xref: /openbmc/linux/drivers/base/node.c (revision c1d3fb8a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Basic Node interface support
4  */
5 
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/memory.h>
10 #include <linux/vmstat.h>
11 #include <linux/notifier.h>
12 #include <linux/node.h>
13 #include <linux/hugetlb.h>
14 #include <linux/compaction.h>
15 #include <linux/cpumask.h>
16 #include <linux/topology.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 
24 static struct bus_type node_subsys = {
25 	.name = "node",
26 	.dev_name = "node",
27 };
28 
29 
30 static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
31 {
32 	ssize_t n;
33 	cpumask_var_t mask;
34 	struct node *node_dev = to_node(dev);
35 
36 	/* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
37 	BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
38 
39 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
40 		return 0;
41 
42 	cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
43 	n = cpumap_print_to_pagebuf(list, buf, mask);
44 	free_cpumask_var(mask);
45 
46 	return n;
47 }
48 
49 static inline ssize_t node_read_cpumask(struct device *dev,
50 				struct device_attribute *attr, char *buf)
51 {
52 	return node_read_cpumap(dev, false, buf);
53 }
54 static inline ssize_t node_read_cpulist(struct device *dev,
55 				struct device_attribute *attr, char *buf)
56 {
57 	return node_read_cpumap(dev, true, buf);
58 }
59 
60 static DEVICE_ATTR(cpumap,  S_IRUGO, node_read_cpumask, NULL);
61 static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
62 
63 /**
64  * struct node_access_nodes - Access class device to hold user visible
65  * 			      relationships to other nodes.
66  * @dev:	Device for this memory access class
67  * @list_node:	List element in the node's access list
68  * @access:	The access class rank
69  * @hmem_attrs: Heterogeneous memory performance attributes
70  */
71 struct node_access_nodes {
72 	struct device		dev;
73 	struct list_head	list_node;
74 	unsigned		access;
75 #ifdef CONFIG_HMEM_REPORTING
76 	struct node_hmem_attrs	hmem_attrs;
77 #endif
78 };
79 #define to_access_nodes(dev) container_of(dev, struct node_access_nodes, dev)
80 
81 static struct attribute *node_init_access_node_attrs[] = {
82 	NULL,
83 };
84 
85 static struct attribute *node_targ_access_node_attrs[] = {
86 	NULL,
87 };
88 
89 static const struct attribute_group initiators = {
90 	.name	= "initiators",
91 	.attrs	= node_init_access_node_attrs,
92 };
93 
94 static const struct attribute_group targets = {
95 	.name	= "targets",
96 	.attrs	= node_targ_access_node_attrs,
97 };
98 
99 static const struct attribute_group *node_access_node_groups[] = {
100 	&initiators,
101 	&targets,
102 	NULL,
103 };
104 
105 static void node_remove_accesses(struct node *node)
106 {
107 	struct node_access_nodes *c, *cnext;
108 
109 	list_for_each_entry_safe(c, cnext, &node->access_list, list_node) {
110 		list_del(&c->list_node);
111 		device_unregister(&c->dev);
112 	}
113 }
114 
115 static void node_access_release(struct device *dev)
116 {
117 	kfree(to_access_nodes(dev));
118 }
119 
120 static struct node_access_nodes *node_init_node_access(struct node *node,
121 						       unsigned access)
122 {
123 	struct node_access_nodes *access_node;
124 	struct device *dev;
125 
126 	list_for_each_entry(access_node, &node->access_list, list_node)
127 		if (access_node->access == access)
128 			return access_node;
129 
130 	access_node = kzalloc(sizeof(*access_node), GFP_KERNEL);
131 	if (!access_node)
132 		return NULL;
133 
134 	access_node->access = access;
135 	dev = &access_node->dev;
136 	dev->parent = &node->dev;
137 	dev->release = node_access_release;
138 	dev->groups = node_access_node_groups;
139 	if (dev_set_name(dev, "access%u", access))
140 		goto free;
141 
142 	if (device_register(dev))
143 		goto free_name;
144 
145 	pm_runtime_no_callbacks(dev);
146 	list_add_tail(&access_node->list_node, &node->access_list);
147 	return access_node;
148 free_name:
149 	kfree_const(dev->kobj.name);
150 free:
151 	kfree(access_node);
152 	return NULL;
153 }
154 
155 #ifdef CONFIG_HMEM_REPORTING
156 #define ACCESS_ATTR(name) 						   \
