xref: /openbmc/linux/drivers/base/memory.c (revision fd589a8f)
1 /*
2  * drivers/base/memory.c - basic Memory class support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <linux/stat.h>
25 
26 #include <asm/atomic.h>
27 #include <asm/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static struct sysdev_class memory_sysdev_class = {
32 	.name = MEMORY_CLASS_NAME,
33 };
34 
35 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
36 {
37 	return MEMORY_CLASS_NAME;
38 }
39 
40 static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
41 {
42 	int retval = 0;
43 
44 	return retval;
45 }
46 
47 static struct kset_uevent_ops memory_uevent_ops = {
48 	.name		= memory_uevent_name,
49 	.uevent		= memory_uevent,
50 };
51 
52 static BLOCKING_NOTIFIER_HEAD(memory_chain);
53 
54 int register_memory_notifier(struct notifier_block *nb)
55 {
56         return blocking_notifier_chain_register(&memory_chain, nb);
57 }
58 EXPORT_SYMBOL(register_memory_notifier);
59 
60 void unregister_memory_notifier(struct notifier_block *nb)
61 {
62         blocking_notifier_chain_unregister(&memory_chain, nb);
63 }
64 EXPORT_SYMBOL(unregister_memory_notifier);
65 
66 /*
67  * register_memory - Setup a sysfs device for a memory block
68  */
69 static
70 int register_memory(struct memory_block *memory, struct mem_section *section)
71 {
72 	int error;
73 
74 	memory->sysdev.cls = &memory_sysdev_class;
75 	memory->sysdev.id = __section_nr(section);
76 
77 	error = sysdev_register(&memory->sysdev);
78 	return error;
79 }
80 
81 static void
82 unregister_memory(struct memory_block *memory, struct mem_section *section)
83 {
84 	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
85 	BUG_ON(memory->sysdev.id != __section_nr(section));
86 
87 	/* drop the ref. we got in remove_memory_block() */
88 	kobject_put(&memory->sysdev.kobj);
89 	sysdev_unregister(&memory->sysdev);
90 }
91 
92 /*
93  * use this as the physical section index that this memsection
94  * uses.
95  */
96 
97 static ssize_t show_mem_phys_index(struct sys_device *dev,
98 			struct sysdev_attribute *attr, char *buf)
99 {
100 	struct memory_block *mem =
101 		container_of(dev, struct memory_block, sysdev);
102 	return sprintf(buf, "%08lx\n", mem->phys_index);
103 }
104 
105 /*
106  * Show whether the section of memory is likely to be hot-removable
107  */
108 static ssize_t show_mem_removable(struct sys_device *dev,
109 			struct sysdev_attribute *attr, char *buf)
110 {
111 	unsigned long start_pfn;
112 	int ret;
113 	struct memory_block *mem =
114 		container_of(dev, struct memory_block, sysdev);
115 
116 	start_pfn = section_nr_to_pfn(mem->phys_index);
117 	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
118 	return sprintf(buf, "%d\n", ret);
119 }
120 
121 /*
122  * online, offline, going offline, etc.
123  */
124 static ssize_t show_mem_state(struct sys_device *dev,
125 			struct sysdev_attribute *attr, char *buf)
126 {
127 	struct memory_block *mem =
128 		container_of(dev, struct memory_block, sysdev);
129 	ssize_t len = 0;
130 
131 	/*
132 	 * We can probably put these states in a nice little array
133 	 * so that they're not open-coded
134 	 */
135 	switch (mem->state) {
136 		case MEM_ONLINE:
137 			len = sprintf(buf, "online\n");
138 			break;
139 		case MEM_OFFLINE:
140 			len = sprintf(buf, "offline\n");
141 			break;
142 		case MEM_GOING_OFFLINE:
143 			len = sprintf(buf, "going-offline\n");
144 			break;
145 		default:
146 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
147 					mem->state);
148 			WARN_ON(1);
149 			break;
150 	}
151 
152 	return len;
153 }
154 
155 int memory_notify(unsigned long val, void *v)
156 {
157 	return blocking_notifier_call_chain(&memory_chain, val, v);
158 }
159 
160 /*
161  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
162  * OK to have direct references to sparsemem variables in here.
