_platform_device_list, 1483 dev.devres_head) { 1484 list_del(&pd->dev.devres_head); 1485 memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head)); 1486 } 1487 } 1488 1489