157 static ssize_t name##_show(struct device *dev,				   \
158 			   struct device_attribute *attr,		   \
159 			   char *buf)					   \
160 {									   \
161 	return sprintf(buf, "%u\n", to_access_nodes(dev)->hmem_attrs.name); \
162 }									   \
163 static DEVICE_ATTR_RO(name);
164 
165 ACCESS_ATTR(read_bandwidth)
166 ACCESS_ATTR(read_latency)
167 ACCESS_ATTR(write_bandwidth)
168 ACCESS_ATTR(write_latency)
169 
170 static struct attribute *access_attrs[] = {
171 	&dev_attr_read_bandwidth.attr,
172 	&dev_attr_read_latency.attr,
173 	&dev_attr_write_bandwidth.attr,
174 	&dev_attr_write_latency.attr,
175 	NULL,
176 };
177 
178 /**
179  * node_set_perf_attrs - Set the performance values for given access class
180  * @nid: Node identifier to be set
181  * @hmem_attrs: Heterogeneous memory performance attributes
182  * @access: The access class the for the given attributes
183  */
184 void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs *hmem_attrs,
185 			 unsigned access)
186 {
187 	struct node_access_nodes *c;
188 	struct node *node;
189 	int i;
190 
191 	if (WARN_ON_ONCE(!node_online(nid)))
192 		return;
193 
194 	node = node_devices[nid];
195 	c = node_init_node_access(node, access);
196 	if (!c)
197 		return;
198 
199 	c->hmem_attrs = *hmem_attrs;
200 	for (i = 0; access_attrs[i] != NULL; i++) {
201 		if (sysfs_add_file_to_group(&c->dev.kobj, access_attrs[i],
202 					    "initiators")) {
203 			pr_info("failed to add performance attribute to node %d\n",
204 				nid);
205 			break;
206 		}
207 	}
208 }
209 
210 /**
211  * struct node_cache_info - Internal tracking for memory node caches
212  * @dev:	Device represeting the cache level
213  * @node:	List element for tracking in the node
214  * @cache_attrs:Attributes for this cache level
215  */
216 struct node_cache_info {
217 	struct device dev;
218 	struct list_head node;
219 	struct node_cache_attrs cache_attrs;
220 };
221 #define to_cache_info(device) container_of(device, struct node_cache_info, dev)
222 
223 #define CACHE_ATTR(name, fmt) 						\
224 static ssize_t name##_show(struct device *dev,				\
225 			   struct device_attribute *attr,		\
226 			   char *buf)					\
227 {									\
228 	return sprintf(buf, fmt "\n", to_cache_info(dev)->cache_attrs.name);\
229 }									\
230 DEVICE_ATTR_RO(name);
231 
232 CACHE_ATTR(size, "%llu")
233 CACHE_ATTR(line_size, "%u")
234 CACHE_ATTR(indexing, "%u")
235 CACHE_ATTR(write_policy, "%u")
236 
237 static struct attribute *cache_attrs[] = {
238 	&dev_attr_indexing.attr,
239 	&dev_attr_size.attr,
240 	&dev_attr_line_size.attr,
241 	&dev_attr_write_policy.attr,
242 	NULL,
243 };
244 ATTRIBUTE_GROUPS(cache);
245 
246 static void node_cache_release(struct device *dev)
247 {
248 	kfree(dev);
249 }
250 
251 static void node_cacheinfo_release(struct device *dev)
252 {
253 	struct node_cache_info *info = to_cache_info(dev);
254 	kfree(info);
255 }
256 
257 static void node_init_cache_dev(struct node *node)
258 {
259 	struct device *dev;
260 
261 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
262 	if (!dev)
263 		return;
264 
265 	dev->parent = &node->dev;
266 	dev->release = node_cache_release;
267 	if (dev_set_name(dev, "memory_side_cache"))
268 		goto free_dev;
269 
270 	if (device_register(dev))
271 		goto free_name;
272 
273 	pm_runtime_no_callbacks(dev);
274 	node->cache_dev = dev;
275 	return;
276 free_name:
277 	kfree_const(dev->kobj.name);
278 free_dev:
279 	kfree(dev);
280 }
281 
282 /**
283  * node_add_cache() - add cache attribute to a memory node
284  * @nid: Node identifier that has new cache attributes
285  * @cache_attrs: Attributes for the cache being added
286  */
287 void node_add_cache(unsigned int nid, struct node_cache_attrs *cache_attrs)
288 {
289 	struct node_cache_info *info;
290 	struct device *dev;
291 	struct node *node;
292 
293 	if (!node_online(nid) || !node_devices[nid])
294 		return;
295 
296 	node = node_devices[nid];
297 	list_for_each_entry(info, &node->cache_attrs, node) {
298 		if (info->cache_attrs.level == cache_attrs->level) {
299 			dev_warn(&node->dev,
300 				"attempt to add duplicate cache level:%d\n",
301 				cache_attrs->level);