163  */
164 static int
165 memory_block_action(struct memory_block *mem, unsigned long action)
166 {
167 	int i;
168 	unsigned long psection;
169 	unsigned long start_pfn, start_paddr;
170 	struct page *first_page;
171 	int ret;
172 	int old_state = mem->state;
173 
174 	psection = mem->phys_index;
175 	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);
176 
177 	/*
178 	 * The probe routines leave the pages reserved, just
179 	 * as the bootmem code does.  Make sure they're still
180 	 * that way.
181 	 */
182 	if (action == MEM_ONLINE) {
183 		for (i = 0; i < PAGES_PER_SECTION; i++) {
184 			if (PageReserved(first_page+i))
185 				continue;
186 
187 			printk(KERN_WARNING "section number %ld page number %d "
188 				"not reserved, was it already online? \n",
189 				psection, i);
190 			return -EBUSY;
191 		}
192 	}
193 
194 	switch (action) {
195 		case MEM_ONLINE:
196 			start_pfn = page_to_pfn(first_page);
197 			ret = online_pages(start_pfn, PAGES_PER_SECTION);
198 			break;
199 		case MEM_OFFLINE:
200 			mem->state = MEM_GOING_OFFLINE;
201 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
202 			ret = remove_memory(start_paddr,
203 					    PAGES_PER_SECTION << PAGE_SHIFT);
204 			if (ret) {
205 				mem->state = old_state;
206 				break;
207 			}
208 			break;
209 		default:
210 			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
211 					__func__, mem, action, action);
212 			ret = -EINVAL;
213 	}
214 
215 	return ret;
216 }
217 
218 static int memory_block_change_state(struct memory_block *mem,
219 		unsigned long to_state, unsigned long from_state_req)
220 {
221 	int ret = 0;
222 	mutex_lock(&mem->state_mutex);
223 
224 	if (mem->state != from_state_req) {
225 		ret = -EINVAL;
226 		goto out;
227 	}
228 
229 	ret = memory_block_action(mem, to_state);
230 	if (!ret)
231 		mem->state = to_state;
232 
233 out:
234 	mutex_unlock(&mem->state_mutex);
235 	return ret;
236 }
237 
238 static ssize_t
239 store_mem_state(struct sys_device *dev,
240 		struct sysdev_attribute *attr, const char *buf, size_t count)
241 {
242 	struct memory_block *mem;
243 	unsigned int phys_section_nr;
244 	int ret = -EINVAL;
245 
246 	mem = container_of(dev, struct memory_block, sysdev);
247 	phys_section_nr = mem->phys_index;
248 
249 	if (!present_section_nr(phys_section_nr))
250 		goto out;
251 
252 	if (!strncmp(buf, "online", min((int)count, 6)))
253 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
254 	else if(!strncmp(buf, "offline", min((int)count, 7)))
255 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
256 out:
257 	if (ret)
258 		return ret;
259 	return count;
260 }
261 
262 /*
263  * phys_device is a bad name for this.  What I really want
264  * is a way to differentiate between memory ranges that
265  * are part of physical devices that constitute
266  * a complete removable unit or fru.
267  * i.e. do these ranges belong to the same physical device,
268  * s.t. if I offline all of these sections I can then
269  * remove the physical device?
270  */
271 static ssize_t show_phys_device(struct sys_device *dev,
272 				struct sysdev_attribute *attr, char *buf)
273 {
274 	struct memory_block *mem =
275 		container_of(dev, struct memory_block, sysdev);
276 	return sprintf(buf, "%d\n", mem->phys_device);
277 }
278 
279 static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
280 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
281 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
282 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
283 
284 #define mem_create_simple_file(mem, attr_name)	\
285 	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
286 #define mem_remove_simple_file(mem, attr_name)	\
287 	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
288 
289 /*
290  * Block size attribute stuff
291  */
292 static ssize_t
293 print_block_size(struct class *class, char *buf)
294 {
295 	return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
296 }
297 
298 static CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
299 
300 static int block_size_init(void)
301 {
302 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
303 				&class_attr_block_size_bytes.attr);
304 }
305 
306 /*
307  * Some architectures will have custom drivers to do this, and
308  * will not need to do it from userspace.  The fake hot-add code
309  * as well as ppc64 will do all of their discovery in userspace
310  * and will require this interface.