302 			return;
303 		}
304 	}
305 
306 	if (!node->cache_dev)
307 		node_init_cache_dev(node);
308 	if (!node->cache_dev)
309 		return;
310 
311 	info = kzalloc(sizeof(*info), GFP_KERNEL);
312 	if (!info)
313 		return;
314 
315 	dev = &info->dev;
316 	dev->parent = node->cache_dev;
317 	dev->release = node_cacheinfo_release;
318 	dev->groups = cache_groups;
319 	if (dev_set_name(dev, "index%d", cache_attrs->level))
320 		goto free_cache;
321 
322 	info->cache_attrs = *cache_attrs;
323 	if (device_register(dev)) {
324 		dev_warn(&node->dev, "failed to add cache level:%d\n",
325 			 cache_attrs->level);
326 		goto free_name;
327 	}
328 	pm_runtime_no_callbacks(dev);
329 	list_add_tail(&info->node, &node->cache_attrs);
330 	return;
331 free_name:
332 	kfree_const(dev->kobj.name);
333 free_cache:
334 	kfree(info);
335 }
336 
337 static void node_remove_caches(struct node *node)
338 {
339 	struct node_cache_info *info, *next;
340 
341 	if (!node->cache_dev)
342 		return;
343 
344 	list_for_each_entry_safe(info, next, &node->cache_attrs, node) {
345 		list_del(&info->node);
346 		device_unregister(&info->dev);
347 	}
348 	device_unregister(node->cache_dev);
349 }
350 
351 static void node_init_caches(unsigned int nid)
352 {
353 	INIT_LIST_HEAD(&node_devices[nid]->cache_attrs);
354 }
355 #else
356 static void node_init_caches(unsigned int nid) { }
357 static void node_remove_caches(struct node *node) { }
358 #endif
359 
360 #define K(x) ((x) << (PAGE_SHIFT - 10))
361 static ssize_t node_read_meminfo(struct device *dev,
362 			struct device_attribute *attr, char *buf)
363 {
364 	int n;
365 	int nid = dev->id;
366 	struct pglist_data *pgdat = NODE_DATA(nid);
367 	struct sysinfo i;
368 	unsigned long sreclaimable, sunreclaimable;
369 
370 	si_meminfo_node(&i, nid);
371 	sreclaimable = node_page_state(pgdat, NR_SLAB_RECLAIMABLE);
372 	sunreclaimable = node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE);
373 	n = sprintf(buf,
374 		       "Node %d MemTotal:       %8lu kB\n"
375 		       "Node %d MemFree:        %8lu kB\n"
376 		       "Node %d MemUsed:        %8lu kB\n"
377 		       "Node %d Active:         %8lu kB\n"
378 		       "Node %d Inactive:       %8lu kB\n"
379 		       "Node %d Active(anon):   %8lu kB\n"
380 		       "Node %d Inactive(anon): %8lu kB\n"
381 		       "Node %d Active(file):   %8lu kB\n"
382 		       "Node %d Inactive(file): %8lu kB\n"
383 		       "Node %d Unevictable:    %8lu kB\n"
384 		       "Node %d Mlocked:        %8lu kB\n",
385 		       nid, K(i.totalram),
386 		       nid, K(i.freeram),
387 		       nid, K(i.totalram - i.freeram),
388 		       nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
389 				node_page_state(pgdat, NR_ACTIVE_FILE)),
390 		       nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
391 				node_page_state(pgdat, NR_INACTIVE_FILE)),
392 		       nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
393 		       nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
394 		       nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
395 		       nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
396 		       nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
397 		       nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
398 
399 #ifdef CONFIG_HIGHMEM
400 	n += sprintf(buf + n,
401 		       "Node %d HighTotal:      %8lu kB\n"
402 		       "Node %d HighFree:       %8lu kB\n"
403 		       "Node %d LowTotal:       %8lu kB\n"
404 		       "Node %d LowFree:        %8lu kB\n",
405 		       nid, K(i.totalhigh),
406 		       nid, K(i.freehigh),
407 		       nid, K(i.totalram - i.totalhigh),
408 		       nid, K(i.freeram - i.freehigh));
409 #endif
410 	n += sprintf(buf + n,
411 		       "Node %d Dirty:          %8lu kB\n"
412 		       "Node %d Writeback:      %8lu kB\n"
413 		       "Node %d FilePages:      %8lu kB\n"
414 		       "Node %d Mapped:         %8lu kB\n"
415 		       "Node %d AnonPages:      %8lu kB\n"
416 		       "Node %d Shmem:          %8lu kB\n"
417 		       "Node %d KernelStack:    %8lu kB\n"
418 		       "Node %d PageTables:     %8lu kB\n"
419 		       "Node %d NFS_Unstable:   %8lu kB\n"
420 		       "Node %d Bounce:         %8lu kB\n"
421 		       "Node %d WritebackTmp:   %8lu kB\n"
422 		       "Node %d KReclaimable:   %8lu kB\n"
423 		       "Node %d Slab:           %8lu kB\n"
424 		       "Node %d SReclaimable:   %8lu kB\n"
425 		       "Node %d SUnreclaim:     %8lu kB\n"
426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
427 		       "Node %d AnonHugePages:  %8lu kB\n"
428 		       "Node %d ShmemHugePages: %8lu kB\n"
429 		       "Node %d ShmemPmdMapped: %8lu kB\n"
430 		       "Node %d FileHugePages: %8lu kB\n"
431 		       "Node %d FilePmdMapped: %8lu kB\n"
432 #endif
433 			,
434 		       nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
435 		       nid, K(node_page_state(pgdat, NR_WRITEBACK)),
436 		       nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
437 		       nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
438 		       nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
439 		       nid, K(i.sharedram),
440 		       nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
441 		       nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
442 		       nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
443 		       nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
444 		       nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
445 		       nid, K(sreclaimable +
446 			      node_page_state(pgdat, NR_KERNEL_MISC_RECLAIMABLE)),
447 		       nid, K(sreclaimable + sunreclaimable),
448 		       nid, K(sreclaimable),
449 		       nid, K(sunreclaimable)
450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
451 		       ,
452 		       nid, K(node_page_state(pgdat, NR_ANON_THPS) *
453 				       HPAGE_PMD_NR),
454 		       nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
455 				       HPAGE_PMD_NR),
456 		       nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
457 				       HPAGE_PMD_NR),
458 		       nid, K(node_page_state(pgdat, NR_FILE_THPS) *
459 				       HPAGE_PMD_NR),
460 		       nid, K(node_page_state(pgdat, NR_FILE_PMDMAPPED) *
461 				       HPAGE_PMD_NR)
462 #endif
463 		       );
464 	n += hugetlb_report_node_meminfo(nid, buf + n);
465 	return n;
466 }
467 
468 #undef K
469 static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
470 
471 static ssize_t node_read_numastat(struct device *dev,
472 				struct device_attribute *attr, char *buf)
473 {
474 	return sprintf(buf,
475 		       "numa_hit %lu\n"
476 		       "numa_miss %lu\n"
477 		       "numa_foreign %lu\n"
478 		       "interleave_hit %lu\n"
479 		       "local_node %lu\n"
480 		       "other_node %lu\n",
481 		       sum_zone_numa_state(dev->id, NUMA_HIT),
482 		       sum_zone_numa_state(dev->id, NUMA_MISS),
483 		       sum_zone_numa_state(dev->id, NUMA_FOREIGN),
484 		       sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
485 		       sum_zone_numa_state(dev->id, NUMA_LOCAL),
486 		       sum_zone_numa_state(dev->id, NUMA_OTHER));
487 }
488 static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
489 
490 static ssize_t node_read_vmstat(struct device *dev,
491 				struct device_attribute *attr, char *buf)
492 {
493 	int nid = dev->id;
494 	struct pglist_data *pgdat = NODE_DATA(nid);
495 	int i;
496 	int n = 0;
497 
498 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
499 		n += sprintf(buf+n, "%s %lu\n", zone_stat_name(i),
500 			     sum_zone_node_page_state(nid, i));
501 
502 #ifdef CONFIG_NUMA
503 	for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
504 		n += sprintf(buf+n, "%s %lu\n", numa_stat_name(i),
505 			     sum_zone_numa_state(nid, i));
506 #endif
507 
508 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
509 		n += sprintf(buf+n, "%s %lu\n", node_stat_name(i),
510 			     node_page_state(pgdat, i));
511 
512 	return n;
513 }
514 static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
515 
516 static ssize_t node_read_distance(struct device *dev,
517 			struct device_attribute *attr, char *buf)
518 {
519 	int nid = dev->id;
520 	int len = 0;
521 	int i;
522 
523 	/*
524 	 * buf is currently PAGE_SIZE in length and each node needs 4 chars
525 	 * at the most (distance + space or newline).