311  */
312 #ifdef CONFIG_ARCH_MEMORY_PROBE
313 static ssize_t
314 memory_probe_store(struct class *class, const char *buf, size_t count)
315 {
316 	u64 phys_addr;
317 	int nid;
318 	int ret;
319 
320 	phys_addr = simple_strtoull(buf, NULL, 0);
321 
322 	nid = memory_add_physaddr_to_nid(phys_addr);
323 	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
324 
325 	if (ret)
326 		count = ret;
327 
328 	return count;
329 }
330 static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
331 
332 static int memory_probe_init(void)
333 {
334 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
335 				&class_attr_probe.attr);
336 }
337 #else
338 static inline int memory_probe_init(void)
339 {
340 	return 0;
341 }
342 #endif
343 
344 /*
345  * Note that phys_device is optional.  It is here to allow for
346  * differentiation between which *physical* devices each
347  * section belongs to...
348  */
349 
350 static int add_memory_block(int nid, struct mem_section *section,
351 			unsigned long state, int phys_device,
352 			enum mem_add_context context)
353 {
354 	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
355 	int ret = 0;
356 
357 	if (!mem)
358 		return -ENOMEM;
359 
360 	mem->phys_index = __section_nr(section);
361 	mem->state = state;
362 	mutex_init(&mem->state_mutex);
363 	mem->phys_device = phys_device;
364 
365 	ret = register_memory(mem, section);
366 	if (!ret)
367 		ret = mem_create_simple_file(mem, phys_index);
368 	if (!ret)
369 		ret = mem_create_simple_file(mem, state);
370 	if (!ret)
371 		ret = mem_create_simple_file(mem, phys_device);
372 	if (!ret)
373 		ret = mem_create_simple_file(mem, removable);
374 	if (!ret) {
375 		if (context == HOTPLUG)
376 			ret = register_mem_sect_under_node(mem, nid);
377 	}
378 
379 	return ret;
380 }
381 
382 /*
383  * For now, we have a linear search to go find the appropriate
384  * memory_block corresponding to a particular phys_index. If
385  * this gets to be a real problem, we can always use a radix
386  * tree or something here.
387  *
388  * This could be made generic for all sysdev classes.
389  */
390 struct memory_block *find_memory_block(struct mem_section *section)
391 {
392 	struct kobject *kobj;
393 	struct sys_device *sysdev;
394 	struct memory_block *mem;
395 	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
396 
397 	/*
398 	 * This only works because we know that section == sysdev->id
399 	 * slightly redundant with sysdev_register()
400 	 */
401 	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));
402 
403 	kobj = kset_find_obj(&memory_sysdev_class.kset, name);
404 	if (!kobj)
405 		return NULL;
406 
407 	sysdev = container_of(kobj, struct sys_device, kobj);
408 	mem = container_of(sysdev, struct memory_block, sysdev);
409 
410 	return mem;
411 }
412 
413 int remove_memory_block(unsigned long node_id, struct mem_section *section,
414 		int phys_device)
415 {
416 	struct memory_block *mem;
417 
418 	mem = find_memory_block(section);
419 	unregister_mem_sect_under_nodes(mem);
420 	mem_remove_simple_file(mem, phys_index);
421 	mem_remove_simple_file(mem, state);
422 	mem_remove_simple_file(mem, phys_device);
423 	mem_remove_simple_file(mem, removable);
424 	unregister_memory(mem, section);
425 
426 	return 0;
427 }
428 
429 /*
430  * need an interface for the VM to add new memory regions,
431  * but without onlining it.
432  */
433 int register_new_memory(int nid, struct mem_section *section)
434 {
435 	return add_memory_block(nid, section, MEM_OFFLINE, 0, HOTPLUG);
436 }
437 
438 int unregister_memory_section(struct mem_section *section)
439 {
440 	if (!present_section(section))
441 		return -EINVAL;
442 
443 	return remove_memory_block(0, section, 0);
444 }
445 
446 /*
447  * Initialize the sysfs support for memory devices...
448  */
449 int __init memory_dev_init(void)
450 {
451 	unsigned int i;
452 	int ret;
453 	int err;
454 
455 	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
456 	ret = sysdev_class_register(&memory_sysdev_class);
457 	if (ret)
458 		goto out;
459 
460 	/*
461 	 * Create entries for memory sections that were found
462 	 * during boot and have been initialized
463 	 */
464 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
465 		if (!present_section_nr(i))
466 			continue;
467 		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE,
468 					0, BOOT);
469 		if (!ret)
470 			ret = err;
471 	}
472 
473 	err = memory_probe_init();
474 	if (!ret)
475 		ret = err;
476 	err = block_size_init();
477 	if (!ret)
478 		ret = err;
479 out:
480 	if (ret)
481 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
482 	return ret;
483 }
484