526 	 */
527 	BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
528 
529 	for_each_online_node(i)
530 		len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
531 
532 	len += sprintf(buf + len, "\n");
533 	return len;
534 }
535 static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
536 
537 static struct attribute *node_dev_attrs[] = {
538 	&dev_attr_cpumap.attr,
539 	&dev_attr_cpulist.attr,
540 	&dev_attr_meminfo.attr,
541 	&dev_attr_numastat.attr,
542 	&dev_attr_distance.attr,
543 	&dev_attr_vmstat.attr,
544 	NULL
545 };
546 ATTRIBUTE_GROUPS(node_dev);
547 
548 #ifdef CONFIG_HUGETLBFS
549 /*
550  * hugetlbfs per node attributes registration interface:
551  * When/if hugetlb[fs] subsystem initializes [sometime after this module],
552  * it will register its per node attributes for all online nodes with
553  * memory.  It will also call register_hugetlbfs_with_node(), below, to
554  * register its attribute registration functions with this node driver.
555  * Once these hooks have been initialized, the node driver will call into
556  * the hugetlb module to [un]register attributes for hot-plugged nodes.
557  */
558 static node_registration_func_t __hugetlb_register_node;
559 static node_registration_func_t __hugetlb_unregister_node;
560 
561 static inline bool hugetlb_register_node(struct node *node)
562 {
563 	if (__hugetlb_register_node &&
564 			node_state(node->dev.id, N_MEMORY)) {
565 		__hugetlb_register_node(node);
566 		return true;
567 	}
568 	return false;
569 }
570 
571 static inline void hugetlb_unregister_node(struct node *node)
572 {
573 	if (__hugetlb_unregister_node)
574 		__hugetlb_unregister_node(node);
575 }
576 
577 void register_hugetlbfs_with_node(node_registration_func_t doregister,
578 				  node_registration_func_t unregister)
579 {
580 	__hugetlb_register_node   = doregister;
581 	__hugetlb_unregister_node = unregister;
582 }
583 #else
584 static inline void hugetlb_register_node(struct node *node) {}
585 
586 static inline void hugetlb_unregister_node(struct node *node) {}
587 #endif
588 
589 static void node_device_release(struct device *dev)
590 {
591 	struct node *node = to_node(dev);
592 
593 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
594 	/*
595 	 * We schedule the work only when a memory section is
596 	 * onlined/offlined on this node. When we come here,
597 	 * all the memory on this node has been offlined,
598 	 * so we won't enqueue new work to this work.
599 	 *
600 	 * The work is using node->node_work, so we should
601 	 * flush work before freeing the memory.
602 	 */
603 	flush_work(&node->node_work);
604 #endif
605 	kfree(node);
606 }
607 
608 /*
609  * register_node - Setup a sysfs device for a node.
610  * @num - Node number to use when creating the device.
611  *
612  * Initialize and register the node device.
613  */
614 static int register_node(struct node *node, int num)
615 {
616 	int error;
617 
618 	node->dev.id = num;
619 	node->dev.bus = &node_subsys;
620 	node->dev.release = node_device_release;
621 	node->dev.groups = node_dev_groups;
622 	error = device_register(&node->dev);
623 
624 	if (error)
625 		put_device(&node->dev);
626 	else {
627 		hugetlb_register_node(node);
628 
629 		compaction_register_node(node);
630 	}
631 	return error;
632 }
633 
634 /**
635  * unregister_node - unregister a node device
636  * @node: node going away
637  *
638  * Unregisters a node device @node.  All the devices on the node must be
639  * unregistered before calling this function.
640  */
641 void unregister_node(struct node *node)
642 {
643 	hugetlb_unregister_node(node);		/* no-op, if memoryless node */
644 	node_remove_accesses(node);
645 	node_remove_caches(node);
646 	device_unregister(&node->dev);
647 }
648 
649 struct node *node_devices[MAX_NUMNODES];
650 
651 /*
652  * register cpu under node
653  */
654 int register_cpu_under_node(unsigned int cpu, unsigned int nid)
655 {
656 	int ret;
657 	struct device *obj;
658 
659 	if (!node_online(nid))
660 		return 0;
661 
662 	obj = get_cpu_device(cpu);
663 	if (!obj)
664 		return 0;
665 
666 	ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
667 				&obj->kobj,
668 				kobject_name(&obj->kobj));
669 	if (ret)
670 		return ret;
671 
672 	return sysfs_create_link(&obj->kobj,
673 				 &node_devices[nid]->dev.kobj,
674 				 kobject_name(&node_devices[nid]->dev.kobj));
675 }
676 
677 /**
678  * register_memory_node_under_compute_node - link memory node to its compute
679  *					     node for a given access class.
680  * @mem_nid:	Memory node number
681  * @cpu_nid:	Cpu  node number
682  * @access:	Access class to register
683  *
684  * Description:
685  * 	For use with platforms that may have separate memory and compute nodes.
686  * 	This function will export node relationships linking which memory
687  * 	initiator nodes can access memory targets at a given ranked access
688  * 	class.
689  */
690 int register_memory_node_under_compute_node(unsigned int mem_nid,
691 					    unsigned int cpu_nid,
692 					    unsigned access)
693 {
694 	struct node *init_node, *targ_node;
695 	struct node_access_nodes *initiator, *target;
696 	int ret;
697 
698 	if (!node_online(cpu_nid) || !node_online(mem_nid))
699 		return -ENODEV;
700 
701 	init_node = node_devices[cpu_nid];
702 	targ_node = node_devices[mem_nid];
703 	initiator = node_init_node_access(init_node, access);
704 	target = node_init_node_access(targ_node, access);
705 	if (!initiator || !target)
706 		return -ENOMEM;
707 
708 	ret = sysfs_add_link_to_group(&initiator->dev.kobj, "targets",
709 				      &targ_node->dev.kobj,
710 				      dev_name(&targ_node->dev));
711 	if (ret)
712 		return ret;
713 
714 	ret = sysfs_add_link_to_group(&target->dev.kobj, "initiators",
715 				      &init_node->dev.kobj,
716 				      dev_name(&init_node->dev));
717 	if (ret)
718 		goto err;
719 
720 	return 0;
721  err:
722 	sysfs_remove_link_from_group(&initiator->dev.kobj, "targets",
723 				     dev_name(&targ_node->dev));
724 	return ret;
725 }
726 
727 int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
728 {
729 	struct device *obj;
730 
731 	if (!node_online(nid))
732 		return 0;
733 
734 	obj = get_cpu_device(cpu);
735 	if (!obj)
736 		return 0;
737 
738 	sysfs_remove_link(&node_devices[nid]->dev.kobj,
739 			  kobject_name(&obj->kobj));
740 	sysfs_remove_link(&obj->kobj,
741 			  kobject_name(&node_devices[nid]->dev.kobj));
742 
743 	return 0;
744 }
745 
746 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
747 static int __ref get_nid_for_pfn(unsigned long pfn)
748 {
749 	if (!pfn_valid_within(pfn))
750 		return -1;
751 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
752 	if (system_state < SYSTEM_RUNNING)
753 		return early_pfn_to_nid(pfn);
754 #endif
755 	return pfn_to_nid(pfn);
756 }
757 
758 /* register memory section under specified node if it spans that node */
759 static int register_mem_sect_under_node(struct memory_block *mem_blk,
760 					 void *arg)
761 {
762 	unsigned long memory_block_pfns = memory_block_size_bytes() / PAGE_SIZE;
763 	unsigned long start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
764 	unsigned long end_pfn = start_pfn + memory_block_pfns - 1;
765 	int ret, nid = *(int *)arg;
766 	unsigned long pfn;
767 
768 	for (pfn = start_pfn; pfn <= end_pfn; pfn++) {
769 		int page_nid;
770 
771 		/*
772 		 * memory block could have several absent sections from start.
773 		 * skip pfn range from absent section
774 		 */
775 		if (!pfn_present(pfn)) {
776 			pfn = round_down(pfn + PAGES_PER_SECTION,
777 					 PAGES_PER_SECTION) - 1;
778 			continue;
779 		}
780 
781 		/*
782 		 * We need to check if page belongs to nid only for the boot
783 		 * case, during hotplug we know that all pages in the memory
784 		 * block belong to the same node.
785 		 */
786 		if (system_state == SYSTEM_BOOTING) {
787 			page_nid = get_nid_for_pfn(pfn);
788 			if (page_nid < 0)
789 				continue;
790 			if (page_nid != nid)
791 				continue;
792 		}
793 
794 		/*
795 		 * If this memory block spans multiple nodes, we only indicate
796 		 * the last processed node.
797 		 */
798 		mem_blk->nid = nid;
799 
800 		ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
801 					&mem_blk->dev.kobj,
802 					kobject_name(&mem_blk->dev.kobj));
803 		if (ret)
804 			return ret;
805 
806 		return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
807 				&node_devices[nid]->dev.kobj,
808 				kobject_name(&node_devices[nid]->dev.kobj));
809 	}
810 	/* mem section does not span the specified node */
811 	return 0;
812 }
813 
814 /*
815  * Unregister a memory block device under the node it spans. Memory blocks
816  * with multiple nodes cannot be offlined and therefore also never be removed.
817  */
818 void unregister_memory_block_under_nodes(struct memory_block *mem_blk)
819 {
820 	if (mem_blk->nid == NUMA_NO_NODE)
821 		return;
822 
823 	sysfs_remove_link(&node_devices[mem_blk->nid]->dev.kobj,
824 			  kobject_name(&mem_blk->dev.kobj));
825 	sysfs_remove_link(&mem_blk->dev.kobj,
826 			  kobject_name(&node_devices[mem_blk->nid]->dev.kobj));
827 }
828 
829 int link_mem_sections(int nid, unsigned long start_pfn, unsigned long end_pfn)
830 {
831 	return walk_memory_blocks(PFN_PHYS(start_pfn),
832 				  PFN_PHYS(end_pfn - start_pfn), (void *)&nid,
833 				  register_mem_sect_under_node);
834 }
835 
836 #ifdef CONFIG_HUGETLBFS
837 /*
838  * Handle per node hstate attribute [un]registration on transistions
839  * to/from memoryless state.
840  */
841 static void node_hugetlb_work(struct work_struct *work)
842 {
843 	struct node *node = container_of(work, struct node, node_work);
844 
845 	/*
846 	 * We only get here when a node transitions to/from memoryless state.
847 	 * We can detect which transition occurred by examining whether the
848 	 * node has memory now.  hugetlb_register_node() already check this
849 	 * so we try to register the attributes.  If that fails, then the
850 	 * node has transitioned to memoryless, try to unregister the
851 	 * attributes.
852 	 */
853 	if (!hugetlb_register_node(node))
854 		hugetlb_unregister_node(node);
855 }
856 
857 static void init_node_hugetlb_work(int nid)
858 {
859 	INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
860 }
861 
862 static int node_memory_callback(struct notifier_block *self,
863 				unsigned long action, void *arg)
864 {
865 	struct memory_notify *mnb = arg;
866 	int nid = mnb->status_change_nid;
867 
868 	switch (action) {
869 	case MEM_ONLINE:
870 	case MEM_OFFLINE:
871 		/*
872 		 * offload per node hstate [un]registration to a work thread
873 		 * when transitioning to/from memoryless state.
874 		 */
875 		if (nid != NUMA_NO_NODE)
876 			schedule_work(&node_devices[nid]->node_work);
877 		break;
878 
879 	case MEM_GOING_ONLINE:
880 	case MEM_GOING_OFFLINE:
881 	case MEM_CANCEL_ONLINE:
882 	case MEM_CANCEL_OFFLINE:
883 	default:
884 		break;
885 	}
886 
887 	return NOTIFY_OK;
888 }
889 #endif	/* CONFIG_HUGETLBFS */
890 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
891 
892 #if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
893     !defined(CONFIG_HUGETLBFS)
894 static inline int node_memory_callback(struct notifier_block *self,
895 				unsigned long action, void *arg)
896 {
897 	return NOTIFY_OK;
898 }
899 
900 static void init_node_hugetlb_work(int nid) { }
901 
902 #endif
903 
904 int __register_one_node(int nid)
905 {
906 	int error;
907 	int cpu;
908 
909 	node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
910 	if (!node_devices[nid])
911 		return -ENOMEM;
912 
913 	error = register_node(node_devices[nid], nid);
914 
915 	/* link cpu under this node */
916 	for_each_present_cpu(cpu) {
917 		if (cpu_to_node(cpu) == nid)
918 			register_cpu_under_node(cpu, nid);
919 	}
920 
921 	INIT_LIST_HEAD(&node_devices[nid]->access_list);
922 	/* initialize work queue for memory hot plug */
923 	init_node_hugetlb_work(nid);
924 	node_init_caches(nid);
925 
926 	return error;
927 }
928 
929 void unregister_one_node(int nid)
930 {
931 	if (!node_devices[nid])
932 		return;
933 
934 	unregister_node(node_devices[nid]);
935 	node_devices[nid] = NULL;
936 }
937 
938 /*
939  * node states attributes
940  */
941 
942 static ssize_t print_nodes_state(enum node_states state, char *buf)
943 {
944 	int n;
945 
946 	n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
947 		      nodemask_pr_args(&node_states[state]));
948 	buf[n++] = '\n';
949 	buf[n] = '\0';
950 	return n;
951 }
952 
953 struct node_attr {
954 	struct device_attribute attr;
955 	enum node_states state;
956 };
957 
958 static ssize_t show_node_state(struct device *dev,
959 			       struct device_attribute *attr, char *buf)
960 {
961 	struct node_attr *na = container_of(attr, struct node_attr, attr);
962 	return print_nodes_state(na->state, buf);
963 }
964 
965 #define _NODE_ATTR(name, state) \
966 	{ __ATTR(name, 0444, show_node_state, NULL), state }
967 
968 static struct node_attr node_state_attr[] = {
969 	[N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
970 	[N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
971 	[N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
972 #ifdef CONFIG_HIGHMEM
973 	[N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
974 #endif
975 	[N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
976 	[N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
977 };
978 
979 static struct attribute *node_state_attrs[] = {
980 	&node_state_attr[N_POSSIBLE].attr.attr,
981 	&node_state_attr[N_ONLINE].attr.attr,
982 	&node_state_attr[N_NORMAL_MEMORY].attr.attr,
983 #ifdef CONFIG_HIGHMEM
984 	&node_state_attr[N_HIGH_MEMORY].attr.attr,
985 #endif
986 	&node_state_attr[N_MEMORY].attr.attr,
987 	&node_state_attr[N_CPU].attr.attr,
988 	NULL
989 };
990 
991 static struct attribute_group memory_root_attr_group = {
992 	.attrs = node_state_attrs,
993 };
994 
995 static const struct attribute_group *cpu_root_attr_groups[] = {
996 	&memory_root_attr_group,
997 	NULL,
998 };
999 
1000 #define NODE_CALLBACK_PRI	2	/* lower than SLAB */
1001 static int __init register_node_type(void)
1002 {
1003 	int ret;
1004 
1005  	BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
1006  	BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
1007 
1008 	ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
1009 	if (!ret) {
1010 		static struct notifier_block node_memory_callback_nb = {
1011 			.notifier_call = node_memory_callback,
1012 			.priority = NODE_CALLBACK_PRI,
1013 		};
1014 		register_hotmemory_notifier(&node_memory_callback_nb);
1015 	}
1016 
1017 	/*
1018 	 * Note:  we're not going to unregister the node class if we fail
1019 	 * to register the node state class attribute files.
1020 	 */
1021 	return ret;
1022 }
1023 postcore_initcall(register_node_type);
1024